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Background:Kidney biopsy is the gold-standard for diagnosingmedical renal diseases, but the accuracy of the diagnosis

greatly depends on the quality of the biopsy specimen, particularly the amount of renal cortex obtained. Inadequate
biopsies, characterized by insufficient cortex or predominant medulla, can lead to inconclusive or incorrect diagnoses,
and repeat biopsy. Unfortunately, there has been a concerning increase in the rate of inadequate kidney biopsies, and
not all medical centers have access to trained professionals who can assess biopsy adequacy in real time. In response to
this challenge, we aimed to develop a machine learning model capable of assessing the percentage cortex of each bi-
opsy pass using smartphone images of the kidney biopsy tissue at the time of biopsy.
Methods: 747 kidney biopsy cores and corresponding smartphone macro images were collected from five unused de-
ceased donor kidneys. Each core was imaged, formalin-fixed, sectioned, and stained with Periodic acid–Schiff (PAS)
to determine cortex percentage. The fresh unfixed core images were captured using the macro camera on an iPhone
13 Pro. Two experienced renal pathologists independently reviewed the PAS-stained sections to determine the cortex
percentage. For the purpose of this study, the biopsies with less than 30% cortex were labeled as inadequate, while
those with 30% ormore cortex were classified as adequate. The dataset was divided into training (n=643), validation
(n=30), and test (n=74) sets. Preprocessing steps involved converting High-Efficiency Image Container iPhone for-
mat images to JPEG, normalization, and renal tissue segmentation using a U-Net deep learning model. Subsequently,
a classification deep learning model was trained on the renal tissue region of interest and corresponding class label.
Results: The deep learning model achieved an accuracy of 85% on the training data. On the independent test dataset,
the model exhibited an accuracy of 81%. For inadequate samples in the test dataset, the model showed a sensitivity of
71%, suggesting its capability to identify cases with inadequate cortical representation. The area under the receiver-
operating curve (AUC-ROC) on the test dataset was 0.80.
Conclusion:We successfully developed and tested a machine learning model for classifying smartphone images of kid-
ney biopsies as either adequate or inadequate, based on the amount of cortex determined by expert renal pathologists.
Themodel's promising results suggest its potential as a smartphone application to assist real-time assessment of kidney
biopsy tissue, particularly in settings with limited access to trained personnel. Further refinements and validations are
warranted to optimize the model's performance.
Introduction

Kidney biopsy plays an essential role in the diagnosis and management
of various medical renal diseases, providing critical information for treat-
ment decisions and prognostication. The histopathological evaluation of
renal tissue allows the identification of specific renal pathologies, such as
glomerulonephritis and tubulointerstitial diseases, which guide appropri-
ate therapeutic interventions1,2. One of the key determinants of biopsy
quality is the representation of renal cortex within the biopsy core.
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Adequate cortex representation ensures a comprehensive assessment of glo-
meruli, tubules, interstitium, and blood vessels, while insufficient cortex
may limit the pathologist's ability to arrive at a precise diagnosis2,3 or pre-
clude the estimate of chronic changes that may inform prognosis and help
guide clinical management.

Over the last 15 years, the rate of kidney biopsies that are inadequate for
complete diagnosis has significantly increased, representing a significant fi-
nancial drain on the healthcare system as well as a direct risk to the patients
who must be re-biopsied or go without an accurate diagnosis3,4. Ideally,
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Table 1
Breakdown of the dataset with the number of samples in each group.

Adequate class Inadequate class

Training 603 40
Validation 15 15
Test 60 14
Total 678 69
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sample adequacy should be assessed at the timeof biopsy by examination of
the obtained cores for presence of cortex under a microscope by a patholo-
gist or trained personnel. Such real-time assessment enables the biopsy
physician to obtain additional tissue cores if existing cores contain insuffi-
cient amounts of cortex. However, resource constraints have markedly lim-
ited the availability of real-time onsite adequacy assessment within many
biopsy suites. When available, onsite assessment is often performed by a
general pathologist, or pathology assistant, who might not have experience
in cortex identification from fresh renal biopsies as nephropathologists. A
recent study of 123,372 native kidney biopsies found that the miss rate
increased markedly from 2% in 2005 to 14% in 20203. This increase in
kidney biopsy miss rate highlights the need for improved tools to assist
assessment of the tissue collected before the patient leaves the biopsy suite.

Recent advances in artificial intelligence and machine learning have
demonstrated their potential to assist pathologists in various diagnostic
tasks, including lesion detection and classification5,6. Machine learning
models, particularly deep learning algorithms, have shown promising re-
sults in automating image analysis, reducing inter-observer variability,
and improving diagnostic accuracy across various medical specialties7,8.

In this study, we sought to address the challenge of inadequate kidney
biopsies by developing a machine learning model capable of identifying
renal cortex from smartphone images of kidney needle-core biopsy tissue.
Themodel can be deployed as a smartphone application to assist the biopsy
clinician by providing information on the percentage cortex obtained on
each biopsy pass. This will enable the biopsy clinician to make an informed
decision on the number of passes required during percutaneous renal
biopsy procedures, potentially improving the quality and accuracy of
renal biopsy evaluations, especially in the settings with limited access to
trained personnel.

Materials and methods

Patient selection and data acquisition

For this study, we prospectively collected 747 needle-core biopsies from
five fresh unused deceased donor kidneys using a Bard Monopty 16-gauge
biopsy gun under direct visualization. The utilization of deceased donor
kidneys allowed us to obtain a standardized sample set with minimal con-
founding factors. Each biopsy core was imaged using the macro camera
on an iPhone 13 Pro. The phone was handheld close to the biopsy core at
approximately 2 in. to obtain an image in clear focus. The images were
captured with ambient room lighting. No external lighting or photographic
enhancement was used. The biopsy cores were photographed on standard
lab absorbing paper. Then, each core was processed according to routine
histological procedures including formalin fixation, paraffin embedding,
sectioning, and staining with Periodic acid–Schiff (PAS) to facilitate the
determination of cortex percentage. All computational analysis and
implementation of the machine learning models were performed with R
Statistical Software, “R version 4.2.1 (2022-06-23 ucrt)”, using Keras
2.11.0 and TensorFlow version 2.9.39–11.

Determination of cortex percentage

To determine the ground truth of percentage cortex in each biopsy core,
two experienced renal pathologists independently reviewed the PAS-
stained sections. Each pathologist analyzed the PAS image separately and
provided their estimate of percentage of cortex. After that, the scores
were aggregated. Any significant disagreement in scoring was resolved by
a third pathologist. For the purpose of this study, biopsies with less than
30% cortex were labeled as inadequate, while those with 30% or more cor-
tex were labeled as adequate. We selected a threshold of 30% based on lo-
gistic regression analysis of the glomeruli distribution in the 747 biopsy
cores, which showed that cores with approximately 40% cortex had a
50% probability of containing more than 10 glomeruli (Supplementary
Fig. 1). The 30% threshold was selected as it provides a 10% buffer to in-
crease sensitivity for cores with insufficient cortex. During the biopsy
2

procedure, the overall percentage of cortex obtained from all the passes de-
termines the biopsy's adequacy. Therefore, this approach should assist the
physician performing the biopsy in obtaining a satisfactory tissue sample
from each pass to make sure the entire biopsy sample is adequate for the
diagnosis.

Data split and preprocessing

The dataset, consisting of smartphone images and corresponding class
labels (adequate/inadequate), was randomly divided into three subsets: a
training set of 643 samples, a validation set of 30 samples, and a test set
of 74 samples. The training set was used to train the machine learning
model, while the validation set was utilized for hyperparameter tuning
and model selection. The test set remained untouched during model devel-
opment/training and served as an independent dataset to evaluate the
model's performance. The breakdown of classes (adequate/inadequate)
within each subset is shown in Table 1. To balance the training dataset
size, the number of images in the inadequate class was up sampled
from 40 to 600 with further data augmentation performed during model
training.

Before feeding the images into the machine learningmodel, preprocess-
ing steps were performed to ensure data compatibility and optimize image
analysis. First, the iPhone's High-Efficiency Image Container images were
converted to the widely used JPEG format using the magick package in
R12 and resized to 320 × 320 pixels. The machine learning framework
consisted of two models employed in series: a U-Net deep learning model
to segment the renal tissue from the background13, followed by a deep
learning model to classify the renal tissue (Fig. 1). The U-Net renal tissue
segmentation model was trained on a random subset of 114 images from
the training dataset and corresponding masks of the renal tissue region of
interest. The masks were created in ImageJ14 by selecting the renal tissue
and creating a binary mask. After training for 350 epochs, the U-Net seg-
mentation model achieved a Dice coefficient of 0.99 and AUC-ROC of
0.99. Of note, the renal tissue pixels occupy a small percentage (1–3%) of
the total image pixels, and the presence of background noise in the images,
such as handwritten sample identification numbers, sharp background
transitions, and fiber textures, posed additional challenges for accurate seg-
mentation. Addressing these complexities required extended training
epochs to ensure the segmentation robustness. The U-Net model's perfor-
mance was evaluated by testing on the remaining 633 images by visual in-
spection. Each JPEG image was input to the U-Net segmentation model,
generating a segmentation mask of the renal tissue. This region of interest
mask was applied to its corresponding image at the original image
resolution, which was then cropped to the mask boundaries, enabling the
classification model to focus on the renal tissue present in the image.

Classification model

A deep neural network was constructed to classify the smartphone im-
ages as either adequate or inadequate. The model consists of:

1. The input layer: The model input is the renal tissue region of interest
obtained from the U-Net segmentation, resized to 320 × 320 pixels.

2. Data augmentation layers: A random horizontal and vertical flip, a
random contrast of 0.1, a random rotation of 0.3, pixel normalization to
values between 0 and 1, and addition of up to 10% Gaussian noise was
performed on each input image.



Fig. 1. Diagram of methodology indicating image input, data preprocessing and sequential model approach.
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3. Feature extraction with attention mechanism: The image features
were extracted using two fully connected layers, dense (1) and dense
(32), separated by a flatten layer and a dropout layer (0.3). An attention
mechanism was applied to the extracted features using a tanh activated
layer and softmax weights.

4. A classification head: This consisted of two fully connected layers,
dense (64) and dense (32), separated by a dropout layer (0.3). The output
layer resulted the binary probability using a sigmoid activation function.

A schematic of the model architecture is shown in Fig. 2.
The classification model had 3,282,117 trainable parameters. Training

was performed using root mean square propagation (rmsprop) as the
optimization algorithm, at a learning rate of 0.001. The model's
hyperparameters (layer unit size, batch size, learning rate, and dropout)
were fine-tuned on the validation dataset to optimize the model's perfor-
mance. The training process was iterated over 100 epochs with a batch
size of eight. Using model checkpoint and callback, the best model was se-
lected based on the best-combined training and validation accuracy.

Evaluation metrics

Multiple metrics were employed to evaluate the model's performance:
accuracy, sensitivity, specificity, and the area under the receiver-
operating curve (AUC-ROC). Accuracy represents the proportion of
correctly classified samples out of the total number of samples, while
sensitivity reflects the model's ability to correctly identify inadequate
samples among all inadequate samples. Specificity, on the other hand,
denotes the model's ability to correctly identify adequate samples among
all adequate samples. AUC-ROC provides a comprehensive measure of the
model's discrimination power, with higher values indicating better perfor-
mance in distinguishing between the two classes.

Results

The developed deep learning model demonstrated an accuracy of 85%
andAUC-ROC of 0.92 on the training data.When evaluated on the indepen-
dent test dataset, the model achieved an accuracy of 81% and AUC-ROC of
0.80. For the subset of inadequate biopsy samples in the test dataset, the
model exhibited a sensitivity of 71%. This result implies that the model
could correctly identify 71% of inadequate biopsy samples, providing valu-
able support in flagging cases requiring further evaluation. For the subset of
Fig. 2. Classification model visualized using Netron15. Input(320x320x3)→ random flip
→ Dropout(0.3) → Dense(32) → Tanh(32)a → Softmax(32)b → Multiply(a,b) → Dense
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adequate biopsy samples in the test dataset, the model had a specificity of
83%. This implies that the model's performance did not come at a signifi-
cant cost of falsely rejecting adequate biopsy samples.

A simple android application was made to demonstrate how the model
could be deployed on a smartphone (Supplementary Video 1).

Discussion

Our study presents a novel approach to address the issue of inadequate
kidney biopsies by leveraging smartphone-based imaging and machine
learning technology. The rise in inadequate kidney biopsy rates poses sig-
nificant challenges to accurate diagnosis and patient management, making
it imperative to develop innovative solutions to improve the quality of bi-
opsy evaluations in real time, when it is still possible to obtain additional
tissue, if needed. The utilization of smartphones as imaging tools offers sev-
eral advantages, including ease of use, portability, and availability4.
Smartphone-based imaging allows for real-time capture and processing of
high-quality images, enabling rapid assessment of the tissue obtained. By
leveragingmachine learning algorithms, particularly deep learningmodels,
we aimed to automate the classification of smartphone images as adequate
or inadequate, based on the percentage of renal cortex determined by ex-
pert renal pathologists. The deep learning model uses only renal
pathologist-reported percent cortex as ground-truth labels for training,
thereby avoiding expensive and time-consuming pixel-wisemanual annota-
tions. Additionally, using expert renal pathologist ground-truth labels of the
biopsy cores is a marked improvement from current practice, where assess-
ments of fresh tissue are conducted by individuals who are either untrained
or lack specific training in medical renal disease. The encouraging perfor-
mance of our deep learning model, with an accuracy of 81% and a sensitiv-
ity of 71% for inadequate samples on the independent test dataset,
indicates its potential utility for assisting real-time biopsy assessment. The
deep learningmodel can be deployed as a smartphone application, utilizing
the smartphone camera to obtain high-quality images of fresh biopsy tissue,
and determining whether the tissue is likely to contain sufficient cortex for
diagnosis, thereby informing the biopsy physicianwhether additional cores
should be obtained and decreasing the patient's risk of re-biopsy. In settings
with limited access to trained personnel, this technology could serve as a
valuable tool to facilitate onsite assessment of kidney biopsies.

Although themodel's performance is promising, certain limitationswar-
rant consideration. First, the dataset used in this study was collected from
→ random contrast→ random rotation→ rescaling→ Gaussian noise→ Dense (1)
(64) → Dropout(0.3) → Dense(32) → Sigmoid (1).
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five unused deceased donor kidneys, representing a specific subset of renal
biopsies, which are different in appearance and imaging qualities from bi-
opsies performed at the bedside. The model's generalization to biopsies
from patients with various renal diseases needs to be further investigated.
Second, a kidney biopsy core typically comprises renal cortex and non-
cortex tissues, including renal medulla, perirenal fat, and fibrous capsule.
Various visual characteristics such as color, size, and texture offer clues to
distinguish renal cortex from non-cortex tissue. Renal cortex exhibits a
smooth reddish appearance attributed to glomerular capillaries and other
blood vessels, often revealing circular structures resembling glomeruli.
Conversely, renal medulla appears pale with reddish streaks and texture.
Perirenal fat and connective tissue tend to appear transparent, yellowish
to brown-tan. Cores with ample cortical sampling are generally larger and
more intact. In our study, biopsy cores were sourced from deceased donor
kidneys, which lack perfusion, resulting in a brown-tan appearance for
the renal cortex and white-tan for the renal medulla. These visual dispar-
ities between cortex and non-cortex tissues present potential targets for
the classification deep learning model to differentiate cortex-rich and
cortex-poor biopsy cores. Nevertheless, further investigations are war-
ranted to elucidate howdifferent regions of the biopsy core image influence
the model's class output. Lastly, the dataset sample size is small with signif-
icant class imbalance. We mitigated the effects of class imbalance by
upsampling the minority class and adding multiple data augmentation
operations16. A small model size and utilization of dropout layers also
helped reduce overfitting17. However, we acknowledge the potential limi-
tations on generalizability due to the small dataset of this study. Addition-
ally, the study was limited to a single center, and the model's
performance may vary in different clinical settings with varying biopsy
practices and sample preparation techniques. Multi-center validations on
diverse patient populations would be important to assess the model's ro-
bustness and reliability in different contexts. The model's performance
may be influenced by image quality variations, such as lighting conditions
and imaging artifacts. Further improvements in preprocessing techniques
and the incorporation of advanced image enhancement methods could en-
hance the model's resilience to such variations. Finally, refinement of the
model's accuracy and ensuring compatibility with different smartphone
models and operating systems are needed. In future work, we plan to col-
laborate with other institutions with hopes of addressing these issues.

Conclusion

This study demonstrates the successful development of amachine learn-
ing model capable of classifying smartphone images of kidney needle-core
biopsy tissue, based on the percentage cortex determined by expert renal
pathologists. Themodel's promising performance suggests its potential util-
ity as a smartphone application for assisting real-time assessment of renal
biopsy tissue, particularly in settings where access to expert onsite assess-
ment is limited. Further refinements and validations are warranted to opti-
mize the model's performance and facilitate its integration into routine
clinical practice, ultimately benefiting patients. By providing the biopsy
physician with additional information on the amount of cortex in each bi-
opsy pass, this innovative approach could reduce inter-observer variability
and improve kidney biopsy yield.
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Supplementary data to this article can be found online at https://doi.
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