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Abstract

Plant chemistry can be a key driver of host shifts in herbivores. Several species in the sawfly genus Athalia are important
economic pests on Brassicaceae, whereas other Athalia species are specialized on Lamiales. These host plants have
glucosides in common, which are sequestered by larvae. To disentangle the possible direction of host shifts in this genus,
we examined the sequestration specificity and feeding deterrence of iridoid glucosides (IGs) and glucosinolates (GSs) in
larvae of five species which either naturally sequester IGs from their hosts within the Plantaginaceae (Lamiales) or GSs from
Brassicaceae, respectively. Furthermore, adults were tested for feeding stimulation by a neo-clerodane diterpenoid which
occurs in Lamiales. Larvae of the Plantaginaceae-feeders did not sequester artificially administered p-hydroxybenzylGS and
were more deterred by GSs than Brassicaceae-feeders were by IGs. In contrast, larvae of Brassicaceae-feeders were able to
sequester artificially administered catalpol (IG), which points to an ancestral association with Lamiales. In line with this
finding, adults of all tested species were stimulated by the neo-clerodane diterpenoid. Finally, in a phylogenetic tree inferred
from genetic marker sequences of 21 Athalia species, the sister species of all remaining 20 Athalia species also turned out to
be a Lamiales-feeder. Fundamental physiological pre-adaptations, such as the establishment of a glucoside transporter, and
mechanisms to circumvent activation of glucosides by glucosidases are therefore necessary prerequisites for successful host
shifts between Lamiales and Brassicaceae.
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Introduction

Most phytophagous insects are diet specialists and depend on a

limited number of plant species that can serve as suitable hosts

[1,2]. Feeding specialization is driven mainly by the specific

composition of secondary plant metabolites [3], and herbivores are

adapted to these metabolites by various behavioral and/or

physiological means such as sequestration, i.e., the uptake,

concentration and storage of these compounds [4].

Different scenarios have been discussed concerning how herbiv-

orous insects are able to add new host plant species to their diet in the

course of evolution. Ehrlich and Raven [5] proposed the escape and

radiation hypothesis to explain the evolution of plant herbivore

interactions. They suggested that plants escape herbivory by evolving

new defense chemicals followed by radiation of the plant species.

Herbivores can shift to these plants if they can overcome plant

defenses and then radiate as well [5,6]. Phytochemical similarity

between the ancestral and new host plants is probably necessary to

facilitate such shifts by the herbivores [7–9], whereas phylogenetic

similarity between plant species is regarded as less important [10,11].

The oscillation hypothesis postulates that host shifts do not

happen abruptly. Instead, before insect species entirely shift to a

new host, it is expected that over rather long time periods host

plant ranges are extended to include both the old and new plant

species [12,13]. It may also be expected that when speciation

occurs involving a host shift, the descendant species on the new

host maintains some ability to deal with secondary metabolites of

the ancestral host. In contrast, the descendant species remaining

on the ancestral host may have less ability to handle specific

metabolites of the new host because it never experienced it. Apart

from plant chemistry, ecological factors such as a shared habitat

may also explain why herbivores may switch to new host species

[14,15]. Overall, host shifts within a plant genus or family are

more likely [16–18], and there is evidence that only a small

proportion of insect speciation events include shifts towards a

different plant family [19,20]. Host shifts to distant families occur

more likely in those insect lineages that include polyphagous

species and that are geographically widespread [21,22].

The tenthredinid sawfly genus Athalia comprises about 70

species and subspecies that are oligophagous but are specialized on

different plant families, namely either on species in Plantagina-

ceae, Lamiaceae (both Lamiales), Brassicaceae and Tropaeolaceae

(Brassicales), or Crassulaceae (Saxifragales) [23,24] (Table 1). On

cultivated crucifers, sawfly larvae can be notorious pests [23].
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Their host specialization patterns on distantly related plant

families and their economic significance make them an intriguing

model to study the evolution of host plant shifts in this genus.

The larvae of several Plantaginaceae-feeders, including A.

cordata and A. circularis, sequester iridoid glucosides (IGs) such as

catalpol and aucubin in their hemolymph [25]. Conversely, larvae

specialized on Brassicaceae, e.g., A. rosae rosae, A. liberta and A.

lugens, were found to sequester glucosinolates (GSs) [25].

Sequestered IGs and GSs are used for the larvae’s own defense

against invertebrate predators [25,26] while adult Athalia feed

mainly on nectar. However, adults of the Japanese subspecies A.

rosae ruficornis have been found to acquire neo-clerodane diterpe-

noids from Lamiaceae and Verbenaceae (Lamiales) by feeding on

the leaf surface, and even use these compounds for defense and in

sexual communication [27,28]. These diterpenoids occur in plant

species of the Lamiales, but not in Brassicales [29].

To shed light on the evolutionary trajectory of host shifts within

the genus Athalia, we took an integrated approach by addressing

whether the larvae of five European species specialized on

Plantaginaceae or Brassicaceae are able to sequester both IGs

and GSs, and whether they are stimulated or deterred by these

glucosides. Furthermore, adults were tested for their stimulation to

a neo-clerodane diterpenoid. Finally, a molecular phylogenetic tree

was reconstructed, including European as well as African and one

Japanese (sub-)species, as the genus is distributed in the Palaearctic

and African regions [23,30]. We discuss the significance of our

findings in the framework of existing theories of the evolution of

plant-insect associations, and suggest that these theories are not

mutually exclusive.

Materials and Methods

Insect and Plant Rearing
Athalia circularis, A. cordata, A. rosae rosae, A. liberta, and A. lugens

were collected around Würzburg and Bielefeld, Germany, in 2010

and kept in cages in a greenhouse (20uC, photoperiod of L16:D8).

Host plants were grown from seeds in the greenhouse. Seeds of

Plantago lanceolata L. (Plantaginaceae) were obtained from Rühle-

mann9s (Horstedt, Germany) and seeds of Veronica beccabunga L.

(Plantaginaceae) and Alliaria petiolata (M. Bieb.) Cavara & Grande

(Brassicaceae) from the Botanical Garden of Berlin, Germany.

Veronica beccabunga was sown once and subsequently propagated by

cuttings. Seeds of Sinapis alba L. cv. Silenda (Brassicaceae),

Nasturtium officinale (R. Br.), and Brassica rapa L. (var. pekinensis)

(Brassicaceae) were obtained from Kiepenkerl (Norken, Germany).

Within the specialists on Plantaginaceae, A. cordata was reared on

P. lanceolata and A. circularis on V. beccabunga. Within the specialists

on Brassicaceae, A. rosae rosae was kept on S. alba, A. liberta on first-

year A. petiolata plants, and A. lugens on N. officinale. Adults were

provided with a mixture of honey and water (1:50). Sawflies of A.

circularis, A. cordata and A. rosae rosae could be reared through several

generations, whereas only few females of A. liberta and A. lugens

were found in the field. Females of the latter two species produced

only few offspring and could not be further reared. Therefore, the

number of individuals of these species available for bioassays was

Table 1. Species of Athalia included in the present study, with their host plant associations and geographic distribution.

Species Host plant families of larvae
Refererences for
host association Geographic distribution

A. ancilla Serville, 1823 Brassicaceae [24] West Palaearctic

A. bicolor Serville, 1823 b West Palaearctic

A. circularis (Klug, 1815) (Asteraceae, Brassicaceae, Lamiaceae),
Plantaginaceae1

[24], a Palaearctic

A. cordata Serville, 1823 Lamiaceae, Plantaginaceae [24], a West Palaearctic

A. cornubiae Benson, 1931 Crassulaceae [24] Palaearctic

A. excisa Koch, 2006 Brassicaceae [65], a Afrotropic

A. flavobasalis Koch, 2007 Brassicaceae a Afrotropic

A. guillarmodi Benson, 1956 Brassicaceae [23,65], a Afrotropic

A. himantopus Klug, 1834 Brassicaceae [23,66], a Afrotropic

A. incomta Konow, 1908 Lamiales a Afrotropic

A. liberta (Klug, 1815) Brassicaceae [24], a Palaearctic

A. lugens (Klug, 1815) Brassicaceae [67], a Palaearctic

A. marginipennis Enderlein, 1920 Brassicaceae [66] a Afrotropic

A. obsoleta Benson, 1962 Brassicaceae a Afrotropic

A. rosae rosae (Linné, 1758) Brassicaceae, Tropaeolaceae2 [24], a Palaearctic, Oriental

A. rosae ruficornis Jakovlev, 1888 Brassicaceae [24], a East Palaearctic, Oriental

A. scioensis Gribodo, 1879 b Afrotropic

A. scutellariae Cameron, 1880 Lamiaceae [24] Palaearctic

A. ustipennis Mocsáry, 1909 Brassicaceae a Afrotropic

A. vollenhoveni Gribodo, 1879 Brassicaceae [23] West Palaearctic, Afrotropic

1Our observations with various field collected and reared animals revealed only Plantaginaceae as host plants for successful development; 2our observations revealed
only Brassicaceae as host plants for successful reproduction; a. our results from chemical analyses; b. host plants unknown, in chemical analyses neither GSs nor aucubin,
catalpol or verbascoside could be detected. Geographic distribution according to [30].
doi:10.1371/journal.pone.0033649.t001
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limited. All species were used for bioassays in the first to third

generation after collection in the field. No specific permits were

required for our described bioassays.

Testing for Sequestration Abilities of Non-Host
Glucosides

Potential sequestration abilities of non-host glucosides were

tested with these five Athalia species. Non-host glucosides were

dissolved in 90% methanol, applied on larval host plant leaf discs

(diameter: 10 mm) in a naturally occurring concentration

(7 mmol/g FW, equals between 250 and 350 nmol per leaf disc)

and solvents were allowed to dry. Painted leaf discs were offered

individually to single last feeding instar larvae in glass Petri dishes

(5 cm diameter). p-HydroxybenzylGS (sinalbin; Phytoplan) was

applied on P. lanceolata and V. beccabunga leaf discs to test the

sequestration ability of a GS as non-host glucoside by A. cordata

and A. circularis. Catalpol (Phytoplan) was applied on S. alba, A.

petiolata and N. officinale leaf discs to test sequestration of an IG as

non-host glucoside by A. rosae rosae, A. liberta, and A. lugens,

respectively. Larvae were starved 2 to 12 h prior to the feeding

bioassays, depending on the size and feeding activity of the species.

After 5 h of feeding, hemolymph was taken from each individual

by piercing the integument with a needle and collecting the

exuding hemolymph droplet. Additionally, feces and remaining

leaf parts were collected from each individual in Eppendorf caps.

Control leaf discs were sampled directly after application of the

glucoside and used to calculate maximum available glucoside

values. All samples were frozen at –80uC for later analyses of

glucoside concentrations.

Testing for Feeding Deterrence of Non-Host Glucosides
The deterrent activity of non-host glucosides was investigated

for one Plantaginaceae- and one Brassicaceae-feeding species in

paired choice feeding assays. Individual last feeding instar larvae of

A. cordata (Plantaginaceae-feeder) were offered one test leaf disc

(12 mm diameter) of P. lanceolata treated with p-hydroxybenzylGS

(dissolved in 90% methanol) and a control disc treated only with

solvent in a Petri dish. Larvae of A. rosae rosae (Brassicaceae-feeder)

were offered a test leaf disc of S. alba treated with the IG catalpol

and a control disc treated with solvent. Non-host glucosides were

applied in approximately the same glucoside concentrations

(360 nmol per leaf disc) as used for the sequestration assays (see

above). After 3 h, feeding amounts on both discs were measured in

mm2 with mm2-paper and data compared by Wilcoxon matched-

pairs signed-rank tests to evaluate possible deterrent effects of the

non-host glucosides on each species. For comparison of the

deterrent effectiveness of non-host glucosides on A. cordata and A.

rosae rosae, preference indices (PI) were calculated [PI = (amount

consumed on test – amount consumed on control) / total amount

consumed] and compared with a Mann-Whitney U-test.

Analyses of Glucoside Concentrations in Larvae
GS and IG concentrations of larval hemolymph, feces and leaf

samples were determined by HPLC-DAD and GC-MS, respec-

tively, according to [25], using 2-propenylGS (Phytoplan) or

phenyl-b-D-glucopyranoside (Sigma-Aldrich) as internal stan-

dards.

Testing for Feeding Stimulation by Clerodendrin B
To test whether feeding of adult Athalia species was stimulated

by a representative neo-clerodane diterpenoid, females were offered

clerodendrin B in paired choice assays. Clerodendrin B (1 mg in

10 ml ethyl acetate, kindly purified and provided by R. Nishida;

test) or 10 ml ethyl acetate only (control) were applied on two green

paper napkin squares (64 mm2) and placed in a glass Petri dish.

The feeding durations on test and control squares of individually

tested 3 to 6 d old naı̈ve females of A. cordata, A. circularis, A. rosae

rosae, A. liberta, and A. lugens were recorded during 5 min in the

paired choice assays. The feeding stimulation reaction was scored

as positive when individuals fed continuously on the test paper for

more than 10 s [31]. A Kruskal-Wallis analysis of ranks followed

by a multiple comparison test was used to compare the feeding

times of Athalia species on the filter papers treated with

clerodendrin B.

Larval Host Associations Deduced from Chemical
Analyses of Preserved Adult Specimens

Glucosides sequestered by Athalia larvae are transferred to the

adult stage [32], and adults are more easily collected in the field

and taxonomically much better studied than larvae. Therefore,

preserved adult specimens of several species collected in Europe,

Africa and Japan were analyzed for the presence of glucosides to

determine or verify the host plant associations of these specimens

(Table 1). Sampled adults were either preserved by drying or in

ethanol for up to 15 years. For the samples collected in Ethiopia

(during October 2010, Tab. 1, S1) a necessary ‘Material Transfer

Agreement’ and a ‘Material Export Permit’ were obtained from

the Institute of Biodiversity Conservation (Addis Ababa). Some of

the Afrotropical Athalia species were collected during the project

‘‘The sawfly diversity of the Afromontane Region of South

Africa’’. This research was supported and permitted by Mpuma-

langa Tourism and Parks Agency, Limpopo Provincial Govern-

ment, Department of Economic Development, Environment and

Tourism, as well as Ezemvelo KZN Wildlife, Conservation,

Partnerships and Ecotourism. For all other specimens, no specific

permits were required for the sampling activities since the

collection sites were not privately owned or protected in any

way. None of these studies involved endangered or protected

species. In many cases only one individual per species was

available. Abdomens of each individual were ground, extracted in

methanol (HPLC-grade, Merck), and analyzed on a LC-

18 column (Grom-Sil, 120 ODS-4 HE, 3 mm, 15062 mm, Alltech

Grom) by UHPLC-TOF-MS (1290 series UHPLC, 6210 series

Time-of-Flight, Agilent Technologies). Samples were eluted at a

gradient from 0.1% formic acid (Merck; solvent A) to acetonitrile

(Fisher Scientific; with 0.1% formic acid; solvent B) and a flow of

0.6 ml/min at a column temperature of 35uC. For GS detection,

samples were measured in negative ionization mode with an ESI

source (Dual-ESI, drying gas 12 I/min, fragmentor 140 V, gas

temperature 350uC, nebulizer 55 psig, Oct 1 RF Vpp 250 V,

skimmer 60 V, vaporizer/sheath gas temperature 375uC, VCap

3491 V). For IG and verbascoside analysis, all samples were

measured again in positive ionization mode with higher fragmen-

tor voltage (170 V). Reference masses were used for internal mass

calibration during the runs, introduced by a second sprayer in the

source. The corresponding glucosides were identified by their

exact masses and calculated sum formulae, their UV-spectra, and

by comparison with authentic standards. For IG detection, some

of the samples were additionally analyzed by GC-MS as described

in [25].

Genetic Analysis of Athalia and Host Plant Relationships
Legs of pinned or ethanol-preserved adults as well as hind parts

of larvae were used for DNA extraction (for collection data see

Table S1). Total genomic DNA was extracted using the

NucleoSpin Tissue kit (Macherey-Nagel) following the manufac-

turer’s instructions. Two genetic markers were selected: a fragment

Host Shifts in the Sawfly Athalia
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of the mitochondrial cytochrome oxidase I (COI; aligned length:

801 bp) gene was amplified and sequenced with the primers sym-

C1-J-1718 [33] and A2590 [34]. For three specimens of A. lugens,

only shorter DNA fragments (418 bp overlap with the longer COI

sequences) could be amplified with primers LCO1490 and

HCO2198 [35]. A fragment of the nuclear 28S rRNA (28S,

aligned length: 583 bp) gene was amplified and sequenced with

D2F and D2R [36]. PCR products were purified using NucleoFast

96 PCR plates (Macherey-Nagel) and directly sequenced on an

ABI 3130xl automated capillary sequencer (Life Technologies)

using BigDye v1.1 chemistry. DNA sequences were assembled and

checked using SeqScape v2.5 (Applied Biosystems), 28S sequences

were aligned with the MAFFT 6 web server [37,38]. PAUP*

v4b10 [39] was used to calculate maximum parsimony trees. Node

supports were assessed by non-parametric bootstrapping (2,000

bootstrap replicates). For a Bayesian inference of phylogeny,

MrBayes v3.1.2 [40] was used. The whole data set was partitioned

according codon positions and genetic markers, so a total of four

data partitions were used, i.e. three partitions for the COI data,

and one partition for the 28S data. Appropriate nucleotide

substitution models for each partition were selected by jModeltest

0.1.1 [41] using the Bayesian Information Criterion (BIC). Two

parallel runs, each including four Markov chains, were run for

5 million generations, with every 1000th tree sampled. Conver-

gence was checked by Tracer v1.5 [42], and the first 10% of the

trees were discarded as burn-in. All trees were rooted with Arge

ustulata, Giladeus tuxius and Gilpinia hercyniae.

In order to reveal ancestral associations between Athalia larvae

and their host plants, a reconstruction of ancestral character states

(host plant) was performed for each internal node of the produced

phylogenetic tree using the most parsimonious character recon-

struction (MPR) as described in [43] and modified by [44], and

maximum likelihood (ML) with equal rates and symmetric models

in R (version 2.13.2) with the package ape 2.8 [45]. GenBank

accession numbers can be found in Table S1.

Results

Sequestration of Non-Host Glucosides
When the Plantaginaceae-feeding species A. cordata and A.

circularis fed on host leaves treated with p-hydroxybenzylGS, only

minute traces of this GS (ca. 0.01 % of theoretically ingested

amounts) were detected in the hemolymph of some individuals (A.

circularis: 1 of 6; A. cordata: 3 of 6). Instead, 20–25% of the ingested

GS were excreted with the feces after 5 h (Fig. 1A–B). In contrast,

the Brassicaceae-specialists A. rosae rosae, A. liberta, and A. lugens

were able to sequester the non-host IG catalpol in their

hemolymph when fed with IG-treated host plant leaves (Fig. 1C–

E). The total concentration of sequestered catalpol in the

hemolymph of A. rosae rosae accounted for about 22 % of

theoretically ingested catalpol. Total IG concentrations in the

hemolymph of A. rosae rosae were higher than in A. liberta and A.

lugens, but the sequestration efficiencies of theoretically ingested

catalpol were comparable (Fig. 1). Differences in IG concentra-

tions found in the larvae may be due to lower feeding activities by

the latter two species, and to interspecific variation in body masses

(mean fresh mass61 SD of larvae was 59.566.4 mg in A. rosae

rosae compared to 27.365.7 mg in A. liberta; n = 6 per species). The

experiment was replicated several times (between 6 and 18

individuals per species, depending on availability) with the same

qualitative outcome regarding the sequestration pattern. However,

only the most representative data set is shown in Fig. 1. Here,

larvae of all species fed comparable amounts of leaf tissue on

homogenous leaf material quality, enabling quantitative analyses.

Feeding Deterrence of Non-Host Glucosides
Both Athalia species significantly preferred to feed on control

leaves compared to leaf discs treated with a non-host glucoside

(Table 2). However, A. cordata larvae were significantly more

deterred by their non-host glucoside p-hydroxybenzylGS (mean

preference index, PI, 61 SD: –0.7660.41, n = 12) than A. rosae

rosae larvae by catalpol (PI: –0.3360.30, n = 17; Mann-Whitney U-

Test, W = 157, P = 0.014).

Feeding Stimulation by Clerodendrin B
Most naı̈ve adult females of all investigated Athalia species were

stimulated to feed on clerodendrin B-treated paper discs, whereas

none fed on solvent-treated control discs in paired choice assays

(Table 3). Overall, no significant differences were detected in

feeding durations on the diterpenoid among the species (Kruskal-

Wallis analysis of ranks, P.0.05).

Larval Host Associations of Preserved Adult Specimens
Various GSs (e.g., methylGS, 2-propenylGS, 6-methylsulfinyl-

hexylGS) were found in A. excisa, A. flavobasalis, A. guillarmodi, A.

himantopus, A. marginipennis, A. obsoleta, A. rosae ruficornis, and A.

ustipennis, revealing a likely larval association with Brassicales

(Table 1). In A. incomta, high concentrations of the phenylpropa-

noid glucoside verbascoside as well as low concentrations of

catalpol were found which points to an association of this species

with Lamiales. In A. bicolor and A. scioensis, neither GSs nor IGs nor

verbascoside were detected. For A. circularis, use of several other

plant families has been reported [24]. However, our own tests

revealed that larvae of A. circularis collected in different years in the

field and reared in the lab only feed and develop successfully on

Plantaginaceae.

Phylogeny of Athalia and Host Plant Relationships
In the phylogenetic tree, A. scutellariae was revealed as the sister

group of all remaining ingroup species used in this study (Fig. 2).

Figure 1. Non-host glucoside concentrations (mean±SD) in the
larval hemolymph (Hem, white bars) and in the feces (grey bars)
of five Athalia species (last feeding instar, n = 6) after 5 h of
feeding: (A) A. cordata fed on Plantago lanceolata and (B) A.
circularis fed on Veronica beccabunga, (A, B) treated with p-
hydroxybenzylGS; (C) A. rosae rosae fed on Sinapis alba, (D) A.
liberta fed on Alliaria petiolata, and (E) A. lugens fed on
Nasturtium officinale, (C, E) treated with catalpol (IG). The relative
amounts of non-host glucoside present in either hemolymph or feces
compared to what was theoretically ingested is given as an average
percentage.
doi:10.1371/journal.pone.0033649.g001
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This species feeds on Lamiaceae [24]. The phylogeny and

character reconstruction analyses indicated at least three host

shifts in either direction, from the Lamiales to the Brassicaceae or

the opposite (Fig. 2).

Discussion

Sawfly larvae of the genus Athalia are specialized on different

plant families. Such host shifts across plant families are rather rare

and more likely found in polyphagous species [16,18,22]. From the

distinct sequestration abilities of plant secondary metabolites found

in larvae of five Athalia species and on the feeding stimulation

pattern in the adults, we postulate that host plant shifts have

occurred within the genus Athalia from Lamiales to Brassicaceae.

Regarding our more closely studied Athalia species, their host plant

families Plantaginaceae and Brassicaceae are only distantly related

[46] and produce different secondary plant metabolite classes, IGs

and GSs, which are both glucosides.

In our manipulation experiments, the Plantaginaceae-specialists

A. cordata and A. circularis, which are known to sequester IGs [25],

could not store GSs. In contrast to the Plantaginaceae-feeders, the

three Brassicaceae-feeders, which take up and store GSs readily

[25], also sequestered the non-host glucoside catalpol (IG) when

offered on host leaves. Catalpol was present in A. rosae rosae larval

hemolymph after five hours of feeding in concentrations

comparable to the GS-concentrations larvae sequestered from

their host plant Sinapis alba [25]. Given the documented

sequestration ability of catalpol in all five species, it is likely that

the association of Athalia species to IG-containing plants is

ancestral. Thus, the ability to handle glucosides through extended

sequestration may have facilitated the host plant shift from

Lamiales to Brassicaceae.

From a physiological perspective, the putative transporter(s) for

glucosides across the gut membrane seem to be less selective in the

Brassicaceae-feeding Athalia species compared to the Plantagina-

ceae-specialists, the latter being obviously restricted to the

transport of IGs. The broader selectivity of the putative glucoside

transporter in the Brassicaceae-feeders may allow occasional and

recurrent utilization of the ancestral host, which may therefore

provide sufficient selection pressure to maintain this trait. As a

further physiological prerequisite, all Athalia species investigated

here need to circumvent a degradation of glucosides by

glucosidases in order to take up glucosides efficiently. Usually,

IGs can be subjected to degradation by b-glucosidases in the plant

tissue and insect gut producing reactive dialdehydes [47], whereas

GSs are degraded by b-thioglucosidases (myrosinases) released in

the plants after tissue disruption, which results in the formation of

toxic volatile products [48]. The mechanism by which Athalia

species avoid this degradation is only partially understood [49].

Next to glucoside sequestration of larvae, adults of A. rosae

ruficornis are stimulated by clerodendrins and sequester these

compounds from plants for mating and defense [50]. Here we

show that adults of five European Athalia species were also

stimulated by clerodendrin B, regardless of the larval host plant

association (Table 3). Clerodane diterpenoids have not been

described for Brassicaceae but occur in Lamiales [29], for

example, in the genus Scutellaria (Lamiaceae), which also contains

IGs [51]. Several Athalia species are known to feed as larvae on

Lamiales [23,24]. The use of neo-clerodane diterpenoids by adults

may thus also reflect an ancestral association of Athalia with

Lamiales. Further investigations on the role of neo-clerodane

diterpenoids for larvae and adults of these Athalia species may

reveal the complexity of utilizing several secondary metabolites for

different ecological purposes.

Our molecular phylogeny based on about one third of known

Athalia species revealed A. scutellariae, which feeds on Lamiales

[23,24], as the sister group of all remaining ingroup species used in

this study (Fig. 2). Furthermore, the phylogeny indicates that

Table 2. Feeding amounts [mm2] of last instar larvae of Athalia rosae rosae and A. cordata on host plant leaf discs (113 mm2)
treated with non-host glucosides dissolved in 90% methanol (7 mmol/g FW; test disc) or 90% methanol (control disc) in paired
choice assays for 3 h.

Insect species – test plant species n

Feeding amount
on test disc
(mean±SD)

Feeding amount
on control disc
(mean±SD)

P-value
(Wilcoxon matched-pairs
signed rank test)

A. cordata – Plantago lanceolata (+ GS) 12 3.167.9 30.1620.0 0.004

A. rosae rosae – Sinapis alba (+ IG) 17 38.7619.4 77.2624.3 ,0.001

Non-host glucosides were p-hydroxybenzylGS (GS: glucosinolate) and catalpol (IG: iridoid glucoside).
doi:10.1371/journal.pone.0033649.t002

Table 3. Feeding time [seconds] within 5 min of naı̈ve female adults of five Athalia species on green paper squares (64 mm2)
treated with 1 mg of clerodendrin B solved in 10 ml ethyl acetate (test square) or treated with the solvent only (control square).

Number of
individuals tested

Number of stimulated
individuals

Feeding time on test square,
(mean±SD)

Feeding time on control
square

A. cordata 17 10 77.6687.5 0

A. circularis 13 11 131.4691.4 0

A. rosae rosae 15 14 152.2674.2 0

A. liberta 4 4 162.3684.1 0

A. lugens 2 2 229.0 0

Stimulation was recorded when individuals fed continuously for .10 seconds on one square. Number of replicates differs due to availability of species.
doi:10.1371/journal.pone.0033649.t003
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multiple host shifts must have occurred. Both scenarios, a shift

from the Lamiales to the Brassicaceae or the other way round,

would require the same number of switches (Fig. 2). A more

complete species sampling will be necessary to draw further

conclusions on ancestral state relationships.

Several hypotheses have been put forward to explain host plant

shifts in herbivorous insects, which fit well to the current findings

in Athalia. According to the escape and radiation hypothesis,

adaptation of insect species to novel plant chemical defenses

should be followed by a burst of speciation [5,52,53]. The overall

higher number (about 45) of Athalia species known to feed on

Brassicaceae compared to only 14 species feeding on Lamiales

[23,54,55] is concordant with the assumption that the association

with Lamiales is ancestral and a radiation at the genus level

occurred after switching to Brassicaceae. Thus, our data support

the escape and radiation concept. Furthermore, our chemical

analyses of Athalia adults preserved up to 15 years revealed several

so far unknown host associations of various species with Brassicales

and of only one species with Lamiales. Of course, we cannot

exclude the possibility that these species also feed on other plant

species. However, most Athalia species (except A. circularis, see

Table 1) are described to be restricted to one plant order [23,24].

Therefore, the chemical analysis of preserved adults, even by

taking only one specimen per species, is an opportunity to reveal

host plant relationships within this sawfly genus that shows, as far

as is currently known, a high degree of host plant specialization.

In addition, the proposed host plant shift from Lamiales to

Brassicaceae may be explained by the oscillation hypothesis [13],

which proposes that derived herbivorous species may include plant

species of several families for a certain period of time during their

evolution. Larvae of A. rosae rosae fed at least somewhat on P.

lanceolata and V. beccabunga leaves (Plantaginaceae) in no-choice

tests, whereas A. cordata and A. circularis larvae never accepted the

Brassicaceae S. alba or B. rapa [56]. Likewise, A. rosae rosae fed also

comparably more on leaf discs treated with IG than A. cordata on

discs treated with GS, although both clearly preferred the control

discs (host plant treated with solvent only; Table 2). This finding

indicates that A. rosae rosae has a higher host acceptance and that

IGs are not entirely ‘‘novel’’ to this species, which falls in line with

predictions of the oscillation hypothesis.

Apart from chemical similarities, geographical or ecological

factors can influence host plant switches [57,58]. One important

prerequisite for a possible host plant switch is the sympatric

distribution of herbivores and certain plant species [11,59]. In our

scenario in the sawfly genus Athalia, a shift, e.g., from V. beccabunga

to N. officinale (Brassicaceae) might be conceivable, as these species

share the same habitat in wetlands near rivers [60]. Similarly, in

another herbivorous genus, the chrysomelid beetles Phaedon

armoraciae L. and Phaedon cochleariae F., either one of these plant

species serves as host [61]. Thus, the use of these two distantly

related plant families may be more common among herbivorous

insects. With regard to ecological factors, using specific secondary

plant compounds for defensive purposes should reduce the

likelihood of major host shifts [62]. However, the ability to gain

new defense metabolites through sequestration from another plant

species may help to reduce predation pressure to a similar extent

[63,64].

These hypotheses for host shifts in the genus Athalia are not

mutually exclusive and may all have played a role in the evolution

of these insect-plant associations. Overall, the host plant specificity

of Athalia species is highly complex, and host plant chemistry has

played a major role in the evolution of these herbivorous insects.

Supporting Information

Table S1 Collection data for the sawfly specimens used in the

molecular study and GenBank accession numbers.

(XLS)
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