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Abstract: Triacylglycerol lipases have been thoroughly characterized in mammals and microorganisms. By contrast, very little is 
known about plant lipases. In this investigation, a homology model of Arabidopsis thaliana lipase (NP_179126) was constructed using 
a human gastric lipase (PDB ID: 1HLG), as a template for model building. This model was then assessed for stereochemical quality and 
side chain environment. Natural substrates: tributyrin, trioctanoin and triolen were docked into the model to investigate ligand-substrate 
interaction.
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Introduction
Lipases are glycerol ester hydrolases that act on 
 triacylglycerols to release fatty acids and  glycerol.1 
 A major part of lipases used in today’s industrial 
 processes stems from microbial or animal sources. 
The oretically speaking, plant enzymes may have an 
advantage over animal or microbial enzymes due to 
their availability from natural sources, lower cost and 
apparent purification ease.2 Lipases widely exist in 
microbe and plant species, but their structure is poorly 
 characterized. Plant lipases are  generally  considered 
to be involved in particular in the regulation of plant 
growth and development. They are mainly located in 
seeds where triglycerides are stored in intracellular 
structures called oil bodies. Triglycerides are hydroly-
zed by lipases to glycerol and fatty acids that  provide 
energy needed for seed germination and  seedling 
 development.3 Plant lipases can be classified into three 
major groups. The first group consists of the triacylg-
lycerol hydrolases that are primarily present in seeds. 
Their study is of economic importance since they are 
largely responsible for seed alteration during storage. 
Lipases of the second group, called acylhydrolases, are 
present in various plant tissues. These enzymes exhibit 
little specificity for their substrate and are unable to 
hydrolyze triglycerides but can catalyze some trans-
esterification reactions.4 The main  acylhydrolases are 
phospholipases A and B, glycolipases,  sulfolipases 
and monoglyceride lipases. The third group consists 
of phosphorlipases C and D. Lipases are also involved 
in plant metabolism, rearrangement and d egradation 
of chlorophyll during leaf growth and senescence as 
well as in fruit  ripening process.5 Recently, researches 
in this field became more and more  attractive. 
Although several candidates from  Arabidopsis 
thaliana,  Rauvolfiaserpentina,  Heveabrasiliensis, 
 Alopecurusmyosuroides and Brassica napus have been 
extracted, cloned and characterized,6–8 but such under-
standing of plant lipases is still limited.9

An updated and revised classification of family I 
bacterial “true” lipases mainly based on a comparison 
of their amino acid sequences and some fundamental 
physicochemical and biological properties, identified 
11 subfamilies.10 Although lipases belong to many dif-
ferent protein families, they have the same architec-
ture, the α β-hydrolase fold as defined by Ollis et al.11 
Their activities rely mainly on a catalytic triad usu-
ally formed by Ser, His and Asp residues.12 In amino 

acid sequences of α/β hydrolases, the three residues 
 follow the order Ser-Asp-His. Also, lipases share 
a consensus sequence of Gly-Xaa-Ser-Xaa-Gly.13 
where X may be any amino acid residue.

Three-dimensional structure of proteins gives valu-
able insights into the molecular organization, function, 
docking simulations and also effective drug  designing 
experiments. In the absence of an experimentally-
 determined crystal structure,  homology model-
ing could provide a rational opportunity to obtain 
a  reasonable 3D model. It is generally recognized 
that homology modeling of proteins is currently the 
most accurate method for 3D structure prediction, 
yielding models suitable for a wide spectrum of 
 application, such as structure based molecular design 
and  mechanism investigation.30 This approach is able 
to provide a reasonable structure model with related 
template sharing more than 25% sequence identity. 
The  present study attempts to propose a model of 
 Arabidopsis thaliana lipase, a species widely used as 
a model organism in plant biology, due to its rela-
tively small and genetically tractable genome.

Methods
Target and template proteins
With the aim of finding an adequate template for 
homology modeling of Arabidopsis thaliana lipase, 
sequence alignments of its amino acid sequence 
against Protein Data Bank (PDB14) were performed 
by means of the BLAST algorithm (the used default 
Blast parameters were: E cut-off = 10, mask low 
complexity = yes).15 Sequence alignment shows 
that the target and the template (1HLG) share 31% 
of sequence identity. Because protein structures are 
more conserved than DNA sequences, detectable lev-
els of sequence similarity usually imply significant 
structural similarity. Based on the significant e-value 
and alignment among the investigated templates, the 
human gastric lipase (PDB ID: 1HLG) was selected 
as a template to build a model for Arabidopsis thali-
ana lipase. The amino acid sequence of the target pro-
tein, (Arabidopsis thaliana lipase) was retrieved from 
LIPABASE database, a centralized resource database 
which provides taxonomic, physicochemical and 
molecular information about “true” lipase from dif-
ferent species.16 (LIPABASE ID = 116,  GenBank 
accession No. NP_179126) and is composed of 393 
residues (Table 1). The selected template protein 
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Table 1. general, physicochemical and structural data of Arabidopsis thaliana lipase extracted from LiPABASE database.

General data physicochemical data structural data
producer strain: Arabidopsis thaliana (thale cress) Length: 379 swiss prot entry: Q71DJ5
class: True lipase Mass: 44230.7 ncBI entry: nP_179126
Reference: El-kouhen K, et al (2005) charge: -15 3D structure: not resolved

pI: 5.61
Gravy index: 0.094
Basic residue: 25
Acid residue: 40
Instability index: 36.85: stable
cystein: 0.026
Glycin: 0.087
Abscent amino acid: O, U
common amino acid: LSV
Aliphatic index: 93.03
Coefficient of extinction: 72685
Formule: c1867h2846n478O527S20

was a human gastric lipase deposited in Protein Data 
Bank (PDB ID: 1HLG).17 The template 1HLG with 
371 Amino includes tow chains: A and B forming a 
dimmer. The resolution and R-value of the templates 
selected from PDB was 3°A and 0.210, respectively.

homology modeling
Homology model was constructed using Swiss-PDB 
Viewer version 4.0.1.18 This application provides a 
user friendly interface that allows analyzing sev-
eral proteins at the same time. Homology modeling 
relies on the identification of one or more known 
protein structures likely to resemble the structure 
of the query sequence, and on the production of an 
alignment that maps residues in the query sequence 
to residues in the template sequence. Three differ-
ent types of modeling requests can be made in the 
Swiss-PDB Viewer version 4.0.1program. They are 
automated mode, alignment mode and project mode. 
The automated mode is suited for cases where the 
target–template similarity is sufficiently high to 
allow for fully automated modeling. The alignment 
mode allows the user to test several alternative align-
ments and evaluate the quality of resulting models in 
order to achieve an optimal result. In difficult model-
ing situations where the correct alignment between 
target and template cannot be clearly determined by 
sequence-based methods, visual inspection and man-
ual manipulation of the alignment can significantly 
help improve the quality of the resulting model. We 
used the project mode for obtaining the modeled 

structure of  Arabidopsis thaliana lipase (Accession 
No. NP_179126). Project files contain the super-
posed template structures and the alignment between 
the target and template files generated inside the pro-
gram Deep View  (Swiss-PdbViewer)29 by the work-
space template selection tools.

Model validation
To obtain an accurate homology model, it is very 
important that appropriate steps are built into the pro-
cess to assess the quality of the model.19  Therefore, 
accuracy of the predicted models were subjected 
through a series of tests. Stereochemical quality were 
evaluated using Ramachandran plots obtained from 
the RAMPAGE server20 and amino acid  environment 
was assessed using Verify 3D21 and Errat22 from the 
UCLA-DOE server.23

Docking
The lipase natural substrate was triacylglyceride. 
In order to validate the active site architecture of 
the Arabidopsis thaliana lipase model and exam-
ine its possible mode of interaction with the ligand, 
the triacylglyceride substrate was docked within the 
lipase homology model using the HEX v.5.124 dock-
ing environment at its default parameters. Hex is a 
tool for macromolecule docking and it can super-
pose pairs of molecules using only knowledge of 
their 3D shapes. Further, it is one of the few dock-
ing tools having in built graphic viewer.25 This tool 
has been used in some earlier studies demonstrating 
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Figure 2. ramachandran plot values showing number of residues in favoured, allowed and outlier region.

 ligand-protein  interaction.26 The approach was to use 
blind docking since it has been recommended for 
 acquiring good results in prediction of substrate bind-
ing site.31  Correlation type and post-processing out-
put for receptor and ligand were kept based on shape, 
electrostatic potential and minimization of molecular 
mechanics (MM). Docking was carried out at full 
rotation allowing full flexibility for the ligand while 
keeping receptor position fixed in space.32 Docking 
parameters involved Fourier transformation, steric 
scan, final search for ligand binding site and refine-
ment of the complex.

Results and Discussion
homology models and validation
Studies of Yang et al27 demonstrated that a sequence 
identity higher than 25% between two proteins is 
indicative of similar three-dimensional structures. In 
our case, target and template protein share 32% of 

Figure 1. ribbon representation of a three dimensional structure of 
 Arabidopsis thaliana lipase enzyme in rasmol version 2.7.5. display: 
cartoons, colors: structure.
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sequence identity. Based on this alignment, a model 
of Arabidopsis thaliana lipase was built using a 
human gastric lipase (PDB ID: 1HLG) as a tem-
plate for the model building (Fig. 1). The modeled 
enzyme is a monomer folded into α/β domain. It 
consists of eight central stranded β sheet flanked by 
twenty two α helices. The same structure is shared 
by other lipase enzymes from mammalian and bacte-
rial origin, the number of α helices and β sheet dif-
fer from a species to another. The  Ramachandran 
plot in Figure 2 indicated the region of possible 
angle formations by w (phi) and c (psi) angles. The 
conventional terms represent the torsion angles on 
either side of alpha carbon in peptides. The plot was 
divided into three regions: favored (91.5%), allowed 
(6%) and outlier (2.5%). This result is significant 
since the high percentage of residues in favored 
region (.90%). This indicates that the built model is 
of good quality. Errat plot assesses the arrangement of 
different types of atoms with respect to each other in 
protein models (Fig. 3). Errat is a sensitive technique, 
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Figure 3. Errat plot for Arabidopsis thaliana lipase model. Black bars show the misfolded region located distantly from the active site, gray bars demon-
strate the error region between 95% and 99%, white bars indicate the region having less error rate for protein folding.
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Figure 4. The verify score diagram validate the Arabidopsis thaliana lipase model.

which is good for identifying incorrectly-folded 
regions in preliminary protein models. ERRAT is a 
so-called ‘‘overall quality factor’’ for non- bonded 
atomic interactions, and higher scores mean higher 
quality. The normally-accepted range is .50 for a 
high quality model.22 In the current case, the ERRAT 
score for the model is 58.989. The Verify 3D method 
assesses protein structures using three-dimensional 
profiles. This program analyzes the compatibility 
of an atomic model (3D) with its own amino acid 
sequence (1D). The scores range from -1 (bad score) 
to +1 (good score).29 The verify score diagram pre-
sented in  Figure 4 validate the Arabidopsis thaliana 
lipase model.

Docking
For docking, the ligand structures were obtained from 
the PubChem database.33 In order to investigate the sub-
strates binding with the enzyme, we attempted to dock 
A) tributyrin, B) trioctanoin and C) triolen to the lipase 
enzyme model. The top docking solutions of 3000 inter-
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action results for each ligand were selected. The total 
binding energies are respectively: -201.09 (kcal/mol), 
-191.11 (kcal/mol) and -272.83 (kcal/mol). This result 
 confirms that the most preferred substrate for Arabi-
dopsis  thaliana lipase is the Triolen since its binding 
energy is the smallest one. The key residues involved 
in the ligand binding are the same for tributyrin and tri-
octanoin substrate. This key is formed by the following 
amino acids: P353, M326, L324, P173, S323, H319, 
L317, P350, L349. On the other side, Triolen presents 
a unique binding key.

Figure 5 shows that triolein does not bind the lipase 
at the same site as tributyrin and trioctanoin. In  addition, 
the catalytic active site, serine S166, is not involved in 
the binding site, this result confirms that the lid domain 
which covers the active site is not accessible to solvent.

conclusion
In summary, the constructed homology model 
of Arabidopsis thaliana lipase was validated for 

stereochemical and amino acid environment qual-
ity using appropriate programs. A further validation 
of active site architecture was achieved by docking 
studies with the natural substrate to determine the key 
residues involved in the ligand binding.
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