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Every drug used to treat cancer (chemotherapeutics, immunological, monoclonal anti-
bodies, nanoparticles, radionuclides) must reach the targeted cells through the tumor 
environment at adequate concentrations, in order to exert their cell-killing effects. For any 
of these agents to reach the goal cells, they must overcome a number of impediments 
created by the tumor microenvironment (TME), beginning with tumor interstitial fluid 
pressure (TIFP), and a multifactorial increase in composition of the extracellular matrix 
(ECM). A primary modifier of TME is hypoxia, which increases the production of growth 
factors, such as vascular endothelial growth factor and platelet-derived growth factor. 
These growth factors released by both tumor cells and bone marrow recruited myeloid 
cells form abnormal vasculature characterized by vessels that are tortuous and more 
permeable. Increased leakiness combined with increased inflammatory byproducts 
accumulates fluid within the tumor mass (tumor interstitial fluid), ultimately creating an 
increased pressure (TIFP). Fibroblasts are also up-regulated by the TME, and deposit 
fibers that further augment the density of the ECM, thus, further worsening the TIFP. 
Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By 
decreasing TIFP and ECM density, we can expect an associated rise in drug concen-
tration within the tumor itself. In this overview, we will describe all the methods (drugs, 
nutraceuticals, and physical methods of treatment) able to lower TIFP and to modify 
ECM used for increasing drug concentration within the tumor tissue.

Keywords: tumor interstitial fluid, tumor interstitial fluid pressure, drug delivery systems, chemotherapy, adjuvant, 
vascular normalization

introduction

To produce its effects, a drug should reach the target tissue in a uniform and selective way. Although 
this effect has not been accomplished for any disease, with any drug currently used, this is true more 
than ever for tumors. Chemotherapy alone has not proven its effectiveness and efficacy; in fact, 
studies over 5 years have produced a paltry percentage of 2.1% (1).

Although several criticisms can be moved to this article, it is the only one that has produced 
reliable data on a large population and has shown which tumors may benefit from the use of chemo-
therapy. The work does not analyze the reasons for this failure. In fact, it was not possible to analyze 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2015.00165
http://www.frontiersin.org/Oncology/
https://creativecommons.org/licenses/by/4.0/
mailto:barongf@intercom.it
http://dx.doi.org/10.3389/fonc.2015.00165
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00165/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00165/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00165/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00165/abstract
http://loop.frontiersin.org/people/153537/overview
http://loop.frontiersin.org/people/251211/overview
www.frontiersin.org


July 2015 | Volume 5 | Article 1652

Baronzio et al. Overcoming impediments to tumor drug delivery

Frontiers in Oncology | www.frontiersin.org

the mode of drug administration, the various cocktails used, and 
if they were properly prepared. Furthermore, it was not easy to 
study all the anatomical parameters (currently known by in vitro 
and animal studies) that were able to decrease the arrival of the 
drugs to the tumor. The first studies that have taken into account 
the reasons why chemotherapeutics are not able to achieve their 
antitumor effect are to ascribe to Jain et al. (2). These authors 
studied the pharmacokinetics of methotrexate (MTX) in two 
transplanted-animal carcinoma: Walker 256carcinoma (W256) 
and hepatoma 5123 (H5123). A difference was present in the 
two tumors regarding the distribution of MTX. The uptake of 
drugs by H5123 was conditioned by the plasmatic concentra-
tion, whereas, in the W256, the tissue barriers conditioned it. It 
is interesting to report the methods used by these authors. The 
authors (2) studied the pharmacokinetics of MTX in W256 and 
H5123 by transplanting the tumors in three different ways. The 
first method of transplantation was the standard implantation of 
tumor frustules in the subcutaneous tissue. The second method 
was the implantation of a Millipore chamber inside the tumor 
mass for sampling tumor interstitial fluid (TIF) (3). The third 
method used tumor implantation to obtain a tumor supply by 
the host connecting it to a single artery and vein (4, 5). The single 
artery and vein connection is a superb method for studying 
tumor blood perfusion and vasoactive drug effects, metabolites, 
and drug characterization (6). To determine experimentally the 
release of drugs into tumors, Jain and coworkers (7–10) used 
several methods of study. One method was the isolated organ 
of Gullino, as previously reported. The other methods were the 
preparations of microcirculatory units. One method was the 
“Window technique” (7), and the other was a new angiogenesis 
assay (9, 10). This new assay was able to quantify angiogenesis, 
red blood cell velocity, microvascular permeability, pH, and 
growth factors (9, 10). From these early pharmacokinetic stud-
ies and the combined use of these experimental methods, Jain 
concluded that the drugs do not come easily to the tumor mass 
(7). Jain also stressed that different barriers prevent their arrival 
and that increased interstitial pressure is the main impediment 
(11). Other researchers have confirmed the existence of these 
anatomical and physiological barriers (12, 13). As recently 
pointed out by Monsky (12), barriers related to the anatomy and 
physiology of the tumor are the tumor vasculature, the interstitial 
space, and the same tumor cells.

Associated with increased interstitial pressure, the irregular 
vasculature is responsible for the decreased intake of drugs (11, 
12, 14, 15).

Tumor vasculature interstitial Fluid 
Formation, increase of interstitial Fluid 
Pressure

As long as the tumor in its growth does not exceed a distance 
from the nourishing vessels >1–2  mm3, the tumor remains 
well oxygenated and nourished. Once this volume is exceeded, 
many cells become hypoxic and undernourished (15). At this 
point, a mechanism common to many hypoxic situations is 
triggered that seeks to bring nourishment and oxygen to these 

suffering cells (15, 16). The defense mechanism triggered by 
a transcription factor called hypoxia-inducible factor (HIF), 
regulate the production of several growth factors and trigger 
angiogenesis (17). Among growth factors, vascular endothe-
lial growth factor A (VEGF-A) and platelet-derived growth 
factor (PDGF) are the most studied (18–22). VEGF and PDGF 
not only exert mitogenic effects on endothelial cells (21, 23, 
24) but also sustain inflammatory reactions. In fact, VEGF 
and PDGF recruit myeloid and immature cells from the blood 
marrow. These cells contribute to building the new vasculature 
(25–28).

As reported by Narang (14), the excessive quantity of vascular 
cytokines and growth factors in the tumor microenvironment 
(TME) determines an irregular growth of vessels compared to its 
normal counterparts. In conclusion, the tumor vasculature is a 
defective vasculature compared to that appearing during wound 
repair or in normal tissues (19, 23). In fact, tumor vasculature 
appears with a non-ordered 3D branching, lacking smooth 
muscles, and pericytes, with a scarce or missing innervation 
with irregular basement membrane (14, 27). The architecture of 
the tumor vasculature is aberrant (27) and develops in similar 
way in many types of tumors (29, 30). Furthermore, Azzi and 
Nagy (31, 32) describe a loss of cellular junctions integrity. This 
loss of integrity is responsible for the increased permeability of 
the tumor neovessels (31, 32). Another factor contributing to 
increasing the permeability of tumor vasculature is the exces-
sive production of VEGF. In fact, a study by Roberts and Palade 
(33) has demonstrated that VEGF increases the permeability of 
postcapillary venules, increasing their fenestration. This fenes-
tration effect was also present in the endothelium not usually 
fenestrated, such as skin and muscle. Weis and Cheresh (34) 
reported a similar increase in permeability and edema in cancer 
and in ischemic tissues. These structural effects are the result of 
biochemical defects induced by VEGF (35). The simultaneous 
presence of increased permeability, lack of lymphatic drainage 
(36, 37), and chronic inflammation in the TME carries to an 
accumulation of fluid in the interstitium (38, 39). The chronic 
inflammatory reaction is elicited by VEGF (40) and other 
cytokines/chemokines present in the TME (41, 42). Various 
authors demonstrated the increased interstitial fluid accumula-
tion (3, 38, 43–45). To understanding better this fluid accumu-
lation, a digression on the forces that govern the exchange of 
liquids in capillaries is useful. Ernest Starling (46) formulated 
the various factors that regulate the filtration of liquids through 
the vascular wall and the exchange of fluids between interstitium 
and plasma in 1896. It is because two major gradient forces 
present at the level of the capillaries control this transfer the 
hydrostatic pressure that favors the filtration, and the osmotic 
pressure gradient, that favors resorption. Mathematically, is 
expressed as:

 Jv Lp S Pc Pi c i= σ π π( ) −( )− −( )



  (1)

where Jv is the volume flux of fluid (ml/min); Lp is hydraulic 
conductivity (cm min−1 mmHg−1); s is the capillary surface area 
(cm2); Pc and Pi are capillary and interstitial fluid hydrostatic 
pressures, respectively (mmHg); πc and πi are capillary and 
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interstitial colloid (oncotic) pressures, respectively (mmHg); and 
σ is the osmotic reflection coefficient of the vessel wall (σ 0 if the 
membrane is fully permeable to transport molecular species and 
σ 1 if the membrane is impermeable) (38, 46–47). This equation 
still cannot fully explain the formation of interstitial fluid in 
pathological situations to complete it, it is necessary to introduce 
a new parameter that is the flow of liquid removed from the inter-
stitium by the lymphatic system. The equation is modified taking 
into account the amount of liquid removed by the lymphatics: JL 
(38, 46, 47, 48):

 
Jv Lp S Pc Pi c i JL= σ π π( )[( ) ( )]− − − −  (2)

In tumor mass, however, these forces are not regulated for 
various reasons such as capillary tumor pressure The change in 
hydrostatic pressure along the length of the capillary tumor is 
lower than that of the normal capillary (MVP). This pressure 
decrease gives rise, as described by some authors, to a stagnant 
tumor blood flow (49). Furthermore, the tumor blood viscosity is 
increased, and this aggravates further the perfusion (50). A sec-
ond factor is related to the osmotic pressure, slightly elevated in 
the tumor interstitium, compared to plasma. Another important 
factor is the composition of the interstitial fluid itself, richer in 
collagen and glycosaminoglycans that acts almost like a sponge 
sucking up the interstitial fluid. The last, but probably the most 
important, factor is that the tumor inside its mass lacks a func-
tioning lymphatic system (36, 37).

The net result of this non-equilibrium is an accumulation of 
the liquid (TIF) in a confined space, determining an increase 
in the tumor interstitial fluid pressure (TIFP). The volume 
occupied by TIF varies between 30 and 60% of tumor water, 
depending on tumor type, as reported by Gullino (43–45). In 
addition, other components of TIF vary according to the tumor 
type studied and to the methodologies used. For example, a 
difference exists in the protein content using Gullino technique 
(capsule method) (43) and the method of Sylven and Bois that 
obtained TIF by micropipettes (51). The same applies to the 
components of the matrix. For example, glycosaminoglycans 
have a higher concentration in the TIF compared to normal 
interstitium (11, 52). Recently, some authors have begun to 
study the interstitial fluid of patients with cancer proteomics 
method, in order to obtain new tumor biomarkers (38, 39, 
53, 54). Another important aspect is to describe the pressure 
exerted by the TIF and the consequent interstitial fluid flow 
(IFF) generated (39). The TIFP following Guyton (55, 56) 
is physiologically the result of two components: the pressure 
exerted by the cellular component and that of the gel phase. In 
the tumor, the tissue pressure (or solid pressure) is made up of 
growing tumor cells, fibroblasts, and the extracellular matrix 
(ECM). The gel phase is constituted of the filtrate of tumor ves-
sels in the TIF (57, 58). Before Guyton, average interstitial fluid 
pressure (IFP) was thought to be near zero or positive, after 
the use of capsule method it has been found to be near zero or 
sub-atmospheric (55, 56). Young was the first to measure TIFP 
and was followed by Gullino and Jain (3, 11, 59). These authors 
demonstrated in animal and human studies that TIFP is greater 

than in normal tissue and positive, reaching in particular tumors 
the value of 100 mmHg (i.e., Melanoma) (range 10–40 mmHg) 
(60–62). As outlined by Jain, TIFP decreases from the center of 
the tumor toward the periphery and correlated to volume (60). 
IFF is the fluid present in the stroma and is poorly drained by 
lymphatics and maintained by the TIFP gradient (63–65). In 
fact, as reported by Jain (63), IFF is proportional to the pressure 
gradient, and its velocity hampers the convective movement of 
drugs. The velocity of the IFF that affects hydraulic conductiv-
ity (K) [cm2/mmHg/s] is proportional to the pressure gradient. 
Its velocity value in tumor tissue ranges from 0.59 to 55 μm/s, 
which is a higher value compared to normal tissue (0.1–1 μm/s) 
(64–66). Butler et al. (64) were the first to study the existence 
of IFF through the micropore chamber method implanted in 
murine mammary tumors. These authors affirmed that IFF 
was comparable to lymphatic drainage and takes importance 
in drug concentration and distribution (64). Several methods 
have been used to study IIF. Chary and Jain studied the diffu-
sion of albumin in rabbit ear chamber of normal and neoplastic 
tissue analyzing the fluorescence recovery after photobleach-
ing. These authors founded that the average IFF velocity was 
about 0.6 μm/s and directed toward the postcapillary venules 
(67). Munson et al. analyzed the mean velocity found in vivo 
in different cancer types and report a median velocity of 0.5 
to 55 μm/s for non-metastatic tumors and values between 10 
and 55 for metastatic tumors (65). Other authors followed the 
development and the flux of IFF by magnetic resonance imaging 
(MRI) (66, 68). The IFF velocity is dependent on the structure 
and composition of the extracellular compartment and the 
physicochemical properties of the drug or solute used (63). 
The IFF increase, as demonstrated in vivo using xeno-engrafted 
models of various types of human tumors, has its maximum at 
the periphery of the tumor and its minimum within the tumor 
mass (66). As outlined by Yao, the content of the interstitium 
(Collagen fibrils association) and the vascular architecture are 
the major modifiers of the IFF (69). Other researchers show 
that IFF is involved with various factors that may enhance 
tumor progression. In fact, IFF participates in lymphatic dis-
semination (66, 70) and has an immunomodulatory effect (71). 
Rutokowski et  al. have experimentally demonstrated that IFF 
increases angiogenesis and lymphangiogenesis. In fact, IFF also 
acts as a morphoregulator (72) increasing endothelial sprout-
ing, adhesion, permeability, and produces migratory activity 
in fibroblasts. Furthermore, IFF induces secretion of cytokines 
and metalloproteinases by these tumor associated fibroblasts 
(MMPs) (73, 74) (TIF formation is summarized in Box 1).

BOX 1 | TiF formation is the result of three important factors 
simultaneously present in the tumor area.

They are (a) an unbalanced Starling mechanism acting in tumor microcircula-
tion, (b) increased vascular permeability, due to an abnormal tumor vascula-
ture, (c) a malfunctioned lymphatic system inside the tumor mass. Both these 
factors generate an increased interstitial pressure (TIFP) and interstitial fluid 
flow (IFF), moving from the tumor into the near microenvironment. IFF with 
TIFP hinders drug distribution (11, 38, 39, 63, 72, 211).
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Forces that Govern Drug Distribution from 
vascular wall to Cancer Cells

The drugs must be divided into drugs with a size ≤1  nm and 
superior to ≥1 nm. In Table 1, following Multhoff and Vaupel 
(75), we report the list of drugs with their size. The first obstacle 
to overcome is the vascular wall (see Figure  1). Transvascular 
wall mass transport may be diffusive or convective, dependent 
on osmotic and pressure exiting on the two sides of the vascular 
wall. Mass transport happens through pores present in the capil-
lary wall. As previous reported tumor vasculature is peculiarly 
leaky due to an increased number of fenestrae created by VEGF. 
Disputes regarding the dominant channels that permit the pas-
sage of different molecules occurred [see Ref. (76)]. According 
to Sarin (77), the physiologic upper limit of vascular pore size 
ranges between 5 and 12  nm. A study by Monsky with the 
intention of measuring changes in permeability and pore cutoff 
under increasing dosages of VEGF has demonstrated that it is 
possible to increase pore size in the range that permits the passage 
of molecules with ranges between 100 and 300 nm (78). Once 
the drug has crossed the vascular wall, it must reach the cancer 
cells traveling along the interstitium. At this point, the interstitial 
transport of the drug is again dependent on the size. If the size is 
≤1 nm (as are the majority of normal chemotherapeutics), travel 
is governed by diffusion parameters (Fick’s law). Fick’s law is 
mathematically formulated (11, 79) as:

 JD C x= ∂ ∂−( / )  (3)

where JD is the diffusive flow of the solute (g/s × m2) and D is the 
diffusion of the solute in the medium (m2/s). Even if the molecular 
size of the molecules are ≤1 nm, they encounter several difficul-
ties in penetrating into tumor mass. These impediments are as 
follows: (a) the increased distance between the vessel wall and the 
cancer cells due to the increased volume of tumor interstitium; 
(b) the diffusion coefficient of tumors; and (c) the presence of a 
centrifuge flow (IFF) from the tumor center toward the periphery, 
governed by the IFP. Diffusion coefficient measures are not easy, 
and Jain (11) describes the methods. The author outlines that D 
is dependent on many factors, such as water content, molecular 
weight of the solute, temperature, configuration, and charge and 
binding of the solute with matrix components. Molecules, such as 

TABLe 1 | Drugs and particles dimension according to the organization 
for standardization.

Type of nanoparticles Size (nm)

Gold nanoparticles 2.5
Monoclonal antibodies 10–15
Oncolytic viruses 30–40
Magnetic nanoparticles 15–100
Liposome encapsulated doxorubicin 80–130
Gadolinium-based nanoparticles 115
Albumin–paclitaxel nanoparticles 130

Modified from Multhoff and Vaupel (75)*.
*http://wwwiso.org/iso/home/search.htm?qt=nanoparticles&sort=rel&type= 
simple&published=on

nanoparticles or monoclonal antibodies, are transported into the 
interstitium to cancer cells by convective flow that is formulated 
following Pusenjak and Miklavcic (79) and Jain (11) as

 
JC C RF K p x= − × × ∂ ∂× ( / )  (4)

where JC is the convective flow of solute (g/s  ×  m2); C is the 
concentration of solute (g/m3); RF is the retardation factor 
(solute convective velocity/solvent convective velocity); K is the 
hydraulic conductivity (m2/P·a × s); and ∂p/∂x is the hydraulic 
pressure gradient. Hydraulic conductivity K and the retardation 
factor seem dependent on the quantity of polysaccharides and the 
quantity of water present in the interstitium (11, 79, 80). RF is a 
parameter dependent on the solute (structure, content in water, 
and molecular properties) (81).

Another important factor that prevents the arrival of drugs 
over the interstitial pressure increase but is dependent on it is IFF. 
Recently, to overcome the complexity of exiting through tumor 
vascularization, permeability, lymphatics, IFF, and drug transport, 
Welter et al. have developed a computational model (82). This model 
predicts interesting behaviors of TIFP and IFF on drug transport 
in the presence of a heterogeneous tumor vasculature. The authors 
conclude that IFF is more responsible than TIFP in obstructing 
drug penetration (82) (Box 2). This effect is, of course, according 
to this model more at the tumor periphery where IFFs’ velocity 
is greater. This last effect is in agreement with the observations of 
Butler et al. (11, 64) that describe that TIF oozes out a quantity 
of four to five times greater than that in subcutaneous tissue. The 
model of Welter also predicts that reducing tumor leakiness is not 
as effective as tumor normalization. Increased tumor permeability 
may increase drug delivery toward the tumor center where TIFP 
is greater but IFF velocity is less (82). Other authors using another 
numerical modeling demonstrated that the irregularities of tumor 
vasculature influences greatly IFF flux and TIFP (83–85).

Techniques for Measuring Tumor 
interstitial Fluid Pressure

Tumor interstitial fluid can be measured with different tech-
niques that may be divided according to Wiig (86, 87) into acute 
or chronic, and into invasive and not invasive.

Acute invasive Methods
The invasive methods can be used in an acute way, such as the 
technique of Wick catheter, or in a chronic way, as with the 
implanted perforated capsules (86). Hargens (88) subsequently 
amended the Wick technique developed by Scholander (89). 
It consists of a needle filled with a saline solution and its ends 
a suture thread of dacron. This catheter is then inserted into 
another catheter (that acts as a guide) and positioned in the 
skin. The Wick catheter connected to a transducer to record the 
variation in pressure displaces the guide catheter. A variation of 
this method is that developed by the group of Aukland called the 
WIN technique (90). Another acute way is the glass micropipettes 
used by Wiederhielm in the late 1970 (91). The means of adopt-
ing the needles to measure the IFP are, according to Guyton, 
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not adequate (55). In fact, the diameter of these needles is often 
considerably higher, up to 500 times than the interstitial space to 
measure. We refer the reader to the review of Wiig (86, 87) for 
a complete list of methods of measurement of interstitial fluid 
and the critical aspects of these applications. A summary on the 
advantages disadvantages and clinical utility of these methods is 
formulated in Table 2 (Box 3) (92–94).

Chronic Methods
The chronic methods of measurement of IFP are obtained by 
subcutaneously inserting capsules of polyethylene. They differ in 
the number of holes on their surface and in the diameter. The 

FiGURe 1 | in this figure, we have tried to illustrate all the barriers  
(in the yellow rectangles) encountered by a blood-borne drug in  
its journey from vessel wall to cancer cells. For every barriers,  
tumor interstitial fluid pressure (TIFP), IFF, extracellular matrix cell  

packing, and vascular permeability, we have mentioned in green  
frames, the methods used to decrease or modulate them. VP, vascular  
permeability; TIFP, tumor interstitial fluid pressure; IFF, interstitial fluid flow;  
v, velocity.

pressure measurement is, in one case, done by inserting a catheter 
inside the capsule, while the other type is directly in contact with 
the interstitial fluid. The measurement is carried out by connect-
ing the catheter to a pressure transducer (86).

Not all the methods briefly described so far are applicable to 
humans, except the method of Wick used to measure the TIFP 
of superficial melanoma or lymphoma nodules (95). Recently, a 
method to determine TIFP non-invasively has been attempted, 
unsuccessfully correlating the TIFP with the proton relaxation 
rate of the magnetic resonance (96). From this failure, Hassid 
and his group showed that using the proton relaxation time of 
gadolinium makes it possible to determine the IFP and its spatial 
distribution (97, 98). Gade and his group, using MRI, have gone 
further and found that it is possible to quantify the uptake of 
5-fluorouracil (5-FU) using a collagenase for degrading the ECM 
collagen (99). Despite the usefulness and versatility of magnetic 
resonance, its applicability to the patient is not immediate. As 
suggested by Hassid, we must take into account gadolinium’s side 
effects (fibrosis) to the kidneys (98).

BOX 2 | Drugs (apart their molecular weight and physical properties) 
(11, 200) distribute inside tumor mass under the pressures of two 
principal forces: the TiF and the iFF.

IFF is generated by TIF pressure difference (82, 200). Furthermore, matrix 
composition plays an important role in hampering drug penetration (212).
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TABLe 2 | Methods for measuring interstitial pressure (iP) in tumors.

Type Method Tip diameter Advantage Disadvantage Clinical utility

A Needle 0.5 μm Simplicity Tissue destruction and trauma For superficial visible tumors

A* Win 
(Wick-in-needle)

23G needle Versatile, recorded pressure similar to 
micropipette

Tissue destruction and trauma For superficial tumors (i.e., 
melanoma, breast)

A Micropipette 2–5 μm Reduced tissue destruction and trauma Not possible to measure IP at depth 
≥800 μm fragility, immobilization of tissue

Only for superficial visible 
tumors. Extremely delicate

C Micropore 
Chamber

D C 0.8–3 cm Useful for following biochemical and 
physiological parameters

Animal preparation not simple peculiarly 
vascular pedicle – not sensitive to TIFP 
acute change

No, but sometimes used

NIM MRN Useful for following various 
microenvironmental parameters(i.e., oxygen 
content, tumor vascularity, tumor perfusion)

Construction of special image platform 
analysis, possible severe side effects to 
kidneys

Yes: expensive dedicated 
structure and staff

A, acute method; C, chronic method; DC, diameter of the capsule; MRN, magnetic resonance imaging; NI, non-invasive methods; A*, standard method according to Wiig.
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Another technique able to monitor non-invasively the phar-
macokinetics of a drug is positron emission tomography (PET). 
An example of PETs use is the pharmacokinetics study in vivo of 
carbon-11 labeled docetaxel ([(11)C] docetaxel). Van der Veldt 
studied this labeled drug in lung patients (100). They studied the 
biodistribution of the drug and the tumor uptake. It is interesting 
to note that some patients were treated before ([(11)C] docetaxel) 
with dexamethasone. A difference between the two groups in 
drug uptake has been recorded in favor of the patients pretreated 
with dexamethasone (100).

Strategies for Modulating interstitial Fluid 
Pressure and Other Factors that Obstacle 
Cancer Therapy

From these considerations, we can deduce that several factors 
may limit the delivery of the drugs to the tumor (see Figure 1) 
(Box 2). The first one is the increased distance that a drug must 
cross due to the volume increase. The second is the interstitial 
pressure (TIFP) that apparently produces a current flow from 
inside to outside of the tumor mass (60). This flow from the 
inside toward the outside slows the transportation of the drug 
from inside the vessel toward the tumor mass. TIFP is not only an 
obstacle to conventional therapy (chemotherapy) (101) but also 
hinders monoclonal antibodies (102, 103), nanoparticles (104, 
105), and radionuclides delivery (106).

The pressure exerted by TIF is the result of two components 
the liquid component (gel phase) and the solid phase (cancer 
cells plus ECM) (107). Similar to liquid phase, the pressure of 
the solid phase is greater within the tumor mass than outside. 
Solid phase can collapse the blood vessel and is responsible for 

the lack of nourishment (and drugs) in particular areas of the 
tumor mass. Before listing and showing the studies conducted to 
decrease these two components (see Table 3), it is necessary to 
mention two studies that clearly illustrate that the modification 
of the interstitial pressure is indeed associated with a therapeu-
tic improvement. The experimental study was conducted by 
Salnikov et  al. (108). The authors examined two experimental 
tumors: syngenic rat colonic carcinoma (PROb) and dimethyl-
benza-antthracene-induced rat mammary carcinoma (DMBA) 
treated with prostaglandin of E1 type (PGE1) and radiolabeled 
5-FU [3H]5-FU. The authors clearly demonstrated that PGE1 
exerted a substantial reduction of TIFP increasing the delivery 
of 5-FU, and the effect was not dependent on immune response 
or changes in tumor vascularity. The other study was conducted 
by Curti et al. (95) on nodules of patients with melanoma and 
lymphoma. Interstitial pressure was measured using the wick-
in-needle technique. The sizes of the nodules were studied with 
ultrasound (US), and tumors were followed over time. Tumors 
were treated with either chemotherapy regimens rather than 
with immunotherapy. Responsiveness was correlated with IFP. In 
Table 3, all the methods (drugs, natural substances, and physical 
methods of treatment) used to modify TIF are illustrated. We 
have, also tried to show the human and animal studies, and to 
distinguish between the IFP exerted by the gel and solid phase 
and the possible clinical relevance.

The Concept of Tumor vascular Normalization
Jain (111) introduced the concept of normalization of tumor 
vasculature. Jain and colleagues noted that using angiogenesis 
inhibitors an increase in oxygenation and drug delivery associ-
ated with a decrease in interstitial pressure. They also noted that 
an improvement in the release of nanoparticles with diameters 
≤12 nm, disfavoring those with diameters >125 nm (112). The 
authors point out, however, that the effect of normalization is dose 
and time dependent (113). In fact, studies that employed high 
doses of bevacizumab showed that not only the tumor growth was 
slowed but also the coverage of vessels by pericytes was increased, 
thus decreasing the arrival of monoclonal antibodies to the tumor 
(114, 115). Huang (113) also emphasized the possibility of using 
the inhibition of angiogenesis as an immunomodulator as the 

BOX 3 | in Table 2, the two groups of methods are compared.

The advantages and disadvantages briefly analyzed. In every case, the nota-
tion of Pusenjak and Miklavcic (79) is correct. Any method of measurement is 
imperfect but can be used, provided it is reproducible and easy to use. In the 
specific case of the TIFP, the wick-in-needle technique seems the most used 
and reproducible, at least in animal studies and in some superficial human 
tumors (melanoma, breast, cervix, and head and neck tumors) (61, 79). MRI 
for humans will be the most applicable method even if expensive.
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TABLe 3 | Drugs, physical methods of cure, and natural drugs used to decrease tumor interstitial fluid pressure (TiFP), iFF, and vP.

Drugs iFP gel  
phase

iFP solid 
phase

Human 
studies

Animal 
studies

effects Reference CR

Angiogenesis inhibitors
Bezacizumab ↓ Ѵ VN Ariffin +
Sorafenib ↓ Ѵ VN Ariffin +
Imatimib ↓ Ѵ Ariffin +
Block of receptor-2 ↓ Ѵ VN↑Nano ≤12 nm Chauhan +

vasoactive agents
Hidralazine ↓ Ѵ ↓ IFP not correlated to tumor volume Podobnik
Hidralazine ↓ Ѵ ↑ Oxygenation Jarm

vascular disrupting agents
ZD6126 Skliarenko
Combretastatin-A4 ↓ Ѵ Ley

Chemotherapy
Chemo immunotherapy ↓ Melanoma 

lymphoma
↓ Responders Curti

Taxanes ↓ Ѵ ↓ Bronstad +
Taxanes ↓ ↓ Ѵ ↓ Griffon-Etiennie +
Paclitaxel ↓ Breast cancer ↓ Taghian +
PGE1 ↓ Ѵ ↓ Salnikov
Dexamethasone ↓ Ѵ ↓ Kristjansen ++

Physical methods
Hyperthermia ↓ Ѵ Leunig ++
Hyperthermia Ѵ ↑ Oxygenation Sen ++
Hyperthermia Ѵ ↑ MOABs Jain M ++
Hyperthermia Ѵ ↑ Extravasation nanoparticles Kong ++
Radiotherapy ↓ Ѵ ↓ IFP correlated to radiocurability Rofstad ++
US ↓ Ѵ ↑ Gene therapy Ziadloo Yuh ++
PDT ↓ Ѵ ↑ Delivery of liposomial doxorubicin Perentes ++
PDT ↓ Ѵ ↓ IFP time dependent Leunig et al. (109) ++

Drugs acting on cellular matrix and cell density (CD)
Collegenases ↓ Ѵ ↑ MOABs Eikenes
Hyaluronidase ↓ Ѵ ↑ Liposomal doxorubicin Eikenes
Hyaluronidase ↓ CD ↑ Croix
Losartan ↓ Ѵ Diop- Frimpong ++
TGF-β inhibitors ↓ Ѵ ↑ Of chemotherapy/nano drugs delivery Papageorgis +
FAP vaccine ↓ ↑ 70% drug uptake Loffler

Natural substances
EGCG ↓ Ѵ ↑ Activity cisplatin Deng ++

↑ Oxygenation
w-3 FAs ↓ Ѵ ↑ Activity of docetaxel Kornfeld ++

↓ Activity of vascular NOS

Drugs or physical methods acting on iFF
HT ↑ C Ѵ ↑ Nanoparticles extravasation Kong, Leunig ++
CED ↑ C ↑ Convection (bypass of BB) Saito, +
CED ↑ C Ѵ Vandergrift +
US ↑ Convection Frenkel ++
Angiotensin inhibitors ↓ FF ↓ Chauhan et al. (110) ++
VEGFR-3 ↓ FF ↓ Lymphangiogenesis Tammela +

Drugs acting on vascular permeability (vP)
Angiopoietin ↓ Gavard
Bezacizumab ↓ Gerstner, Pishko
Notch ligand Delta-like4 ↓ Li; Azzi

BB, blood brain barrier; IFP, interstitial fluid pressure; IFF, interstitial fluid flow; EGCG, epigallocathechin-3-gallate; W-3FAs, omega-3 fatty acids; VN, vascular normalization;  
CL, capillary leakage; ↓, decrease; ↑, increase; ↑ C, increased convection; CD, cell density; CED, convection enhanced delivery; CR, clinical relevance, + with certain side effects, 
++ with scarce side effects; NOS, nitric oxide synthase; MOABs, monoclonal antibodies.
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abnormal vascularization that generates hypoxia also generates 
an immunosuppressive and inflamed TME (116). In addition to 
increased drug efficacy, Shrimali et al. (117) showed in a mouse 

model of melanoma that inhibition of angiogenesis increases 
lymphocytic infiltration and the effectiveness of adoptive cell 
therapy. In addition to immunotherapy, some chemotherapeutics, 
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such as carboplatin and paclitaxel, enhance their effectiveness in 
the presence of an anti-angiogenic therapy. Heist et al. showed 
that associating anti-VEGF with chemotherapy improved the 
survival and the free period of illness in patients with advanced 
non-small lung cancer. It was also shown that it is possible to 
follow these patients with appropriate marks. For example, a 
high value of placental-derived growth (PIG) factor is associated 
with treatment with VEGF, and a high value of the receptor 1 
of VEGF (VEGFR1) before treatment with bevacizumab with 
chemotherapy is a negative prognostic index (118).

vascular Disrupting Agents
Vascular disrupting agent (VDA) is a new class of drugs that affect 
the preexisting vasculature in the tumor mass (119). They mainly 
act by disrupting the integrity of the endothelial cytoskeleton 
inducing apoptosis and necrosis. As outlined by Ariffin (57), 
necrosis is able to increase hydraulic conductivity by indirectly 
decreasing TIFP. Two studies seem particularly interesting that 
confirm the effect of VDA on the interstitial pressure. The first 
is an experimental study on two tumors transplanted in mice, 
murine fibrosarcoma tumors (KHT-C) and a line of human cervi-
cal cancer (CaSki). These two tumors were treated with a binding 
agent, tubulin ZD6126, and interstitial pressure was measured 
using the wick-in-needle method (120). The TIFP behaved dif-
ferently in the two types of tumor. The KHT-C tumors showed a 
sudden drop in TIFP 1 h after treatment, with a gradual slope and 
lifts to pre-treatment values about 3 h later. A drop of 25% of the 
pre-treatment values occurred after 72 h. The TIFP in the CaSki 
tumors decreased gradually over time, instead, reaching a value 
of −30% after 72 h. The mice with the two types of transplanted 
tumors showed a significant increase in survival after treatment 
(120). The second study was conducted on C3H mammary tumors 
grown subcutaneously in the foot of female CDF1 mice. The mice 
were treated with a single intraperitoneal injection of CA4DP. 
Tumor perfusion was recorded using a Laser Doppler flowmetry, 
and TIFP was measured continuously using the wick-in-needle 
technique (121). TIFP decreased rapidly after the treatment, fol-
lowed by a concomitant reduction in tumor perfusion. According 
to the authors, perfusion increase was not TIFP dependent.

vasodilators
Several drugs with vasodilator activity have been shown in 
experimental studies to be able to decrease the interstitial 
pressure (122). In any case, a premise is necessary because the 
behavior of these drugs is not unique. Tumor vessels are devoid 
of innervation and part of tumor vasculature is that of the host, 
that is innervated and responsive to pharmacological stimuli. As 
pointed out by Vaupel (123), the effect produced by vasodilators 
depends on the positioning of the vessels of the host with those 
neo-formed. In fact, if the circulation of the tumor and that of the 
host are in parallel, the effect of the vasoactive drug is a decrease 
of flow in tumor; if the movement is in series, the vasoactive drugs 
produce an increase of flow into the tumor mass (123). Studies by 
Podobnik on SAF and LPB tumors have reported a decrease of 
TIFP in the presence of hydralazine. The decrease in interstitial 
pressure was not correlated with tumor volume (124). Studies 

by Jarm et al. have confirmed the positive association between 
hydralazine and TIFP but have also reported a decrease in tumor 
oxygenation (125). This last effect is probably due to steal phe-
nomena and to the observations made by Vaupel (123).

Chemotherapy
The low-molecular weight drugs used in chemotherapy reach 
the tumor by diffusion through the capillaries toward the tumor 
mass. Drugs with a higher molecular weight (i.e., monoclonal 
antibodies, nanoparticles, immune system cells) reach the tumor 
mass by convention (see Table  2). The most studied class of 
chemotherapeutics was the taxanes (paclitaxel and docetaxel) 
(126, 127). The Bronstad group has studied how taxane influence 
the ECM composition, specifically B1 integrins. They noted 
that the inhibitory effect on TIFP is linked to the action on the 
integrin, that both paclitaxel and docetaxel decrease TIFP in a 
dose-dependent manner, and that the fixing of actin filaments 
by phalloidin abolishes the effect of paclitaxel. The group of 
Griffon–Etienne has studied the effects of the taxanes on TIFP 
of two experimental tumors: the murine mammary carcinoma 
(MCa-IV) and the human sarcoma HSTS-26T. They determined 
that the taxane was able to decrease both the cell density (solid 
phase) and the gel phase. Taghian et  al. studied the effects of 
paclitaxel on patients known to suffer from breast cancer (128). 
These authors noted that the decrease in interstitial pressure was 
followed by an improvement in oxygenation and that the effect 
was independent of tumor volume. Furthermore, the authors 
noted that only the paclitaxel seemed to achieve this effect. In 
fact, the concomitant administration of doxorubicin did not show 
any effect on TIFP and oxygenation.

Dexamethasone is a synthetic glucocorticoid used before or 
concomitantly with chemotherapy to reduce side effects (129) 
or increase the antitumor activity of certain drugs, such as car-
boplatin and gemcitabine (130). In addition to these activities, 
dexamethasone has been shown to decrease interstitial pressure. 
This activity study was conducted in SCID mice transplanted with 
tumor line LS174T. Two weeks after transplantation, mice were 
treated daily with intraperitoneal dexamethasone. A significant 
reduction in TIFP due to a reduced microvascular permeability 
and vascular hydraulic conductivity was obtained compared to a 
control group (131).

Physical Methods
Hyperthermia
Hyperthermia (HT) is a method of treating tumors using heat 
(132). Leunig et  al. treated with HT several Amelanotic mela-
noma (A-Mel-3) implanted into the dorsal skin of Syrian golden 
hamsters. They studied the effect of HT on TIFP by using the 
wick-in-needle technique (133). They noted that the reduction 
of TIFP was temperature and time dependent, and the biological 
response was correlated with the TIFP reduction. Recently, Sen 
et al. (134) demonstrated similar results in several murine mod-
els. In addition, the authors noted that the reduction of TIFP was 
associated with an increase in perfusion and a sustained reduction 
of hypoxia. This reduction of hypoxia has led to a considerable 
improvement when radiotherapy was administered 24 h after HT.
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Radiotherapy
Radiation therapy with chemotherapy is the standard therapies 
commonly used to treat solid tumors. Human melanoma 
xenografts transplanted intradermally or in window chamber 
preparations in BALB/c nu/nu mice were studied and treated 
with radiotherapy according their TIFP value. Mice with higher 
TIFP were treated with a higher radiation dose compared to those 
with a lower IFP. This indicates that a strong relationship exists 
between TIFP and radiocurability (135). The work of Rofstad 
et al. has associated the radiocurability to the value of the inter-
stitial pressure, not taking into account that the radiotherapy is 
able to decrease the TIFP. Znati et al. (136) have highlighted this 
fact, and showed in xenografts of LS174T human colon adeno-
carcinoma grown in the right flank of nude (BALB/c) mice, that 
TIFP and tumor oxygenation were lowered by radiotherapy (RT). 
This effect was dose dependent, and it was necessary to give a 
dose between 10 and 15 Gy at minimum. The TIFP decrease and 
oxygen increase were dose dependent but not volume dependent. 
Anyway, Multhoff and Vaupel have doubts about the consistency 
of the data when applied to humans. They argue that the effects of 
radiation therapy on microcirculation as that on TIFP and drug 
delivery need more experimental data (75).

Photodynamic Therapy
Photodynamic therapy (PDT) is a minimally invasive method 
that uses a photosensitizer, the visible light of appropriate length 
and oxygen to generate oxygen free radicals (ROS). The ROS 
generated determine tumor cell death by apoptosis, disrupt 
the tumor vasculature, and generate a local inflammation and 
antitumor immunity (137, 138). Another positive effect of 
PDT is the capacity to lower TIFP. The first observations of this 
phenomenon were made by Leunig et  al. in 1994 (109). These 
authors studied the time course of TIFP in nodules of melanoma 
implanted subcutaneously in four different districts of Syrian 
golden hamsters. They noted that the TIFP behaved differently 
depending on the time in which it was measured after the applica-
tion of PDT. In fact, the TIFP exhibited an increase from 40 to 
60% in the first 6 h, probably due to the impairment implemented 
on tumor microcirculation. After <24 h, the TIFP subsided by 
50% compared to the control. A more recent study conducted 
on metastases of sarcoma in rats with subpleural implantations 
showed attractive valuations in Fisher rats (139). The PDT was 
able to decrease the TIFP in tumor nodules but not in the lung, 
and this was associated with a greater distribution of epirubicin in 
the tumor mass. In summary, the decrease of TIFP was associated 
with an increased convection of the drugs compared to controls.

Ultrasound Therapy
The US technique for depositing medication in the interstitial 
space is an emerging and promising method. In summary, 
drugs are activated via US and then released accurately and with 
decreased toxicity by using an imaging guide (140). Watson’s 
group (141) intended to study a method for reducing epithelial–
mesenchymal transition (EMT), a situation with a propensity to 
metastasize and develop resistance to chemotherapy (142). In fact, 
these cells lose their polarity and adhesion capacity acquiring the 

capacity to migrate (143). In order to investigate the differences 
between epithelial tumors and tumors with EMT characteristics, 
liposomes containing radiolabeled 64 Cu can be used.

This allows the labeled liposomes to be followed by PET. 
Liposomes were found to accumulate in greater amounts (1.5-
fold increase) in epithelial tumors compared to tumors with 
EMT characteristics without US application, whereas following 
US application; liposomes accumulated more in EMT compared 
to epithelial tumors. According to the authors (141), the nano-
particle accumulation was the result of TIFP reduction and of the 
increase in vascular permeability.

Drugs Acting on Cellular Matrix
The arrival of new pharmaceutical formulations, such as liposomes 
or nanoparticles with a diameter >10  nm, has highlighted the 
contribution of the composition of tumor matrix to drug delivery 
(144, 145). The deposition of the ECM is a complex process that 
involves two main components: cellular components (fibroblasts 
and inflammatory cells) and non-cellular components (146). In 
the presence of tumor cells, fibroblasts acquire special features to 
become the cancer-associated fibroblasts (CAFs). The stimulated 
CAFs produce the components of the matrix (147).

The main groups of components are glycoproteins, pro-
teoglycans, and collagen. Each component has its physiological 
function, for example, seizure of growth factors, or provision of 
substrates to allow certain biochemical reactions or tissue differ-
entiation (146, 148–150). A dynamic interaction exists between 
cancer cells, CAFs, and ECM, and their interaction is regulated 
by important cytokines, such as transforming growth factor-β 
(TGF-β) and PDGF (146). TGF-β stimulates CAFs to produce 
collagen type I, rendering the ECM stiffer and participating with 
VEGF to sustain angiogenesis and lymphangiogenesis (146).

The journey that a drug in the blood must take to reach the 
cancer cells in a body is similar to traveling through an obstacle 
course. Figure 1 shows all the obstacles that need to be overcome. 
In addition, the liquid part of the TIF drug should exceed cell den-
sification and the composition of the ECM. Studies conducted by 
Netti have clearly demonstrated that the total content of collagen 
type I is more important than the content of glycosaminoglycans 
in halting the travel of the drugs (145). The author argues that less 
dense and less organized cellular matrix is capable of allowing a 
greater uptake of monoclonal and macromolecule cancer cells. 
Several authors aware of this factor tried to modulate the ECM. In 
order to obtain this, used enzymes were used to disrupt the ECM 
or the inhibitors of growth factors, such as PDGF and TGF- β, 
that control the formation of ECM (144, 151–155). Brekken et al. 
were among the first to demonstrate that injecting inside tumor 
enzymes, such as hyaluronidase or collagenase, which degrade 
the ECM was possible to modify the transvascular pressure (156). 
Eikenes demonstrated that collagenase (151) and hyaluronidase 
(152) were able to modulate the ECM and increase the mono-
clonal antibodies in the first case and lipoxomal doxorubicin in 
the second study. In both studies, the model studied was osteo-
sarcoma xenografts, and the TIFP was measured by the wick-in-
needle technique. Collagenase was injected peritoneally, whereas 
hyaluronidase was injected intratumorally and intravenously.  
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The TIFP decrease behaved differently in the two groups. In the 
group treated with collagenase, the TIFP decreased as the micro-
vascular pressure MVP, whereas in the group treated with hyalu-
ronidase, the improved distribution of lipoxomal doxorubicin was 
induced by an increased transcapillary gradient. Diop-Frimpong 
et al. conducted an interesting work with an antihypertensive drug 
losartan (144). Losartan, an angiotensin II receptor antagonist, 
does not only exert antihypertensive activity but also has antifi-
brotic activity. This activity is carried out by reducing the activity 
of TGF-β1. The synthesis of collagen I decreases after 2 weeks and 
is dose dependent. As reported by Diop-Frimpong (144), collagen 
I synthesis was reduced under losartan in several experimental 
tumors, with minimal side effects. The results of experiments 
indicate that there is an amelioration of nanotherapeutics [(gene 
therapy) herpex simplex viruses] and pegylated liposomal 
doxorubicin uptake by tumor. Another molecule that is able to 
decrease TIFP is PDGF inhibitors. It seems that PDGF is able 
to increase IFP in the dermis by interfering with integrins and 
phosphatidylinositol-3* kinase signaling (157). Pietras et al. using 
A PDGF receptor tyrosine kinase inhibitor (STI571), increased 
the uptake of taxol in an experimental model of subcutaneous 
(s.c.) implanted KAT-4 tumors in SCID mice (154). Another 
group tested the same PDGF inhibitor (155) in a s.c. xenografts 
of human colorectal carcinoma in athymic mice treated with a 
radiolabeled antibody B72.3. They demonstrated an improvement 
of radioimmunotherapy uptake. The antibody uptake was more 
homogeneous and associated with an augmented radiosensitivity 
due to an increased oxygenation of the tumor mass. As previously 
described, TGF-β is one of the principal cytokines that regulate 
the ECM and collagen deposition. This last effect is obtained by 
converting fibroblasts into CAFs and stimulating them to pro-
duce lysyl oxidase, an enzyme that is able to stiffen collagen (153, 
158). The authors suggest the use of inhibitors of TGF-β in tumors 
with strong desmoplasia because, in their view, it should result 
in increased perfusion. Emphasize, however, that the increase in 
perfusion would indirectly increase the capillary pressure (Pc, 
see Figure 1) with an increase of filtration. Increased filtration 
increases the interstitial fluid and then would form a vicious cir-
cle. Furthermore, the block of TGF-β was also shown to increase 
metastasis. A combined treatment with chemotherapeutic type 
taxanes, losartan, and inhibitors of TGF-β should optimize the 
result and not trigger the vicious circle (153). An example of this 
association is the work of Zhong (159). Furthermore, these authors 
using chemotherapeutic cyclophosphamide not only controlled 
the metastases but also enhanced antitumor immunity. Loeffler 
et al. have addressed the problem of the matrix and deposition 
of collagen type I, trying to regulate fibroblasts the fabricators of 
collagen. They used a DNA vaccine for the oral fibroblast acti-
vating protein (FAP), which is overexpressed in tumor stroma. 
With this method, they were able to decrease the production of 
collagen and increase by 70% the uptake of chemotherapy by the 
tumor cells (160). Bouzin et al. emphasize that a difference exist 
between collagenase and hyaluronidase (161). According to these 
authors, the degradation of fibrillar collagen is more efficient on 
drug uptake than the degradation of hyaluronan. Collagenase, as 
previous discussed, increases the uptake of monoclonal antibod-
ies and the efficiency of herpes simplex virus (161).

Natural Substances (Nutraceuticals)
The use of nutraceuticals as adjuvant to traditional cancer therapy 
is increasing. Two substances have been studied regarding the 
possibility to lower the TIFP, which are the epigallocatechin-
3-gallate (EGCG) (162) and omega-3 fatty acids (163). EGCG is 
a molecule with an anti-angiogenic activity. In fact, EGCG has 
the capacity to regulate the receptor of VEGF and to modulate 
the angiopoietins 1 and 2 (Ang-1; Ang-2) (164). Ang-2 may 
loosen the endothelial cells’ junctions rendering more leaky 
tumor vessels. EGCG inhibited both Ang-1 and Ang-2 but had 
a greater effect on Ang-2, thus, decreasing the tumor vessel’s 
permeability and, in effect, TIFP level. Deng demonstrated this 
phenomenon in mice with xenografts in A549 cells. TIFP was 
measured using the wick-in-needle technique, and hypoxia was 
measured using polarographic needle electrodes. EGCG showed 
a synergism with cisplatin, indicating the possibilities of using 
EGCG to decrease TIFP and as a sensitizer to chemotherapy 
(162). Kornfeld used omega-3 fatty acids (w-3 FAs) to control 
TIFP. As known from the literature, omega-3 fatty acids (w-3) 
have multiple effects on cancer prevention and therapy (165). 
Among the most important effects were anti-angiogenic activity 
and the modification of nitric oxide synthase. Nitric oxide (NO) 
and VEGF are responsible for vascular hyperpermeability (163, 
165). The inhibition or modulation of these two factors normal-
izes the abnormal vascular structure of tumors, as pointed out by 
Jain. Based on this, Kornfeld (163) studied a breast cancer model 
in mice. Kornfeld et al. subjected a group to a diet rich in w-3 
polyunsaturated fatty acids (50% DHA 20% EPA), another group 
with this diet and docetaxel, and another group as the control. 
They then studied the synthesis of NO in vitro using a human 
umbilical vein. The group treated with w-3 + docetaxel showed 
vasculature normalization, decreased drug resistance, improved 
drug delivery, and a change in nitric oxide activity.

Cell Packing, Density
At the end, a drug must overcome another obstacle, the difficulty 
of penetrating and accumulating at the necessary concentration 
in the tumor cell mass. The difficulty level is higher for protein 
binding drugs, such as doxorubicin and paclitaxel (166). The fac-
tor that determines decreased penetration is cell density (167). 
The authors conclude that drug penetration in a 3D structure 
is 5- to 10-fold less effective than in a monolayer. Tredan et al. 
outline further this concept and consider cell density one of the 
causes of tumor drug resistance associated with TME character-
istics (i.e., hypoxia, extracellular acidity) (168). We can define 
TME (cell density) as a set of cancer cells, normal cells, tumor/
normal vascular structure, and ECM dense packed together. 
Furthermore, tumor cells can be distinguished between well 
oxygenated, hypoxic, and moderately oxygenated embedded 
in an ECM rich in cytokines and growth factors. As previously 
mentioned, ECM is denser than normal matrix and related to the 
deposition of collagen (145). This dense complex of tumor cells, 
normal cells, and ECM forms a special microenvironment that 
hinders further penetration of drugs, resulting in a situation of 
drug resistance (150, 168–171). These authors point out that the 
methods to study the tumor drugs must be ameliorated. Culture 
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studies on monolayers should be replaced with studies with sphe-
roids or with cultures on multilayers and in vivo methods (171). 
An example of these methodologies is the recent work of Grantab 
et  al. (172). These authors used two variants of HCT-8 human 
colon carcinoma xenografted in nude mice and a multilayered 
cell culture. One of these variants had a lower packing density, and 
the other had greater density. They treated the two groups with 
bortezomid and showed improvement in drug penetration, an 
increased cytotoxicity, and a reduction in cell density. A decrease 
in TIFP was also noted. Another study by Croix demonstrated 
that hyaluronidase was able to reverse the cell density, increasing 
tumor cell sensitivity to various chemotherapeutics (173).

Drugs Acting on iFF
Drugs that Augment Convection
Convection enhanced delivery
With convection enhanced delivery (CED) we intend a treatment 
able to overcome the IFF current from the tumor toward the envi-
ronment or the lymphatic vessels. This kind of therapy, normally, 
is used to treat glioblastoma overcoming the obstacle of the blood 
brain barrier (BBB) (174). The method consists of the insertion 
into the brain tissue of a small caliber catheter stereotactically 
guided toward the tumor mass. The first to describe this method-
ology was Bobo et al. (175) in late 1994. Debinsky et al. described 
the different kinds of catheters used for CED (176). Saito et al. 
(177) developed special liposomes labeled with gadolinium and 
a fluorescent indicator. They followed and monitored their distri-
bution inside the brain tumors of rats after a microinfusion under 
pressure. The technique (CED) increased the local drug delivery 
and demonstrated its clinical use. The molecules (radioisotope 
labeled drugs, immunotoxins) were pumped through this cath-
eter to penetrate the brain parenchyma. Vandergrift et al. (178) 
report the phase I, II, and III clinical trials conducted with CED 
technique. Phases I and II have been completed and have shown 
promising results consisting of partial response while avoiding 
side effects. Limitations of the techniques are linked to the tumor’s 
location and are justified by the tumor’s aggressiveness. The 
catheters generally must provide sufficient infusate and prevent 
reflux. The leakage of refluxed infusate is the most important side 
effects associated to the possibility of infections (179).

Other two methods can augment convection: HT and US. 
As previously reported, HT increases drugs’ extravasation and 
accumulation into the tumor mass, also decreasing TIFP (133, 
180). Another physical method that is able to increase convection 
is the use of US (181).

Drugs that Decrease IFF
Another way to increase the arrival of drugs to the tumor is to 
hinder or decrease the effect of the IFF by increasing the pres-
sure in the vessels that supply the tumors. This result is achieved 
using antagonists against the angiotensin II receptors (110). 
Experimental studies have demonstrated that these antagonists 
can increase the perfusion of the tumor vessels by decreasing 
the IFF indirectly. Other positive effects are an enhancement of 
oxygen delivery to the tumor and a potentiation of chemotherapy, 
such as 5-FU in AK4.4 pancreatic tumors. The increased release 

of drugs has also been shown in pancreatic tumors, human breast, 
and skin cancers. What these tumors have in common is the 
high concentration of collagen in the ECM that the angiotensin 
inhibitors can reduce. As to chemotherapy, the authors dem-
onstrated that the distribution of the nanoparticles, liposomal 
doxorubicin, and oncolytic virus also undergoes an improvement 
(144). Another way to decrease the efflux of IFF is to inhibit the 
transport by the lymphatic system. An example of this approach 
is the use of monoclonal antibodies that block VEGF receptor 
type 3 (182, 183). As demonstrated by Alitalo et al. (182), VEGF 
receptor type 3 is an essential signaling mechanism in lymphangi-
ogenesis and tumor progression. The decreased drainage via the 
lymphatic system reduces the IFF and drug removal (65).

Drugs Acting on vascular Permeability
The mechanisms that regulate the vascular endothelial permeabil-
ity are essentially two: the tight junctions (TJ) and the adherent 
junctions (AJ). The TJ represent the barrier capable of regulating 
cell migration, while AJ maintain the physical junction between 
the endothelial cells. Among the various trans membrane pro-
teins belonging to AJ the most important are the VE-cadherin 
proteins and anchor proteins α, β, υ, and p-120 catenins. The 
VE-cadherin bind to β-catenins and β to α-catenins forming a 
complex that interact with the proteins of the cytoskeleton. This 
complex interacts with regulatory proteins, such as Src kinase and 
several phosphatases that modulate the AJ junctions (184, 185). 
The restoration of vascular permeability is here briefly described 
as we invite the readers to see the review of Azzi et al. (184) for a 
more complete discussion of the argument.

Angiopoietin
Vascular endothelial growth factor is the principal enhancer 
of the endothelial permeability. It produces this effect acting 
on VE-cadherin through a mechanism Src dependent. The 
angiopoietin blocks the destabilization of VE-cadherin although 
collaborates on angiogenesis. The angiopoietin in conclusion has 
angiogenic activity as VEGF but otherwise has no activity on 
vascular permeability (186).

Bevacizumab
Vascular normalization as outlined by Jain (187) is a method 
able to carry for limited period to normality the abnormal tumor 
vasculature. For limited period, we intend the period during 
which anti-angiogenetic drugs exert their effect. Jain and his 
group demonstrated that normalization in glioblastoma is able to 
decrease hypoxia, to increase drug arrival and survival. Survival 
was associated to an increase in tumor perfusion (188). Gerstner 
and Batchelor reported similar results and outline that brain 
edema, which is the result of BBB disruption, was less using one of 
most known anti-angiogenetic monoclonals bezacizumab (189). 
Pishko et  al. (190) using bezacizumab demonstrated vascular 
normalization in rat model of human cancer brain metastases.

Notch Ligand Delta-Like 4
Li et al. in the late 2007 (191) founded that beyond VEGF Notch 
ligand Delta-like 4 (DL4) plays a role in angiogenesis. DL4 is 
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a negative regulator of angiogenesis reducing the quantity of 
neovessels. DL4 improves vascular function but does not interfere 
with the activity of bezacizumab and reduce both angiogenesis 
and the vascular effect (permeability) of VEGF (184).

Conclusion

The status of the TME should be of primary importance for 
oncologists (170). The possibility of studying it in vivo by MRI 
may contribute to their ability to choose the most appropriate 
drugs use (chemotherapy/natural drugs or monoclonal antibod-
ies). These drugs are able to modify TME and, consequently, the 
tumor interstitium (192–197). In fact, MRI offers the possibility 
of knowing the density of the matrix, the forces that govern the 
distribution of drugs, the perfusion, the pH of the microenviron-
ment, and its metabolic status (195, 196, 198). As with conformal 
radiotherapy (CFRT), a computerized, imaging reconstruction 
platform can be used and analyzed by a staff composed of 
physicists, biologists, and physicians. In the near future, it will 
be possible to comprehend the TME of any patient and apply a 
personalized treatment (196). As to the CFRT, it is clear that semi-
automatic image analysis methods will provide a better under-
standing of angiogenesis and modulation of interstitial pressure 
(98, 199). There is no doubt that mathematical and silicon models 
will be helpful in this process, transitioning experimental studies 
from the laboratory to the clinic (82, 200). As reported by Kuszyk 
(199), the barriers that obstruct drug delivery: (a) the vascular 
transport, (b) the crossing of vessel walls, and (c) the distribution 
inside the interstitium can be studied by MRI.

We have considered, in this review, drugs that can interfere 
with interstitial pressure. In Table  3, we have introduced the 
concept of clinical relevance (+). By this, we mean drugs or 
methods currently used and able to achieve a higher deposi-
tion of drugs. Some methods that we stressed (++) seem more 
usable, with fewer side effects. It is interesting to note that some 
nutraceuticals have activities on TIFP, which partially explains 
their activities in sensitizing tumor cells to chemotherapy. Many 
new studies that take into account these nutraceuticals would 
be useful and desirable. However, we must avoid an incorrect 
association that would decrease some pharmacological activi-
ties. Another consideration is that cancer patients often have 
other associated disorders, such as diabetes or heart disease 
(201). In the case of diabetes, it would be interesting to see if 
some medications, such as metformin, can be used for reducing 
collagen synthesis, fibrosis (202), or angiogenesis (203). In this 
review, the dynamic process of angiogenesis has not described 
except in summary form. Neoangiogenesis is definitely the 
most important phenomenon in the genesis of the increased 
interstitial pressure and in tumor progression (61). In fact, the 
growth, irregular and imperfect of the new endothelium, is 
responsible for the increased permeability (27) and for the lack 
of oxygenation of some tumor areas and the perpetuation of the 
phenomenon: angiogenesis, hypoxia, and angiogenesis (204). 
The abnormal and unregulated growth of 3D tumors linked to 
irregular spraying leads to the inadequate distribution of medica-
tions and, consequently, a resistance to them. The opportunity to 
use more drugs (natural or synthetic) can lead to a normalization 

of tumor blood circulation and to important effects, such as an 
increased release of drugs and an increased immune response 
(187). The improvement of the imaging methods will permit 
to test clinically new therapies in a quicker time. This method 
will enable us shortly to use the best therapies for individuals 
(precision medicine) knowing the status of the patient’s TME.

An interesting and useful method that is an example of ongo-
ing research between experimental measurements and possible 
future applications at the bedside is the study of Leguerney et al. 
(205). These authors performed the measurement of tumor vol-
ume, perfusion, and TIFP on 60 mice xenografted with B16F10. 
They treated the animals with an association of sorafenib and 
bezacizumab. The two drugs as reported by the authors to have 
a positive association with a variety of tumors. Perfusion and 
vasculature were measured by quantitative dynamic contrast-
enhanced ultrasonography (DCE-US), whereas TIFP measured 
with a fiberoptic probes. The authors demonstrated that TIFP 
variations were predictive of vascular changes and that a single 
measure of TIFP was sufficient for characterizing the entire 
tumor mass. Authors refer that no correlation present between 
TIFP value and tumor perfusion. This method is interesting for 
the following reasons. DCE-US is relatively inexpensive and 
used at the patient bed permitting to follow the application of 
anti-angiogenic drugs. Disadvantages are probably the difficult-
ness to measure the parameters in deep-seated tumors and the 
invasive way of TIFP measure. Another disadvantage is that the 
technique is not applicable to all the patients and probably not 
easy reproducible.

A phenomenon that we have not analyzed but correlated to the 
increased permeability of tumor vessel is the so-called retention 
enhancement effect (EPR) of Maeda. This phenomenon regards 
drugs with a molecular weight ≥12,000  Da, nanoparticles and 
liposomes (206). As outlined by Jang et al. EPR is a passive tumor 
targeting approach (207). The EPR effect is another example 
of interaction between TIFP and IFF. As discussed, TIFP is a 
uniformly centripetal pressure, whereas IFF has a centrifugal 
behavior. However, TIFP is sufficiently elevated compared to the 
pressure difference existing between the tumor vessels and the 
normal tissue around a tumor. This in a certain sense hampers 
the transport away of the molecules adjacent to the vessel area, 
keeping them in that area for a longer time (EPR effect) (82).

Vascular normalization seems to be the simplest method of 
treatment for controlling TIF formation and TIFP. However, 
Ribatti (208) has criticized vascular normalization. In fact, this 
author outlines that the vessel normalization’s restoration fol-
lowed by normalization of vessel permeability may become an 
obstacle to the subsequent chemotherapy (208). This is true, but 
we think that a better comprehension of TIF formation, TME, 
and of the forces that govern their interactions, associated with 
vascular normalization and the new imaging methods and com-
putational models, may represent the future of cancer therapy. 
Another way to lowering TIFP and ameliorating convective flux 
is the use of collagenase. The work of Gade et al. (99) is the one of 
the best example to transport into clinics. In fact, the authors fol-
lowed with MRI the increase in delivery of 5-FU to HT29 human 
colorectal tumors grown s.c. in mice after administration of col-
lagenase. They demonstrated a 50% increase in 5-FU increase 
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in mice treated with collagenase compared to a control (99). 
HT clinically if properly used is free of serious side effects. HT 
associated with chemotherapy and radiotherapy increases their 
antitumoral effects. We refer the reader to Datta et al. (209) and 
Hurwitz et al. (210) to understand the mechanisms that determine 
these positive associations. We can point out that the right com-
bination of them (i.e., cisplatinum–taxanes–HT–radiotherapy) 

can only lead to a better therapeutic index. In fact, if we look at 
all these various factors individually they lower the interstitial 
pressure augmenting drug delivery to the tumor. The experi-
mental group directed by Repasky (134) comforts us. They are 
indicating that an appropriate use of oncology therapies and 
imaging methods already in use can cause us to take a big leap 
forward in the clinic.
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