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With the development of autonomous vehicle technology, human-centered

transport research will likely shift to the interaction between humans and

vehicles. This study focuses on the human trust variation in autonomous

vehicles (AVs) as the technology becomes increasingly intelligent. This study

uses electroencephalogram data to analyze human trust in AVs during

simulated driving conditions. Two driving conditions, the semi-autonomous

and the autonomous, which correspond to the two highest levels of automatic

driving, are used for the simulation, accompanied by various driving and car

conditions. The graph theoretical analysis (GTA) is the primary method for

data analysis. In semi-autonomous driving mode, the local efficiency and

cluster coefficient are lower in car-normal conditions than in car-malfunction

conditions with the car approaching. This finding suggests that the human

brain has a strong information processing ability while facing predictable

potential hazards. However, when it comes to a traffic light with a car

malfunctioning under the semi-autonomous driving mode, the characteristic

path length is higher for the car malfunction manifesting a weak information

processing ability while facing unpredictable potential hazards. Furthermore,

in fully automatic driving conditions, participants cannot do anything and need

low-level brain function to take emergency actions as lower local efficiency

and small worldness for car malfunction. Our results shed light on the design

of the human-machine interaction and human factor engineering on the high

level of an autonomous vehicle.
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Introduction

With progressions in automotive safety technologies, both
passive and active methods such as lane-centering assistance
and adaptive cruise control have contributed to a considerable
reduction in traffic fatalities (Van Arem et al., 2006; Lee and
Litkouhi, 2012; Milanés et al., 2013). However, the driving
death toll in China is still significant and human error
accounts for a large proportion (Bhalla et al., 2013). Moreover,
traffic congestion is another factor that contributes to traffic
accidents. Hence, autonomous vehicles (AVs), which can make
optimal decisions bypassing human intervention and avoiding
congested routers, have attracted much interest for a long time.
In addition to improving driving safety and route planning,
AVs can outperform driving efficiency. Most importantly,
they can create a passion for driving in people of all ages
(Choi and Ji, 2015).

The society of automotive engineering (SAE) categorizes
driving automation into six levels ranging from levels 0
to 5. Levels 0 and 5 represent no automation and full
automation driving, respectively, in which either the driver
or the vehicle independently performs all driving tasks under
all conditions. Meanwhile, from levels 1 to 4, the degree of
automation increases from drive assistance to high automation.
The discrimination of automation levels lies in the drivers’
vigilance of the surrounding environment. Interestingly, the
discrimination between levels 4 and 5 is blurred due to
the condition that the vehicle performs all driving functions.
Therefore, it will be interesting to investigate the impact
of malfunction of the vehicle under these two degrees of
automation as there will likely be a psychological difference
between with and without control of a vehicle while facing an
emergency for an individual. Evidence shows that the driver
and the copilot exhibit different attitudes during an emergency.
Therefore, the psychological difference can be regarded as the
trust of humans in machines and such trust is most important
to developing full automation driving with the maturity of
driving automation.

Along with the increasing automation of the AV area,
human-computer interaction will be fully utilized in which
the human trust in AV will play a crucial role. This is
because the driver is permitted to do a secondary task
instead of concentrating on driving along the journey (Ma
and Kaber, 2005; Carsten et al., 2012; Hergeth et al., 2016;
Petersen et al., 2019). Lee and See consider trust from
the organizational, sociological, interpersonal, psychological,
and neurological perspectives. Trust in AVs can be defined
as the human attitude toward how AVs can help achieve
user goals in a situation characterized by uncertainty and
vulnerability (Lee and See, 2004). They consider how the
context, automation characteristics, and cognitive processes
affected the appropriateness of trust. Previous studies on

human trust in AV limit subjective feelings, such as a well-
designed questionnaire for self-reported measurement so that
it can be used to repeatedly measure the subjects’ trust in the
autonomous driving process (Kraus et al., 2020). Moreover,
an objective assessment was confined to testing reaction time
while facing an emergency (Payre et al., 2016). Then a more
comprehensive method includes heart rate measurement and
the grasp of eye gaze while executing commands of the
driving assistant system (Petersen et al., 2019). However, such
measurements can be regarded as the achievement of the
delayed and filtered signal from the brain. Therefore, Seet
M. et al. (2020) utilized EEG analysis, a fast and highly
correlated electrophysiology measurement for trust in AVs.
Nonetheless, the analysis focused more on the power spectral
density and the functional connectivity graph metrics, which
lacks the analysis according to scene switching. In addition,
EEG analysis was also used for the trust testing scenario in
which the participants in a matrix game included both human
and machine counterparts (Dong et al., 2015). Two strategies
(collaboration and egoism) were used. Results demonstrated
that human-like cues affected neural responses related to the
partner’s capability. In contrast, in the egoism session, the
trust level of predictive partners was reflected by a statistically
significant capability effect in the midline electrodes. However,
the EEG analysis was confined to the ERP amplitude of
different nodes, which lacks the consideration of connectivity
between nodes. The results described above suggested that the
discrimination of EEG signals in human-computer interaction
can be a potential candidate for the study of human trust in
AV whereas a more comprehensive method that considers the
brain’s global or local effect should be proposed.

Recently, graph theoretical analysis (GTA) for functional
connectivity networks has attracted much attention. In
neuroscience, because of the intricate connections inside the
brain, GTA can build a network model that contains regions
of interest (nodes) and their connection (edges) to represent
characteristics of the brain during different tasks. In this way,
both global and local effects of the brain can be analyzed for
different tasks. For example, GTA can be used for the diagnosis
of degenerative disease and the analysis of working memory
tasks (Langer et al., 2013; Sun et al., 2014). The advantage
of GTA lies in the analysis of EEG signals in a subdivision
frequency (Dai et al., 2017). Many studies have shown that
the amplitude of alpha activity is negatively correlated to the
number of cortical resources in performing cognitive tasks
(Gevins et al., 2012; Roux et al., 2012; León-Domínguez et al.,
2015). Therefore, by GTA, the human brain can be modeled
as a complex network and have a small-world structure at
the level of anatomical as well as functional connectivity
(Stam and Reijneveld, 2007).

In this study, we will adopt GTA for the analysis of human
trust in AVs. First, we introduce the simulated platform and
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the well-designed experimental protocol in the method section.
Then we show the results of behavior performance and the
analysis based on graph theory. Finally, we discuss our results
and provide a conclusion.

Materials and methods

Participants

Fifty healthy students aged from 21 to 35 (mean:23.6
SD = 3.06) are recruited for this study. They should have
normal vision or corrected-to-normal vision with no history
of any mental diseases. They are also forbidden to take any
medications during the participation of this study. In addition,
they should have sufficient driving experience and be aware of
the basic traffic rules and norms. This study was approved by
the Institutional Review Board (IRB) at the National University
of Singapore. Written informed consent was obtained from
participants before the study and monetary compensation was
given for their participation.

Driving platform

The driving platform consists of three 65-inch LCD screens
for monitoring the driving scene, a driving console (Logitech
G27 Racing Wheel; with a steering wheel, a pedalboard, and
a gear shifter unit) for operating, and a host computer for the
control of the simulation. More details about the experimental
senior could be found in our previous studies (Wang et al.,
2020a,b). Before the experiment, it takes about 2 min for the
participant to get familiar with the platform, which guarantees
the comfort of driving for individuals and well follow road
rules and navigational instructions. The participant follows
instructions of the platform in terms of hearing and vision
assembling one abides by the road navigation during driving.

Experimental protocol

Before starting and after finishing the experiment,
participants are asked to fill out two trust questionnaires
that help to analyze the initial feeling of the AV and the
impact of the experimental procedure on trust, respectively
(Jian et al., 2000).

The car drives in an urban area with a scene of cars and
pedestrians on the road. There are two basic traffic scenarios that
the driver should handle. One scenario is the traffic light (TL)
in which the participant should stop the car before a junction
while seeing the traffic light is red. The other scenario is a car
approaching (CA) in which the participant is asked to stop the
car before a junction without any traffic light to avoid collision

with other cars. A trial of driving is defined as an encounter with
a version of the aforementioned scenario. The intertrial interval
is set to be about 1 km distance. The whole experiment consists
of two stages one is the practice and the other is the driving
simulation. In the practice stage, the driver is navigated to drive
the car manually on a road without any junction. After 2-min
of driving, the driving platform guides the driver to switch to
autonomous mode by pressing a switching button. Then the
car will run automatically without any possible crashes and
malfunctions for another 2 min.

After the practice stage, it comes to the driving simulation
stage, which consists of three modes: manual driving mode
(SAE Level 0), semi-autonomous driving mode (SAE Level 4),
and fully autonomous driving mode (SAE Level 5). In the
manual driving mode, as is shown in Figure 1, participants
face four junction trials, alternating between the TL and CA
junctions. In the semi-autonomous mode, the trial starts with
an autonomous mode which can be taken over by pressing
the manual button on the steering wheel. The driver goes
through eight trials arranged by the program. However, in a
trial of the autonomous phase, the car condition may turn
from normal to malfunction without advance notice. The
malfunction is defined as the car running at the stoplight
or the car still running while another car approaches the
intersection. There are four trials with malfunction for both
semi-autonomous driving mode and autonomous driving
mode. The order of malfunction trials should fulfill the following
criteria:

1. No strict trial-type alternations (or other discernable
patterns) can set up the expectancy of malfunctions
and unduly influence trust dynamics as the
experiment progresses.

2. No more than two consecutive trials which have the same
car condition (normal or malfunction). This was to avoid
excessive cumulative loss of trust that would happen if
there were massing of malfunctions in succession.

3. To avoid trust loss as the participant gets used to the new
phase, the trial sequence must always begin with a normal
trial.

At the end of each trial, the driver should guarantee the
driving mode is retrieved to the autonomous driving mode.
In the fully autonomous mode, the driver will repeat the drive
through the routine as in the semi-autonomous mode.

Signal processing

The flow chart of functional connectivity graph metrics was
extracted after analysis of the EEG data as shown in Figure 2,
which mainly includes parts which are EEG apparatus, EEG data
pre-processing, brain functional network, and GTA.
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FIGURE 1

The experimental protocol of the work.

FIGURE 2

Flow chart of functional connectivity graph metrics extracted after analysis of the EEG data.

EEG apparatus
During the simulated driving, EEG data are recorded using

WaveguardTM caps (CA-142; ANT Neuro, Netherlands) with
a sampling rate of 512 Hz and 64 Ag/AgCl electrodes whose
impedance is below 15 k�. We also use additional electrodes
to record horizontal and vertical electrooculograms (hEOG and
vEOG) on both temples, as well as below and above the right
eye. In particular, participants are asked to reduce unnecessary
movements for the reduction of artifacts during driving.

EEG data preprocessing
The recorded EEG signals will be resampled to 256 Hz

and bandpass filtered between 0.3 and 40 Hz. Then the

processed data will be re-referenced to the left and right
mastoids. At the same time, we will remove ocular and
muscle artifacts with automatic artifact rejection (AAR) (Sun
et al., 2014). The channels that have poor contact with the
scalp will be replaced with interpolated signals of neighboring
channels. Then we will do data segmentation according
to the trial that the driver simulated. For each trial, 2 s
were selected from the onset of the traffic light turning
yellow at junctions or when the first car can be seen at
intersections. In semi-autonomous or fully autonomous mode,
the car may turn to malfunction during such period and
thus permits us to probe into drivers’ cognitive states when
they react to the AV. Finally, we will use independent
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component analysis to filter data with only EEG signals
remaining (Figure 3).

Brain functional network
After the EEG data preprocessing, we employed

phase synchronization (PS) to compute the statistical
coupling for the functional connectivity construction
in each frequency band. It is the same as the feature
of EEG data, the PS was computed between two-time
series. We employed the phase lag index (PLI) to estimate
the degree of pairwise coupling. The EEG signals were
divided by dividing the floating time window over the
step for each band.

We employed the Hilbert transform to compute the
instantaneous phase zi(t):

zi (t) = si (t)+ jHT (si (t)) (1)

where HT(si(t)) is the Hilbert transform of each time series si(t),
which is estimated by:

HT (si (t)) =
1
π
P.V.

∫
∞

−∞

si (t)
t − τ

dτ (2)

In Eq.2, P.V. represents Cauchy principal value. Once the
phase of each time series is computed, the relative phase locking
can be estimated as:

1ϕ (t) = arg
(

z1 (t) z∗2 (t)
|z1 (t)| |z2 (t)|

)
(3)

The PLI value ranges between 0 and 1 and is calculated with the
following equation:

PLI =
∣∣〈signϕ (t)〉∣∣ (4)

The PLI value is defined as [0,1] with 0 representing the case
where there is no phase synchronization (PS), while 1 represents
the perfect phase locking between two-time series.

Graph theoretical analysis

To delve into the unknown information in the EEG data,
we employed the method of GTA after building the functional
connectivity network.

There were N ∗ N adjacency matrices (N = 64 in this
study) computed after building the functional connectivity
network, which represents the connectivity structures of brain
nodes. Because the functional connectivity network contains
complex information and numerous useless combinations,
the sparsity ranged from 10 to 20% with the step of 1%
utilized in these networks, which is the ratio of the present
connection number to preserve a real functional connection.
In this way, we will transform the PLI matrix into a sparse
matrix with different thresholds. The threshold is a proportion
of the most important elements within the PLI matrix. We
need to do such transformation 11 times with the proportion
ranging from 10 to 20%. Hence, the weighted adjacency
matrices were computed, which preserved the connection

FIGURE 3

Data preprocessing.
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strength of the real connections. For the graph-theoretical
properties with the considered sparsity, the area under the
curve of the corresponding properties was extracted as features
for further study.

To quantitatively investigate the topological properties of
functional connectivity between the CA condition and TL
condition, we implemented GTA with the Brain Connectivity
Toolbox. We characterized the graph in the aspects of local
segregation including clustering coefficient (Cw) and local
efficiency (Ewlocal) and global integration including characteristic
path length (Lw) and global efficiency (Ewglobal) and small
worldness (SW) based on the weighted adjacency matrices.

Cw is the main indicator of information differentiation in
complex network computing, which can measure the degree of
aggregation within the brain functional network and reflect the
possibility of each node being a neighbor. It is given by Equation
(5):

Cw
=

1
n

∑
i∈N

2twi
ki
(
ki − 1

) (5)

where twi is the number of connections, which is the weighted
geometric mean of a triangle in the neighbored node i and ki is
the number of connected nodes of i. Cw reflects that the network
forms the tendency of the local loop, and the bigger the Cw. the
more nodes connecting with i. Lw is the mean of the shortest
path length and is the path with the maximum total weight
between vertices. It is given by Equation (6):

Lw =
1
n

∑
i∈N

∑
j∈N, j6=i d

w
ij

n− 1
(6)

where dwij is the shortest path length between node i and node
j. Lw is the main indicator of global integration. The shorter
the path length, the stronger the functional integration and the
more direct connections between brain regions. The calculation
method of SW is shown in Equation (7):

SW =
Cw/Cw

rand
Lw/Lwrand

(7)

where Lwrand and Cw
rand is the mean of a random network of

Cw and Lw after 100 times random circulation. They have
the same degree, node, and edge with a functional connection
network. Ewglobal measures the capability of global information
transmission and is the inverse of the length of the shortest path.
It is shown in Equation (8):

Ewglobal =
1
n

∑
i∈N

∑
j∈N,j6=i

(
dwij
)−1

n− 1
(8)

Ewglobal is a measure that evaluates the efficiency of information
transfer within a region of the network. It is shown in Equation
(9):

Ewlocal=
1
2

∑
i∈N

∑
j,h∈N,j6=i

(
wijwih

[
dwjh (Ni)

]−1
)1/3

ki
(
ki−1

) (9)

where wij is the connecting weight between node i and node j.

Results

Behavioral performance

The quality of the recorded data was validated by the
trial-by-trial trust rating, takeover decision-making, and user
preference. From the trial-by-trial trust rating, there was
no difference between normal and malfunctioning trials in
the semi-autonomous driving mode (p = 0.82). Furthermore,
participants showed lower trust after car malfunction than in car
normal conditions (p < 0.001). we also find that participants in
the semi-autonomous driving mode have a stronger willingness
to take over the control of the vehicle during the malfunction
trials (p < 0.001). Finally, participants prefer the semi-
autonomous driving mode to the fully autonomous driving
mode (p< 0.001).

Graph theoretical analysis in
semi-autonomous driving mode

The graph’s theoretical properties show significant local
segregation of the brain function during the semi-autonomous
driving condition. In the theta band and the car approaching
condition, the participants show significant higher local
efficiency [F(1, 74) = 4.848, p = 0.031, η2 = 0.061, 0.192 ± 0.007
vs. 0.189 ± 0.008] and clustering coefficient [F(1, 74) = 6.716,
p = 0.012, η2 = 0.083, 0.128 ± 0.009 vs. 0.123 ± 0.009] in
malfunction trials than normal trials (Figure 4), which suggests
the human brain showed more efficient information processing
ability when participants encounter malfunction of a vehicle.

On the contrary, in the TL condition, participants show
significant higher characteristic path length [F(1, 74) = 6.084,
p = 0.015, η2 = 0.077, 0.608 ± 0.019 vs. 0.599 ± 0.010] and
lower global efficiency [F(1, 74) = 6.379, p = 0.014, η2 = 0.079,
0.174 ± 0.003 vs. 0.176 ± 0.002] in the theta band during the
malfunction condition (Figure 5). Such results suggest human
brains have low level of information processing ability when
approaching the traffic light.

Graph theoretical properties in full
automation condition

In this paper, the graph-theoretical properties in
autonomous driving conditions were evaluated. In CA
condition, participants show significant lower local efficiency
[F(1, 74) = 4.491, p = 0.029, η2 = 0.063 0.188 ± 0.007 vs.
0.192 ± 0.008] in beta band during malfunction occurred
(Figure 6). Furthermore, the significant lower small worldness
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FIGURE 4

The local efficiency and clustering coefficient alterations between normal condition and malfunction condition in the CA condition. Both two
indexes show significantly higher values in malfunction conditions. *p < 0.01.

[F(1, 74) = 6.982, p = 0.010, η2 = 0.086 0.415 ± 0.035 vs.
0.436 ± 0.034] was observed which means the brain has lower
information processing ability in such condition (Figure 6).
Such results may suggest participants cannot do anything in the
fully autonomous driving condition and need low-level brain
function to take emergency actions.

Discussion

Resource identification initiative

The extent to trust in new technology always decides the
speed of the development of the corresponding technology
(Gefen and Straub, 2000; Gefen et al., 2003), especially in various
automation that trust is a decisive factor in the acceptance of
automation (Lee and Moray, 1992; Pavlou, 2003; Lee and See,
2004; Carter and Bélanger, 2005; Parasuraman et al., 2008). For
example, Jong and Yong investigated the importance of trust in
adopting AVs and the factors that promote people to trust AVs
(Choi and Ji, 2015). In addition, digging insights into factors that
build trust can encourage a better understanding of trust in a
specific item (Leimeister et al., 2005). Therefore, systematically
studying AV can boost us to understand ourselves more clearly.

For example, Seet M.S. et al. (2020) optimize driver-vehicle trust
management according to the subtypes of trust in AV. The
trust can be subdivided into competence-based trust (CT) and
integrity-based trust (IT) which refer to the functional capacity
of AV and the integrity of AV that will not cause deliberate harm,
respectively. However, most of the analysis of trust is based
on the analysis of the collected questionnaire, which is more
subjective and lacks a more comprehensive consideration. These
questionnaires often assume some scenarios and preconditions.
However, if we encounter the scene in the questionnaire,
people are often at a loss in practice. Meanwhile, survey-based
investigations always give out similar conclusions in which the
circumstances, as well as the performance of a robot, directly
affect trust, satisfaction, and frustration. It is hard to objectively
elucidate how these factors influence our trust in the interaction
of human-robot let alone emergent human-vehicle interaction
(Castelfranchi and Falcone, 2000; Murphy et al., 2004; Hancock
et al., 2011; Abd et al., 2017). Therefore, a more objective method
that seeks factors that contribute to human trust in AV is needed.

In this study, we adopt the GTA for the investigation of
human trust in a high level of autonomous driving, including
semi-autonomous driving (SAE level 4) and autonomous
driving (SAE level 5) in a simulated driving environment.
The graph-theoretical properties are efficient approaches to
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FIGURE 5

The characteristic path length and global efficiency alterations between normal condition and malfunction condition in the TL condition. Both
two indexes show significantly higher values in malfunction conditions. *p < 0.01.

evaluating the function of the human brain. Particularly, the
human brain showed local segregation and global integration
of brain functions (Dai et al., 2017). On one hand, the local
efficiency and the clustering coefficient are measurements of
the brain’s local information transmission ability. On the
other hand, the characteristic path length and global efficiency
measured the information spreading ability of the whole brain.
The local and global properties are the critical indexes to assess
the brain states of different driving conditions and reflect the
trust degree during driving a vehicle.

Seet M. et al. (2020) also paid attention to the EEG-
based analysis of human trust in AV. And they also concluded
that a reduction in trust during full automation malfunctions.
However, they focus on the analysis of brain regional influence
on the driving condition. For example, they found that there
was a remarkable decrease in functional segregation in the right
frontal area during the fully autonomous driving mode and
such regional discrimination may be related to the momentary
impairment of the ability to plan logically about specific actions.
In contrast, our analysis focuses more on the influence of the
driving scene on brain activity.

The development of human trust in AVs can be divided
into several stages. The first one is to investigate human
trust once there is a malfunction of the vehicle. In previous
work, Seet M. et al. (2020) used self-reported trust ratings to

demonstrate the difference in human trust in normal or
malfunctioning driving conditions in both high automation
mode and full automation mode. They found that there is no
significant difference between normal and malfunction trials in
high automation driving mode whereas there is a significant
difference for that in full automation mode. And drivers are
prone to take over the task in high automation mode once
there is a malfunction. The second stage that we need to
focus on is to elucidate how the brain reacts to the different
scenarios during automatic driving. In this study, we focus on
the analysis of the brain reaction to CA and TL conditions with
different car conditions. As is shown in Figures 4, 5, there is
an opposite way for the brain to process the malfunction in
which it shows high local efficiency and low global efficiency for
CA and TL, respectively. The opposite information-processing
ability of the human brain during the CA condition and TL
condition demonstrates that participants have different levels
of trust during these two conditions. When the vehicle runs
into a complex environment, such as an intersection without
a traffic light, the participants show a low level of trust in
the machine and can handle an emergency in time (higher
information processing ability). However, while driving in a
safe condition (TL condition), participants show a high level
of trust in the machine and cannot take emergency action in
time (lower information processing ability). The third stage
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FIGURE 6

The small worldness and local efficiency alterations between normal condition and malfunction condition in the CA condition. Both two
indexes show significantly lower values in malfunction conditions. *p < 0.01.

may lie in the facilitation of human trust in AVs. However, the
premise of many studies is that the driver should observe the
vehicle’s performance and be ready to take over the task once
there is an emergency. The secondary task is always regarded
as the distraction of driving that deviates from the original
intention of automatic driving. Situational awareness can help
the driver to promote their trust in AVs (Miller et al., 2014).
Petersen et al. (2019) changed the situational awareness with the
variation of a verbal message to the driver and found that the
high situational awareness condition can cause a significantly
high level of trusting behavior. In the future, we can also add
voice prompt with situational awareness into the experiment for
the analysis of brain reaction to the AV.

Seet M. et al. (2020) also analyzed the AV malfunction on
human trust. However, there are some discriminations between
these two works. One of them is that the frequency band used
for analysis is different. In our analysis, we focus on the theta
band whereas they aim on the alpha band.

Conclusion

In this study, a simulated driving platform with an EEG data
collection system is used for the evaluation of human trust in
AVs. The behavior performance shows that the driver has less
trust during the fully automatic driving mode. We also used

GTA to illustrate how the brain reacts to both semi-autonomous
driving mode and fully autonomous driving mode. Our results
have the potential to be adopted for the improvement of
human trust in AV.
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