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Computational models of cognitive processes may be employed in cyber-security tools,

experiments, and simulations to address human agency and effective decision-making

in keeping computational networks secure. Cognitive modeling can addresses

multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the

human and computational sciences such as the following: (a) adversarial reasoning and

behavioral game theory to predict attacker subjective utilities and decision likelihood

distributions, (b) human factors of cyber tools to address human system integration

challenges, estimation of defender cognitive states, and opportunities for automation,

(c) dynamic simulations involving attacker, defender, and user models to enhance

studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness

research and training scenarios to address human cyber-security performance,

maturation of cyber-security skill sets, and effective decision-making. Models may be

initially constructed at the group-level based on mean tendencies of each subject’s

subgroup, based on known statistics such as specific skill proficiencies, demographic

characteristics, and cultural factors. For more precise and accurate predictions, cognitive

models may be fine-tuned to each individual attacker, defender, or user profile, and

updated over time (based on recorded behavior) via techniques such as model tracing

and dynamic parameter fitting.

Keywords: cognitive modeling, behavioral simulations, cyber-security, human factors, model tracing, network

simulations, embedded cognition, training effectiveness

1. INTRODUCTION

Computer simulations are of great importance in the field of cyber-security. Simulations are useful
as components of network security software and in training exercises for security professionals, as
well as software aids designed for network users. Moreover, much of the basic research in cyber-
related human factors and cyber epidemiology benefits from simulation software. The dynamics
of cyber-security are fundamentally human and adversarial, encompassing a range of attacker,
defender, and user interactions. Simulations of human cognition and behavior are of particular
importance for addressing these domain characteristics.
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Network simulations that include high-fidelity models of
users, attackers, and/or defenders may be employed for running
wargame training scenarios with realistic traffic and user-
generated vulnerabilities. Data collection and analysis from
running these simulations provides the means to study how
various changes in tools, security restrictions, and training can
affect overall network security. Models of users’ and defenders’
cognition may be employed for real-time estimation of their
cognitive states, so as to address human system integration
challenges and identify tasks that would benefit from automation.
Models of attackers’ cognition may be employed in complement
with behavioral game theory to predict subjective action utilities
and optimal defensive action paths. Just as simulations in
healthcare predict how an epidemic can spread and the ways
in which it can be contained, such simulations may be used in
the field of cyber-security as a means of progress in the study of
cyber-epidemiology.

Many of the assumptions made by system administrators
and codified as security policies and best practices are based
on anecdotal evidence, and are often developed in response
to case-studies of prior incidents as part of handling incident
response (Boss et al., 2009). Such best-practices are difficult to test
empirically and will likely vary depending on the network type
and size. Loosening restrictions to see how vulnerable a network
becomes in a live setup is irresponsible. Tightening restrictions
universally does not always lead to the desired results either,
as imposing additional policies and restrictions can prohibit
legitimate work and increase the potential for users to stress the
network in unintended ways. A simulation of the network and
its users, however, provides the ability to test various network
policies without real-world consequences. Such simulations may
be employed to reveal holes in the procedures and potentially
counter-intuitive best-practices.

For example, assumptions for black-listing or white-listing
certain websites, port numbers, and software can be examined
in the context of realistic models of user behavior and network
activity. Even the most conventional of sys-admin wisdom
may be based on untested assumptions—such as the idea
that certain password complexity requirements increase overall
system security. However, several cognitive constraints (e.g.,
production bias, memory limitation) may force users to cheat
by storing passwords in unencrypted text files or employing
keyboard visual patterns or other generic patterns (e.g., choosing
a password like “asdfASDF1234!@#$”) to more easily recall the
passwords. High-fidelity user-models can aid in predicting such
behavior, and high-fidelity network simulation can predict how
the interaction of restrictions and behavior may affect overall
network hygiene. Moreover, testing multiple potential settings
can aid in finding a near-optimal configuration for restrictions
and other policies.

Current training procedures may have varying effects
on different user-types. A high-fidelity cyber simulation
should include human users’ individual differences. Through
such a simulation, we may find that certain training
procedures produce healthier overall networks than others.
We may produce and begin testing counter-intuitive
training regiments, as well (e.g., less training or random

schedule training may produce better results for certain user
types).

Finally, process models of cognition and behavior can aid
in a better understanding of the minds of cyber attackers,
defenders, and users, which will further improve network
security. Recent research suggests that modeling and predicting
attackers’ mental state and decisions can lead to better
decision aids and a higher rate of thwarted attacks (e.g.,
Abbasi et al., 2015; Veksler and Buchler, 2016). Defender state
of mind is largely ignored in cyber-security tools, although
research in cybernetics and automation suggests that cognitive
modeling can aid greatly in this domain, as well (e.g.,
Cassenti and Veksler, 2017). Current best examples of network
user behavior predictions are based on statistical analyses
to predict common and uncommon timing and locations of
access. Computational process models of user cognition can
aid in advancing past the common/uncommon classification
of user behavior and predict potential errors that lead to
security risks. Research suggests that defender/user training
effectiveness can benefit from cognitive modeling -based tools,
as well.

The rest of this paper discusses the current state of cognitive
modeling technology readiness for use in the cyber-security
domain. More specifically, the discussion focuses on how specific
modeling techniques can be employed in the domain (e.g., model
embedding in large-scale network simulations, model tracing,
parameter fitting), and outlines prior work that has begun to
move the field along these paths.

2. THE PROBLEM OF CYBER-SECURITY

Across organizations and in the literature, “cyber” is a term that
reflects a rather large domain. Additionally, the cyber domain
overlaps with others, notably the physical (e.g., servers, lines of
communication, network topology) and information (e.g., files
stored on defended network(s) and servers, control of access
to data as per policies) domains. To explore human factors of
cyber-security, it is useful to understand the terms and concepts
involved and how they impact or are influenced by humans and
human behavior.

At the core, security focuses on the CIA (Central Intelligence
Agency) triad of confidentiality, integrity, and availability.
Information can take on many forms, both digital and physical,
with respect to both storage and transmission, and information
security must consider the protection of said information and
the means with which it is stored and shared. Generally,
confidentiality covers the notion of data only being viewed by
parties with appropriate permission. It can be considered with
respect to the concept of least privilege, wherein any individual
only has the privileges absolutely required (permission applied to
a user account, for example). The integrity of data means that it
is protected from false alteration or corruption when transferred
and when stored. Lastly, availability is assurance that the data is
accessible by parties with legitimate permission whenever they
need it, i.e., without service interruption or unnecessary down
time.
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However, it is important to recognize that this triad focuses on
the security of the data itself, of the IT systems involved. In the
networked world, information technology security encompass
a wide range of activities and interactions, and human beings
are increasingly involved in communication, collaboration, and
similar activities that affect and are affected by information
security. In reality, security is a process rather than a product
(Mitnick and Simon, 2003) that cannot be adequately covered
conceptually by the CIA triad. The additional characteristics
of authenticity, accuracy, utility, and possession combine with
CIA and cover the access paths, ownership, and validity of data
across services and organizations to provide a more complete
conceptualization of IT security (Whitman and Mattord, 2007).
Furthermore, the information security process is not “something
that can be bought off the shelf,” requiring an understanding of
the people, policies, tools, and techniques involved (Von Solms
and Van Niekerk, 2013). Building from the CIA foundation,
modern cyber-security is concerned with the tools, policies,
concepts, risks management approaches, and best practices that
protect information and involved parties from all forms of harm
(physical, financial, emotional) that could result from security
breaches.

Technical solutions to cyber-security are and should be
considered critical to a successful security effort. Employing
encryption in communication, access control techniques, and
monitoring and auditing tools certainly don’t harm security
and provide some measure of defense against attacks. However,
while tools and policies may provide strong defense for systems
and software, human beings can be the greatest vulnerability
to security, and human factors must be considered in security
perspectives (Jones and Colwill, 2008).

A server may require authentication in order to preserve
confidentiality and integrity, but what if a user makes use of a
password that is very common, easy to guess, and/or nominally
difficult to break? What about a team of employees that have
privileged access to machines on the company network that don’t
require that level of access? In what ways are the employees
and members of an organization potential sources of security
breaches? Human factors in cyber-security necessitate the need
to balance the usability and utility of systems and software with
respect to completing work and the policies and limitations
placed on them with respect to maintaining security.

Even assuming that perimeter defense tools and techniques,
such as firewalls, intrusion detection systems (IDS), filters, and
network monitoring methods were completely effective,
legitimate uses of a network and its services require
communication to be allowed past these walls and boundaries.
Human behavior, intentional or otherwise, can form a bridge
past these defenses and breach security and are a key area of
focus in security policy and practice (Mitnick and Simon, 2003;
Jones and Colwill, 2008; Colwill, 2009; Kraemer et al., 2009;
Bowen et al., 2011).

Human cognition and behavior is important to understand,
model, and predict across many areas of cyber-security. These
include attacker-defender game dynamics (e.g., Alpcan and
Başar, 2010; Roy et al., 2010), role of deception (e.g., Kelley
et al., 2012; Hong et al., 2013; Aggarwal et al., 2016), cyber

situational awareness (e.g., Jajodia et al., 2010; Dutt et al., 2013,
2016), and team decision making (e.g., Finomore et al., 2013).
Human factors has become a topic of great import to the network
security community (e.g., D’Amico et al., 2005; Knott et al.,
2013; Mancuso et al., 2014), and one that is specifically focused
on predicting and explaining human ability and inability to sift
through network traffic data to identify needle-in-a-haystack
threats. Importantly, this is an area ripe for contribution via
computational cognitive modeling, and, as we will see in the next
section, some important headway has already been made in this
direction.

Network simulations with high-fidelity behavioral
components are of a great interest for professionals seeking
to plug these types of breaches. What often arises is a balance
between system and network security and the ease with which
human actors can complete tasks and achieve their goals on the
same systems and networks. The intentions of humans may be
at odds with their effects to security. Systems can be configured
to impose security on humans, evident in the prevalence of
password policies (e.g., character length, character type, and
expiration), the management of different levels of account
privileges (e.g., not allowing a regular user account to install
software, providing a developer with read and write access to
a shared repository), and specified configuration of software
used in the workplace (e.g., forcing email to display in plaintext
and placing restrictions on attachments). Such efforts are means
to attempt to provide some foundation of security to build
upon across an organization. However, when considering the
daily work needs and goals of users, there may be frustration
that arises from security impositions. Will humans employ
workarounds? Do differing opinions on what is important lead
toward management policies that may not support the highest
security, such as usability and workflow needs that push against
limited access defaults?

In effect, nuances and characteristics of the workplace,
motivated by human factors, can chip away at even the
most well-intentioned preservation of CIA and cyber-security.
Collectively, effects influencing security from internal sources
are called insider threats. Insider threat can be both intentional
and unintentional. Unintentional insider threat covers instances
wherein an administrator perhaps fails to properly configure
a server or a well-intentioned user falls victim to a phishing
email. Social engineering attacks, while instigated by an external
party, can cause employees to inadvertently create insider threat.
Intentional insider threat can arise from frustrations or other
motivating factors that turn individuals against the organization.
External parties may provide the motive through payment,
coercion, or political ideology, or an individual may decide
to “get revenge” for a perceived wrongdoing or slight. To be
best prepared and equipped for cyber-security incidents, an
organization must embrace both technical elements of security
in design and engineering of systems and networks as well as
the cultural and social facets of the humans involved (Colwill,
2009). Ideally, pursuing proper cyber-security practice integrates
security knowledge and awareness in the organizational culture
as well as system design and implementation. Regardless of
the quality of technical cyber-security solutions, analysis of
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vulnerabilities often covers organizational issues, such as lack
of funding, training, or management support, that undermine
security efforts and human factors issues, such as poor testing,
insufficient communication, and lack of training.

Another area of importance where high-fidelity behavioral
simulations are readily employable is training. Training and
education are often recommended as an essential method
for combating cyber-security vulnerabilities relating to human
behaviors and activities within an organization’s network (e.g.,
Verizon, 2017). Beyond human error in configuration or
management of a system, awareness of attacker techniques and
methods of gaining access, especially those involving social
engineering methods and tricking users, can contribute to fewer
incidents.

End-user knowledge and education may come in some form
of training. For example, purposefully emulating phishing attacks
with crafted messages sent to unwitting employees can be used
to raise awareness and guide victims to resources and knowledge
(Bowen et al., 2011). Virtual environments and games can be
used to give participants a consequence-free avenue to explore
scenarios and situations related to cyber-security and witness the
outcome of their decisions, good or bad (Cone et al., 2007).

3. COGNITIVE MODELING IN
CYBER-SECURITY

There are several ways in which cognitive and behavioral
modeling paradigms may be useful in the context of cyber-
security. Here we focus on embedded computational process
cognitive models and model-tracing techniques. Embedded
cognitive models are independent simulations of human
cognition and behavior that can interact directly with the task-
environment (Salvucci, 2006; Gluck, 2010). In the context of
cyber-security, these are cognitive models of network users,
defenders, and attackers that can interact with the same software
that humans interact with. This may be useful for adding
simulated participants in training scenarios, for generating offline
predictions in applied tests of network security, or for basic
research simulations, especially in the contexts of human-factors
and cyber epidemiology.

Cognitive modeling is similar to behavioral modeling, and is
often employed for similar purposes. For example, a behavioral
model of desktop user behavior may be a Markov state-transition
probability matrix, stating that that if the user is in the state where
they are typing an email, they may transition to a state where they
are looking up something on Google with a probability x and a
state where they are installing software with a probability y. A
cognitivemodelmay represent the same state-transitions as state-
actions (a.k.a. productions), and assign utilities to each state-
action pair. State transitions may be directly calculated based on
state-action utilities, with the major difference being that state-
action utilities (as well as the states and the actions available in
agent memory) will change based on agent experiences.

Simulations of network users, defenders, and attackers require
models that include cognitive processes and generic knowledge,
as well as domain-specific facts and procedures. There is a

variety of cognitive architecture software that attempts to provide
modelers with fundamental sets of generic cognitive processes
and basic knowledge (e.g., ACT-R, Soar, Sigma, PyIBL, Clarion;
Anderson and Lebiere, 1998; Sun, 2006; Anderson, 2007; Laird,
2012; Morrison and Gonzalez, 2016; Rosenbloom et al., 2016).
Cognitive architectures often overlap in cognitive theory and
capabilities. However, different architectures often have different
assumptions and implementations of generic cognitive processes,
different modeling languages and requirements, and different
level of analysis focus in cognitive time-scale. For this reason,
some architectures may be preferable to others depending on
the purpose of the modeling effort. For example, Soar and ACT-
R architectures both include reward-based learning mechanisms
and can update the aforementioned state-action utilities based on
agent experiences. However, Soar may be the more appropriate
framework for modeling multi-step planning (Laird, 2012),
whereas ACT-R may be the better choice when precise fact-
retrieval times are of importance (Anderson, 2007).

Regardless of the initial cognitive architecture choice, the
modeling system can be tuned based on the specific task and
population being modeled. There is no limit to such tuning,
enabling modelers to add and remove whole modules in their
architecture of choice. However, most of the time such tuning
takes the form of parameter value adjustments and model
development. Model development is often a form of knowledge
engineering—specification of potential goals, inputs, facts, and
procedures assumed to be in the mind of the human being
modeled.

There are many models simulating parts of network user
behavior. For example, in independent efforts Fu and Pirolli
(2007) and Peck and John (1992) developed models that make
fair predictions as to network user behavior in a web browser
based on current goals. There are models simulating how goals
are retrieved (e.g., Altmann and Trafton, 2002) and how they
are juggled (e.g., Salvucci, 2005). There are user modeling efforts
that have focused on social network use (e.g., Hannon et al.,
2012), chat behavior (e.g., Ball et al., 2010), team performance
(Ball et al., 2010), and email activity (Dredze and Wallach, 2008).
Finally, robust models of human cognition, especially in the
realm of reward-based motivation (e.g., Nason and Laird, 2005;
Fu and Anderson, 2006), can aid in explaining and predicting
human behavior in the cyber domain (e.g., Maqbool et al.,
2017). There are also many efforts for integrating individual
models into a comprehensive model that can encompass multi-
agent behavior at network-level dynamics (Romero and Lebiere,
2014). Such models can become an essential component of
simulations in cyber, useful for generating realistic traffic and
security holes. Model-based agents can act as simulated humans,
switching between applications, clicking links, and downloading
and installing software.

Attackers and defender models require more domain-specific
knowledge. Unfortunately, subject-matter experts in this field
are rarely available to the academic groups that do the bulk
cognitivemodel development. Some core components of human-
software interaction may be modeled without any deeper
understanding of attacker/defender subject-matter expertise. For
example, Instance-Based Learning theory (Gonzalez et al., 2003),

Frontiers in Psychology | www.frontiersin.org 4 May 2018 | Volume 9 | Article 691

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Veksler et al. Cognitive Modeling in Cyber

integrated with memory dynamics of ACT-R (Anderson, 2007),
has been employed in efforts to explain situational awareness of
cyber analysts (Arora and Dutt, 2013; Dutt et al., 2013; Gonzalez
et al., 2014), and to predict the role of intrusion-detection
systems on cyber-attack detection (Dutt et al., 2016). These
modeling efforts involved abstracted scenarios, but still exemplify
useful research for understanding and predicting expert behavior.
Moreover, in the case where cognitive models are to be exported
as part of decision aid software for real-world cyber-security
experts, abstract states and procedures may always be remapped
to more specific domain correlates.

Regardless of whether the attempt is tomodel users, defenders,
or attackers, tailoring the model to reflect what may be known
about the individuals being modeled may be necessary to achieve
better precision and use in the simulation. Model tailoring may
be done during and prior to model initialization, as well as live,
while themodel is running, based on incoming data points. Much
of model tailoring takes the form of adjusting model parameters
(e.g., learning rate, exploratory tendencies), but some of it takes
the form of adjusting model experiences on the fly to match
human subject experiences. This latter form of tailoring is known
as model-tracing.

The focus of model-tracing is in tuning a cognitive model to
real in-task experiences of a specific individual. This technique
is employed for maintaining an individual’s cognitive state
throughout that individual’s time within the task-environment.
For example, Anderson et al. (1995) employed model-tracing in
automated ‘cognitive tutors’ to predict why students made certain
errors on algebra problems, so as to better suit instructions
to each individual student. In the context of cyber-security,
model-tracing of network user and defender cognition can aid
in predicting potential biases, errors, and negligence; and model-
tracing of attacker cognition can aid in predicting probable attack
paths.

The following sections discuss model embedding in network
simulations, model initialization and dynamic tailoring, the use
of modeling in defender-attacker dynamics, and the use of
modeling in automation.

4. STANDALONE MODEL INTEGRATION IN
CYBER SIMULATIONS

High fidelity network models are a crucial component to
the establishment of effective policy. Since experimentation
in production systems is nearly impossible, the need for test
environments that can be used to generate reproducible results
is apparent. These environments can be used to evaluate policies
in existing networks, prototype new networks, and train staff
members in a sand-boxed environment where the consequences
of mistakes are minimal. Embedding synthetic users, attackers,
and defenders in such environments enables evaluations to be of
a higher fidelity and, ultimately, accuracy.

4.1. Modeling a Network
There are three major approaches to consider when modeling
a network. The first is simple replication. In this approach

we duplicate the existing network (or the relevant parts of it)
with another copy of the environment. This approach, under
the constraint of a complete replication (all hardware and
software is duplicated), yields the best fidelity of modeling,
as the test environment is an exact copy of the production
environment. This approach has some obvious draw backs.
The first of which is cost. A less obvious but more practical
concern is the time costs for using the duplicated environment.
Because we are working with a physical copy of the production
environment, if there are errors in the modifications being tested,
re-provisioning the network may be a physical task. This could
involve rebooting physical devices and manually reconfiguring
hard ware. Depending on the complexity of the environment
such a task could take days.

4.1.1. Pure Simulation
An alternative method would be to use a purely simulated
network. There are many simulators to choose from, including
ns-3 (Riley and Henderson, 2010), Opnet (Chang, 1999), and
Qualnet (Documentation, 2006), and others (Siraj et al., 2012).
While each simulator has its own merit, ns-3 is the most
widely used, because it is open source. Since it has such a large
community backing the project, the code base is very actively
maintained and is well documented. Pure simulation does not
suffer from the usage time overhead that a fully replicated
network would impose, since it’s operation is purely software
based. However, it lacks the ability to model real payloads and
timings that would be normally present in a regular network.
In simulation, all payload data is generated from an assumed
distribution. These assumptions may not necessarily reflect the
real world traffic distributions. As an example, consider moving a
mouse pointer over a modern web browser. As the mouse pointer
moves toward a link, the browser may pre-fetch parts of the
HTML from the next page to optimize the loading speed of the
user’s next action. This creates traffic bursts that are erratic and
may not necessarily conform to a standard distribution.

Another issue with pure simulation is that it cannot give
insight into the behavior of the software that is part of the
production environment. In pure simulation, only the network
traffic is modeled; each application is represented as a source of
network messages (or packets, or frames depending on the layer
the simulated network operates at) that require transport. In pure
simulation it would not be possible to model the comprise of an
operating system by a cyber attack, because there are no operating
systems to compromise.

Traffic generation in simulation is inadequate, because it
cannot model traffic generated by interdependent services.
Generators likeMGEN (2018)1 and IPERF (2018)2. simplymodel
traffic flows that originate from a single machine. However,
most user-facing network services are the result of several
interdependent processes running on networked machines. If we
consider the simple example of browsing a web document portal
(shown in Figure 1), we can enumerate the cascade of traffic flows
that result from a single user’s actions.

1Available online at: http://mgen.pf.itd.nrl.navy.mil
2Available online at: http://software.es.net/iperf/
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FIGURE 1 | This figure demonstrates how traffic cascades are created in a typical service network. In this network, documents are served to the World Wide Web by

coordinating a response amongst several internal services. While the outside user only interacts with the web server, the web server must contact other services on

other machines to complete its task. Thus a simple document lookup generates several traffic flows within this network.

When the user first browses the web page, the first traffic
flow connects the firewall to the web server. This is probably
static content and would most likely be stored on the web
server. Next the user will need to provide credentials and log
in. This procedure will require the web server to contact the
authentication server. If the user needs to search for a document,
the web server will have to contact the database. Once the
document is found, the web server will need to retrieve it from
the file server. Even though the user only interacts with the
web server, each user action generates multiple flows within the
network.

4.1.2. Hybrid Network Emulation
The final approach, Hybrid Network Emulation (HNE), strikes a
balance between the previous two. In a Hybrid network emulator,
both the software and network are modeled. The computer
hardware is abstracted by using standard machine virtualization
techniques such as QEMU-KVM (Habib, 2008) or XEN (Barham
et al., 2003). The operating systems (OS) under test are guests
in the virtualized environment provided by the hypervisor host
(sometimes called the host OS). The network is abstracted with a
network simulator such as ns-3.

A key component of this approach is a method for taking
the traffic generated by the software running on the virtualized
hardware and injecting it into the simulation. The CyberVAN
testbed (Chadha et al., 2016), one of the first HNEs, addresses this
need by using virtual LAN (VLAN) identifiers as message tags. As
a message exits the virtual network interface of a virtual machine
(VM) that houses the software under test, it is tagged with a
VLAN id that uniquely identifies this traffic to the simulator.
The simulator uses this identifier to determine where in the
simulated network this traffic should be injected. This tagging
operation is critical to the emulation, since a cyber attack on
the guest OS means that traffic coming out of the VM might
be forged. Thus we can not expect that header information of
a message coming out of the virtual interface would reflect the
configuration of said interface within the VM host or the guest
operating system.

One of the biggest challenges to maintaining the fidelity of
the emulated network is timing. The simulated network may
require significant computation to determine what to do with
a specific message. This is especially true if the simulator is
modeling wireless links such as satellite, LTE, or WiFi. Wireless
links not only require a delivery decision but also radio channel
modeling to determine how long a packet will take to arrive and
if any corruption of the packet has occurred. The calculation
of the fate of an individual message may take more than one
second, and for any given second many messages may be in-
flight. It will often be the case that computing what occurs
in a simulated second will take significantly longer than one
second, thus these simulated networks run slower than real
time. Unfortunately, the VMs that are generating this traffic are
not inherently aware of this limitation. Because they assume
that time is passing according to “wall clock time,” the timers
associated with their messages (e.g., TCP session timer) may
expire prematurely.

A solution to this problem is the TimeSync system (Sultan
et al., 2012) shown in Figure 2 used in the CyberVAN testbed.
Since the VMs are running virtualized hardware and are
essentially a software process running on the host OS, the
running time of this process can be controlled by the host OS.
The TimeSync system adjusts the running time of the VMs to by
reacting to timing messages generated by the simulator. The core
idea of TimeSync is to create a simulator-driven virtual timeline
in the VMs participating in emulation (as opposed to the “real”
time line created by the hardware platform that VMs normally
follow).

One big advantage of this approach is the ability to instrument
both the VMs and the simulated network for measurement. Since
real OSes are running on the VMs, standard OS tools like sysdig
can be used to collect operating system data. At the same time,
the ns-3 simulated network code can be instrumented to enable
packet capture on every interface in the entire network. It can also
log other information and create digests of flow stastistics. Such
a procedure was done to generate the data sets in Bowen et al.
(2016).
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FIGURE 2 | This figure shows architecture of the TimeSync System. While there are many components, the key detail depicted in red is that time information flows

from the simulator to the Hypervisor. The Hypervisor presents virtualized hardware to the operating system (e.g., Windows10 or CentOS Linux) which includes system

clock information. Thus, the operating system which runs on the hardware is given time information that is adjusted to keep pace with the simulator. If the simulator

slows down to handle more complex models, this effectively slows time for the operating system. The internal details of how this is achieved is documented in Sultan

et al. (2012).

4.2. What Can Be Done With the Hybrid
Network Emulator
While hybrid network emulation is not a full replication of
a production network, it provides the flexibility of simulation
while maintaining the ability to interact with the actual software
under test. In the CyberVAN testbed, it is possible to directly
interact with the operating systems of the VMs that are part of
the emulated network. If some user action or test configuration
causes the emulated network to become unusable, the entire
emulated network state can be rolled back to a pristine state in
a few minutes.

Since all data traffic is going through the simulated network, it
is possible to capture traffic at every point in the network. Thus
one can trace the propagation of a cyber attack through all the
components in the network. While this is possible in a physical
replica, it can often be difficult to accomplish in practice due to
the limitations of physical hardware (some traffic capture might
require the installation of physical network taps).

The CyberVAN testbed currently uses QEMU-KVM as it’s
hypervisor. This hypervisor can support a large collection
of guest OSes and is capable of providing virtual network
computing (VNC) access to the virtual console of the VM.
The practical application of this capability in the HNE is that
it can allow multiple users to interact with the VMs that
represent the machines in the emulated network. By leveraging
web-based VNC viewers like Guacamole3, the testbed can
be used to construct a cyber-security test range that allows
users to directly interact with the guest OSes on the VMs
remotely. Participants in training and competitive exercises can
be physically geographically separated. The Guacamole client
can be used to record the interactive sessions, thus allowing for
collection of user interaction data in addition to network and OS
data.

The CyberVAN testbed can also be used in a batch
mode where user interaction can be replaced by a scripting

3Apache Guacamole. Available online at: https://guacamole.incubator.apache.org/

infrastructure that kicks off events at specific times (simulated
time) during the course of the network simulation. This enables
the construction of repeatable experiments which can be run
multiple times to validate models and identify anomalous outliers
normally only detected by exhaustive searches.

4.2.1. Synthetic Users, Attackers, and Defenders
The nuances of traffic flows within a network of interdependent
services often cannot be modeled by a simple distribution
because of the high levels of correlation. Because the VMs in a
hybrid network emulator run full operating systems, it is possible
to run synthetic users on these virtual machines to generate traffic
that is modeled after user behavior. These synthetic users would
be most easily implemented as Markov models (see Figure 3)
to transition between applications/actions. The operation of the
synthetic users proceeds by choosing an interval at random from
a distribution that models user activity cycles. When the interval
expires, the synthetic user transitions to some other state/activity
according to the Markov chain link probabilities.

For example, in the CyberVAN testbed, a synthetic user,
named console user (Renouf, 2017), can be added to an
experiment to provide realistic background traffic. Instead of
simply generating traffic flows in a cycle based on some traffic
distribution model, the console user directly interacts with a web
browser. The client software initiates queries of a mail server
and interacts with a web forum. As noted before, each of these
actions can create cascades of traffic flows as the interdependent
services communicate to provide the user with the requested
service. Thus, for example, traffic flows due to users typing into a
submission form are captured.

At best, synthetic user Markov transition probabilities and
interval specifications would be based on empirical findings from
studies of real network users. However, behavioral transition
models are not going to be nearly as informative as embedded
stochastic cognitive models that can simulate desktop user
behavior, including browsing, downloads, and installs.
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FIGURE 3 | The Markov chain depicted above shows a simplified four state

mode of end users behavior. A user starts in the idle state and can then

transition to any one of the active states. Each circle is a state that the model

will stay in for a time interval (can be varied or fixed). When in an active state,

the user will generate some ammount of trafic that is relevant to the state they

are in. When the interval ends the next action will be taken based on the

probability weights for each transition. More details on the implementation of

the Markovbrain that employs this Markov chain can be found in the software’s

documentation (Renouf, 2017).

Synthetic users present the greatest need for network
simulator environments, especially in wargame training
scenarios where attackers and defenders are human participants.
However, there is also often a need to implement synthetic
attackers or defenders of the network. For example, embedded
synthetic attackers may be needed for cyber-analyst training
scenarios where no attackers are available, or for research studies
in cyber-epidemiology.

It is currently the case that on a simulator such as CyberVAN,
VMs may be modified to add computational embedded users, or
to provide access for human users via VNC. Ultimately, desktop
applications could be implemented using some common API
(e.g., Veksler et al., 2016) enabling either simulated or real human
participants to take control of given VMs and provide symmetric
experiences for both real and simulated user-types.

Since a testbed can be instrumented at both the OS level on
the virtual machine and in the simulated network, it would be
possible to gather data about user, attacker, and defender behavior
in the face of specific challenges. Scenarios can be constructed
with a specific type of network attack/failure, and user behavior at
the VM can be logged as the users attempt to defend the network.
This data can be used both to inform best practices about how to
handle such attacks and update the models so that they are more
effective.

5. MODEL TRACING FOR BETTER
PREDICTIONS OF ATTACKER BEHAVIOR

Game Theory -based decision aids have been used with great
success in real-world security contexts (Tambe et al., 2014).
However, most approaches to such decision aids have thus

far been based on the assumption that human attackers are
perfectly rational. Behavioral game theory is a modification of
rational game theory informed by, “experimental evidence and
psychological intuition” (Camerer, 2003, p. 465). Ultimately,
the goal of behavioral game theory is to predict behavior and
inform decisions in real-world strategic situations (Gächter,
2008). Whereas the success of normative game theory in
security domain comes from providing efficient randomization
of security plans and processes, behavioral game theory provides
a more realistic view of human strategy selection based on
a large body of empirical evidence, and argues for use of
behavioral/cognitive models to predict human behavior.

More recent research suggests that modeling and predicting
attacker’s cognition and action-selection can lead to a higher
rate of thwarted attacks. For example, Abbasi et al. (2015)
show that employing subjective utilities and prospect theory
aids in better predictions of opponent behavior and, thus, better
distribution of security resources. Veksler and Buchler (2016)
further show that the use of Model Tracing using computational
process cognitive models may be employed to dynamically
update attacker subjective utilities in repeated game scenarios.
When attacker subjective utilities are known, the likelihoods
of various attack paths can be directly calculated, and those
likelihoods, weighed by the respective risks to the system, can aid
in determining the best defensive approach.

Veksler and Buchler (2016) employ model tracing simulations
to predict (1) how attacks may be thwarted at a meaningful rate
even when much of attacker cognition is unknowable and (2)
how slight changes to model parameters based on new behavioral
data points can lead to near-optimal prediction of attack paths.
In the proposed setup, a simulated attacker bot (sim-attacker)
runs on defender-side software, predicting the attacker’s most
likely actions, and a defender action is suggested based on the
attack predicted by this simulation. Once real attacker behavior
is observed, the sim-attacker behavior and feedback history are
edited to match the observed data, and sim-attacker subjective
utilities are updated.

The sim-attacker subjective utilities are updated based on
the ACT-R Reinforcement Learning mechanism (Anderson,
2007). The ACT-R model, like any cognitive model, includes
parameters that may be adjusted to better reflect the individual
or population being modeled. In this particular simulation, these
free parameters account for initial biases, learning rates, and
exploratory tendencies. Veksler and Buchler (2016) show how
parameter values may be adjusted with each new behavioral
datum to develop more accurate and precise behavioral
predictions. Depending on the network logistics and what is
knowable about attacker cognition, these simulations indicate
that similar use of cognitivemodeling can aid in preventing about
5–30% of attacks over and above what may be accomplished via
normative methodology.

6. MODEL TRACING FOR BETTER
AUTOMATION

With the complexity of the tasks they perform, cyber defenders
and users are under high mental workload demands (Mancuso
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et al., 2015). Given both the importance of the tasks, requiring
cyber defenders and users to perform well, and that high mental
workload demands often lead to decreases in performance, it
would be advantageous to provide computerized aids to help
with their tasks. The timing of these aids is critical to the benefit
they can provide. If computerized aids are constantly active, even
when the software user would have been able to perform well
without it, the aid can make the user overly reliant on the it
(Kaber and Endsley, 2004) and be less discriminating when the
aid is inaccurate (Rushby, 2002).

Activating computerized aids at the right time evokes two
lines of research: (1) When is the right time to evoke aids?
and (2) What aids should be used? Both questions may be
addressed by computational modeling (Cassenti and Veksler,
2017). The right time to evoke an aid is based on some
analysis of user state. Cassenti et al. (2017) outline three
task-concurrent measures that could trigger an adaptive aid,
including meta-cognitive (e.g., a button press when the user
feels as if help is required), performance-based, and physiological
based (e.g., pupil diameter, which had been found to relate to
mental workload demand; Naicker et al., 2016). They suggest
empirical studies to understand which of these measures are
best at determining burgeoning performance declines. No
matter which measure is best, determining when to trigger
an aid must involve cognitive modeling to understand why
performance curves vary over changes in these measures
and with different task events. Analyzing cognitive models
with model results that have strong statistical relationships
to empirical data can provide important insight into the
cognitive processing that led to lower performance. Important
insights that can be derived may include when there is high
cognitive workload, potential for bias-based error, too many
competing rules, limited available cognitive resources, or lack
of existing relevant knowledge. Cognitive task analyses of
new tasks would provide accurate predictions of when similar
problems may exist and trigger aids to counteract performance
declines.

The other method of investigating adaptive automation with
computational modeling is to understand what aids to trigger.
Cassenti et al. (2017) analyze cognition into four stages in their
descriptive model, including perception, information processing
(i.e., sorting and filtering data), decision-making (i.e., selecting a
single course of action), and motor control to enact the decision.
Cognitive modeling supports the process of analyzing which of
these stages is in greatest need of intervention. In a production
system type of modeling system, which we recommend (Cassenti
and Veksler, 2017), the complexity of stages of a model is
determined by such factors as how many mental resources
are in operation or the number of mental steps required to
complete a cognitive stage. For example, in a model of a cyber
defender task with an event feed, a modeler may find that
seven mental steps associated with information processing or
filtering out unimportant data are required whereas decision
making only requires two. In this case, an aid that highlights
important elements of the text feed may be more valuable
than an aid that attempts to flag single incidents for greater
scrutiny.

7. MODEL INITIALIZATION IN THE
CONTEXT OF CYBER

Whether as a part of a full-scale network simulation, or
individual-tailored automation, cognitive and behavioral models
provide more accurate and precise predictions when tailored
to the subpopulation being modeled. Model parameters and
knowledge for each model instance should be initiated so as to
reflect the mean tendencies of said subpopulations.

Standalone process models may be initiated based on group
distributions that may reflect real-world scenarios. In simulations
of network users and defenders, we may know a great deal
about each person being modeled—e.g., age, gender, education
level—and may employ this information in setting up respective
models. That is, when a specific user/defender logs on to the
network, their informationmay be used to initiate the simulation.
Alternatively, in mass scale simulations, we may be privy to
information regarding the distribution of age/gender/skill of our
network users.

Attacker models may be more difficult to guess at, though
there is a body of research on the correlations between geoip and
attacker preferences. For example, cultural values appear to relate
to specific attacker behaviors (Sample, 2015; Sample et al., 2016)
and preferences (Sample et al., 2017a). Naturally, cyber events
do not occur in a vacuum. Cyber is simply the medium used
for messaging, and the manner in which cyber is used may be
influenced by cultural values.

Sample (2013) first established a link between websites
defaced with political messages and citizens of authoritarian,
collectivist countries. This led to a study (Sample, 2015) that
examined these defacements in the context of kinetic events
(e.g., geopolitical disputes). The findings of the 2015 study
revealed the strongest association between website defacements
and kinetic events occurred with attacker societies that had
authoritative, confrontational, competitive, and restrained values
(Hofstede et al., 2010) in common (Sample, 2015). In fact,
restrained cultural values appeared as the greatest predictor of
cyber responses to kinetic events.

Furthermore, the view of a single cyber attack culture, aka
“hacker culture,” that follows an international playbook such
as top attacks as listed by widely known Internet security
organizations was called into question in 2016 (Sample et al.,
2016). In the 2016 exploratory study Sample et al. observed
certain cultural values associating with specific attack method
(a.k.a. attack vector) preferences. For example, short-term
oriented cultural values appeared to associate with the use of 0
day attacks as a method to deface a website. In that same study,
URL poisoning appeared to be the attack vector preferred by
attackers from culturally restrained societies.

The aforementioned studies led to a follow-on study
comparing attack vectors of self-identitied attackers (Sample
et al., 2017a). This most recent study examined 7 different attack
vectors over a 10-year period to determine if cultural values
associate with attack vector preferences. This study relied on an
examination of seven different attack vectors that were consistent
with the groupings enumerated and defined in MITRE’s CAPEC
groupings for attacks patterns. The results showed different
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attack vector preferences that coincide with cultural values.
Attacks that are bold in nature and leave a significant amount of
evidence (e.g., Brute force attacks) were favored by those cultures
with masculine values. While attacks that require precision and
are more difficult to detect, they appear to be favored by attackers
who are uncomfortable with the new or unknown, implying that
this group of attackers may engage in more thorough planning
with less risk taking when compared to other hackers.

Collectively analyzed, these studies reveal that the way that
cyber actors view and interact with the virtual environment
is as varied as their interactions and vision of the physical
environment. Thus, when examining cyber attackers distinct
differences exist, and cultural values appear to be one way to
organize this phenomenon. Based on the previously mentioned
studies that showed differences in attacker preferences that
associated with common cultural values, a logical question would
be as follows: do cyber defenders and cyber victims also share
cultural value commonalities?

Cyber Victims and defenders appear to be less studied than
their attacker counterparts. A study by Sample and Karamanian
(2015) suggested that cyber defense strategies differ based on
cultural values. In this study a higher adoption rate of the Domain
Name System security extensions appeared to be favored by
countries with long-term oriented, egalitarian cultural values.
Thus, much like in the physical world, defensive behaviors in the
virtual world appear to be shaped in part by cultural values.

Most recently Sample et al. (2017b) examined over 17,000
records of social engineering attack victims found in the Zone-
H archives spanning 4 years. The victims of social engineering
attacks tended to be from individualistic, egalitarian, long-term
oriented societies. While the findings from this particular study
may lead some to draw conclusions about victims and victim
blaming, the real value lies in learning what types of attacks may
be most effective against different groups of people due to that
group’s cultural values and how those values serve to empower
users in the cyber domain. These conclusions are rather relevant
now that the targets are both more numerous and more diverse.

Naturally, cyber events do not occur in a vacuum. Cyber
is simply the medium used for messaging, and the manner in
which cyber is used may be influenced by cultural values. In
this way finding out geo-ip information can lead to establishing
many initial model parameters, procedures, and biases for
attacker models. Given the specific target network, we may have
additional knowledge about likely attack origins, age, education-
level, intent, and gender of hackers, which may all aid in further
fine-tuning cognitive models and produce better predictions.
Finally, to re-iterate, model tuning may be done at any point in
the lifetime of the model, such that as known factors regarding
attackers change, the model may be changed immediately.

8. CONCLUSIONS

Cyber-security is ultimately the interaction of human cognition
and adversarial behavior in the context of computer networks.

Simulations of human cognitive processes can be of great use for
simulating and predicting user error and negligence, defender
best-practices, most likely attack behavior, and ultimately,
network vulnerabilities. Such simulations/predictions may be
useful for training, decision-aid software, and basic research in
cyber-security.

Specifically, we describe the use of cognitive models
as embedded computational agents for simulating human
interactions with software and networks, and the use of cognitive
models in the context of model-tracing for keeping track of
human cognitive states to make better predictions of potential
decisions and biases. The former use-case employs high-fidelity
cognitive process models as agents that have access to desktop
software via keyboard/mouse control or standard API. In this
way we may simulate human use and abuse of the network
and predict effects of software use, firewall setup, training,
and potential policy changes. Simulating users (and potentially
attackers) on the network additionally provides realistic network
traffic and vulnerabilities for cyber training/wargame scenarios.

The latter use-case focuses on matching the experience of
a specific individual in-task to model experience. In this way
the model can trace the cognitive state of that specific user,
defender, or attacker at every step. In the case of tracing attackers
this becomes useful for predicting and counteracting likely and
especially harmful attack paths. In the case of tracing users and
defenders this is especially useful for sensing potential overload
and error and triggering automation.

Regardless of the use-case, cognitive models provide more
accurate and precise predictions of behavior when tailored to
the subpopulations being modeled. Model parameters, biases,
and known facts and procedures will all differ depending on
factors such as age, education level, and, of course, network
intent. An internal survey could reveal relevant details regarding
users and defenders of a specific network, and geo-ip information
in combination with information as to the likely attack-origins
may be employed to tailor model software for better attacker
predictions.

The use of high fidelity tailored computational process
cognitive models of network users, defenders, and attackers can
provide accurate simulations that may be useful in cyber-security
research and applied contexts. Predictions of behavior may be
used in decision-aid software for defenders that will directly
impact network security, for dynamic estimates of individual-
tailored training requirements, and for predicting likely attack
paths. Process models enable development of realistic synthetic
users for full-scale training/wargame scenarios. Finally, such
models enable much-needed research in cyber-security and
cyber-epidemiology.
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