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Determining the Efficacy of a 
Hybridizing Agent in Wheat 
(Triticum aestivum L.)
Amanda C. Easterly   1*, Walter W. Stroup2, Nicholas Garst1, Vikas Belamkar1, Jean-
Benoit Sarazin3, Thierry Moittié3, Amir M. H. Ibrahim4, Jackie C. Rudd5, Edward Souza6 & 
P. Stephen Baenziger1

Hybrid wheat (Triticum spp.) has the potential to boost yields and enhance production under changing 
climates to feed the growing global population. Production of hybrid wheat seed relies on male sterility, 
the blocking of pollen production, to prevent self-pollination. One method of preventing self-pollination 
in the female plants is to apply a chemical hybridizing agent (CHA). However, some combinations of 
CHA and genotypes have lower levels of sterility, resulting in decreased hybrid purity. Differences in 
CHA efficacy are a challenge in producing hybrid wheat lines for commercial and experimental use. Our 
primary research questions were to estimate the levels of sterility for wheat genotypes treated with a 
CHA and determine the best way to analyze differences. We applied the CHA sintofen (1-(4-chlorphyl)-
1,4-dihydro-5-(2-methoxyethoxy)-4-oxocinnoline-3-carboxylic acid; Croisor 100) to 27 genotypes 
in replicate. After spraying, we counted seed in bagged female heads to evaluate CHA efficacy and 
CHA-by-genotype interaction. Using logit and probit models with a threshold of 7 seeds, we found 
differences among genotypes in 2015. Sterility was higher in 2016 and fewer genotypic differences were 
found. When CHA-induced sterilization is less uniform as in 2015, zero-inflated and hurdle count models 
were superior to standard mixed models. These models calculate mean seed number and fit data with 
limit-bounded scales collected by agronomists and plant breeders to compare genotypic differences. 
These analyses can assist in selecting parents and identifying where additional optimization of CHA 
application needs to occur. There is little work in the literature examining the relationship between 
CHAs and genotypes, making this work fundamental to the future of hybrid wheat breeding.

Increasing winter wheat (Triticum aestivum L.) grain yield and developing cultivars better adapted to climactic 
variability is crucial for agricultural productivity and food security. Developing hybrid wheat may be a way to 
address these goals1. Hybrid cultivars of crop plants are first generation seed of a cross (hybrid) of two or more 
inbred parents. Excellent hybrid cultivars exhibit heterosis, in which the performance of the crop for a trait of 
interest exceeds the performance for that trait in the individual inbred parents. Hybrids revolutionized maize 
(Zea mays L.) and sorghum (Sorghum bicolor L. Moench) breeding2,3 and production. Since the adoption of 
hybrid maize, yields in the United States increased by more than five-fold in the 20th century, much of which is 
attributed to heterosis and breeding for hybrid performance3,4. Yet wheat breeders remain skeptical of the viability 
of hybrid wheat5. Wheat is a self-pollinated crop with perfect flowers (anthers and stigma are in the same flower) 
as compared to maize with imperfect flowers where the male and female organs are separated in the tassel and 
ears. For sorghum, hybrids are produced using genetic and cytoplasmic male sterility. In wheat, sterility systems 
like these are complex6. Therefore, a limitation to evaluating hybrid wheat performance is efficient and reliable 
hybrid seed production5,6.

Chemically induced male sterility is used as a method in wheat to force cross-pollination, resulting in hybrid 
seed5,6. These chemical hybridizing agents (CHAs) induce male sterility through suppression of pollen forma-
tion6. However, CHAs can be incomplete in their function for a variety of reasons, namely that CHAs require 
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the application to be well-timed to the crop development stage and at appropriate dosage for the genotype7. 
Despite these challenges, CHAs remain one of the simplest means to produce hybrid wheat cultivars for testing 
if high levels of sterility can be obtained6. Evaluating the efficacy of the CHA is a necessary step for experimental 
and commercial hybrid seed production to ensure high levels of hybridity and purity during seed production. 
Quantifying the efficacy of a CHA with respect to genotypic differences will enable parental selection for future 
hybrid production and evaluation.

Modern statistics has roots in agricultural research8–10. In recent years, the approaches to analyze many types 
of data and available computing capabilities have improved. The methodology commonly used in agricultural 
fields has not always kept pace with these statistical advances11. Classical statistics considers primarily quantita-
tive data in simple designs. The observations are generally assumed to have a continuous, Gaussian (or normal) 
distribution11. However, in agronomy and other disciplines, operating within the assumptions of normality is 
not always possible. For a number of agronomically important questions, experiments may have responses that 
are counts, proportions, frequencies, binary categories, or rankings. These types of data do not neatly fit into 
statistical frameworks that assume normality11,12. For example, in hybrid wheat research the female parents are 
treated with a CHA. To measure efficacy, individual heads are isolated under pollen-impermeable bags to test 
if adequate sterility was achieved13. These data are reported as a count of the number of seeds on each isolated 
head. Ideally, the seed count is close to zero—where a count of zero seeds indicates total sterility. These data are 
problematic for statistical analysis because of the non-Gaussian distribution with a high frequency of zero counts. 
How best to model this sterility data? Historically, logarithmic or square root data transformation approximates 
for the normal distribution were used in analysis11. A key constraint with data transformations is that the esti-
mates are not easily interpreted on the transformed scale and when back-transformed can result in estimates that 
are nonsensical (i.e. negative counts). Furthermore, when normally-distributed random effects in the model are 
considered, transformations distort the estimates of random effects and may result in misleading conclusions. 
In experiments such as these, random effects would include terms for variation within plots, design factors such 
as blocks or replications that are of secondary interest to the fixed effect of genotype. Others have estimated the 
proportion of the bagged heads that have an acceptable number of seeds. Based on this proportion, sterility is 
accepted to have occurred if a certain threshold, defined as a number of seeds, is met13. For an initial screening of 
the material, the use of logit or probit models can be simple and beneficial. The constraint in using binary results 
and logit or probit models (i.e. if the CHA is effective or ineffective) of adequate sterility is that they limit the ways 
in which a plant breeder can use the data. More importantly, they may not be valid because the number of seeds 
per fertile head can vary greatly across and within genotypes for hard winter wheat and so modeling the counts 
of seed directly is ideal.

Standard models for count data use Poisson or negative binomial distributions. However, these distribu-
tions cannot adequately account for data with large frequencies of zeros and thus result in inflated variances 
and overdispersion14–16. Models that use mixture distributions such as zero-inflated and hurdle models, are a 
way to overcome this poor fit. Ridout et al.14, Chin and Quddus17, and Stroup15 provide detailed reviews of these 
distributions. The equations below show the probability density functions for zero-inflated model (Eq. 1) and the 
hurdle model (Eq. 2) where y is the observed count of seeds for a head. Zero-inflated and hurdle models utilize 
the probability distribution functions for either Poisson or Negative Binomial distributions when the seed count 
is greater than or equal to zero. The two models differ in their treatment of values of zero.

Zero-inflated models assign a probability of π (called the inflation probability or mixture weight) for the wheat 
head to be totally sterile due to the CHA (i.e. have a seed count of zero) but also allow for the possibility that a 
situation with no seeds may arise for other reasons such as random kernel abortion14,16,18.
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For hurdle models, the inflation probability (π) is mutually exclusive from the probability of obtaining any 
other count (1 − π). In the case of modeling sterility data for hybrid wheat, a value of zero is observed at a propor-
tion, π, if and only if the CHA has been fully effective for that head. It thus assumes that a count of zero seeds is 
due strictly to the effects of the CHA and not any other outside processes.
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Zero-inflated and hurdle models are commonly used in biomedical, epidemiological, manufacturing, and 
ecological research and are well-established in those disciplines14,19–22. Biologically, a hurdle model is more likely 
to reflect the way in which the counts arise for sterility data, because wheat will generally always form some seeds 
on the head if not treated by a CHA. What is unknown is if these models better suit data for wheat treated with a 
contact-based CHA, and how these models compare to other statistical modeling strategies.

Other ways to address data such as these may include probit and logit models as used in toxicology (i.e. use 
of probit models to determine LD50 estimates for exposure to chemicals). Probit and logit models can be used as 
a first step for evaluating sterility data using an appropriate threshold based on minimum desired sterility. If all 
genotypes meet the desired threshold, then researchers can be confident in the level of hybrid purity in their seed. 
The constraint, however, is that the data is collected as counts, not proportions. Because probit and logit models 
are for modeling proportions, their use for this type of data is technically inappropriate. An additional constraint 
to the use of logit and probit models results from the natural variability within and among genotypes for total 
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possible number of seeds per head. In addition, fertile seed is simple to count whereas sterile florets do not form 
seed and it is difficult to determine how many total florets could have formed. Thus, it is preferred to model the 
fertile seed directly and use it to determine how much sterility was achieved.

Our goal was to determine the efficacy of a CHA on numerous wheat genotypes using the most appropriate 
statistical approaches. Specifically, we wanted to determine the proportion of sterility from CHA application, seed 
count if not totally sterile, and genotype interactions to the treatment with CHA. Few, if any, studies have tested 
CHA efficacy as a function of genotypic differences or determined statistical modeling strategies. This study is 
part of a multi-institutional research program to produce and evaluate experimental hybrids in wheat and focuses 
on the hybrid seed production aspect of that project.

Materials and Methods
Germplasm and experimental design.  Seed production of hybrid wheat was conducted using crossing 
blocks separated by 9 meters of triticale (x Triticosecale) as both a physical and genetic buffer against unplanned 
cross-pollination. A total of 27 winter wheat genotypes were tested as female parents across 2015 and 2016. Of 
these 27 genotypes, 25 were constant across both years. To optimize genetic diversity, the genotypes included cul-
tivars and elite breeding lines from the University of Nebraska-Lincoln and Texas A&M University wheat breed-
ing programs (Table 1). The female genotypes were planted in a randomized complete block design and sprayed 
with the CHA, Croisor 100 (active ingredient sintofen; 1-(4-chlorophenyl)-5-(2-methoxyethoxy)-4-oxo-1,4-dihy-
drocinnoline-3-carboxylic acid) (Asur Plant Breeding, Estrées-Saint-Denis, France). The sterilized females were 
pollinated by unsterilized male rows of a single genotype that surrounded the sterilized female block (Fig. S1). 
The female lines were planted in plots of five rows spaced 23 cm apart and 3.2 meters long at a density of roughly 
650 seeds meter−2. The high seeding rate of females was intentional in order to decrease the number of late tillers 
and thus better synchronize female head development for a more uniform growth stage among tillers at chemical 
application. On the contrary, male lines were planted at a lower seeding rate (approximately 150 seeds meter−2) 
in order to have higher number of tillers to increase the window of pollination. The trials were located at the 
University of Nebraska’s Agricultural Research and Development Center (ARDC) near Mead, NE, USA.

In the plots of each female genotype, five heads were covered with pollen impermeable bags (Size 117, Lawson 
Bag Company, Northfield, IL, USA) roughly 3 weeks post-CHA application in four crossing blocks in each year 
(described in detail below). Thus, there were four experimental units per genotype per year and five sampling 
units per experimental unit. Bags were secured to the plant using bamboo stakes and laboratory tape to keep 

Entry 
Number Name

Years 
Included

Breeding Program 
of Origin

1 Freeman 2015, 2016 UNL

2 Goodstreak 2015, 2016 UNL

3 Harry 2016 UNL

4 LCH13NEDH-11-24 2015, 2016 UNL

5 NE07531 2015, 2016 UNL

6 NE09517-1 2015, 2016 UNL

7 Ruth 2015, 2016 UNL

8 NE10683 2015, 2016 UNL

9 Overland 2015, 2016 UNL

10 Panhandle 2015, 2016 UNL

11 PSB13NEDH-15-58W 2015, 2016 UNL

12 Robidoux 2015, 2016 UNL

13 Settler CL 2015, 2016 UNL

14 TX09D1172 2015, 2016 TAMU

15 TX10D2063 2015, 2016 TAMU

16 TX10D2230 2015, 2016 TAMU

17 TX10D2363 2015, 2016 TAMU

18 TX11D3008 2015, 2016 TAMU

19 TX11D3026 2015, 2016 TAMU

20 TX11D3049 2015, 2016 TAMU

21 TX11D3112 2015, 2016 TAMU

22 TX11D3129 2015, 2016 TAMU

23 TX12M4004 2015, 2016 TAMU

24 TX12M4063 2015, 2016 TAMU

25 TX12M4065 2015, 2016 TAMU

26 Wesley 2015, 2016 UNL

27 NE10478-1 2015 UNL

Table 1.  Genotypes included in sterility assay in 2015 and 2016. aUNL, University of Nebraska-Lincoln; 
bTAMU, Texas A&M University.
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them attached to the plant through the rest of the growing season. This process allowed for the head to develop 
normally but prevented pollination from the adjacent male plots and reduced loss of bagged heads due to severe 
weather. After the grain filling period and prior to plot harvest, each bagged head was harvested, threshed indi-
vidually, and the number of seeds recorded. If the CHA was fully effective, the head had empty florets where 
seeds failed to form due to complete sterilization. If seeds were present, it was assumed that the CHA had not 
been completely effective and the seed formed from self-pollination. Due to weather conditions, particularly the 
strong winds of the Great Plains, some bags were lost and those observations affected the balance of the dataset.

Chemical hybridizing agent and application.  Plots were treated with Croisor 100 at a rate recom-
mended by the manufacturer. ChemSurf 90 (active ingredients: glycerol, sodium xylene sulfonate, alkyl phenol 
ethoxylate) was used as a surfactant at a rate of 0.3 ml m−2 (United Suppliers, Eldora, IA, USA). Water was added 
to the mix for a total spray volume of 30 ml m−2 and applied using a 3.5 m wide hooded sprayer at 234 kPa. The 
application timing was at the average plant growth stage of 30-3323. Immature heads in the stem were between 
1.5 and 1.8 cm, per the CHA manufacturer’s recommendation. Application dates differed based on environmen-
tal conditions in each year: 12 May 2015 and 22 April 2016. Genotypes were staged frequently and individually 
by genotype to ensure that the immature heads were at the proper size for treatment with the CHA. While the 
germplasm showed some variation for gape date (number of Julian days to 50% gaping of the sterile head) later 
in the season (Table S1), nearly every genotype was within the optimal CHA treatment window at the same time.

Probit and logit models.  Using a count of seven seeds or fewer as the cutoff value, each observed head was 
classified as either a success (“1”) or failure (“0”). The cutoff value was selected because the mean number of total 
seeds on a healthy head of hard winter wheat in the Great Plains is around 30. Thus, seven seeds correspond to 
a sterility level of about 75% and that value would be acceptable for experimental hybrid seed production. The 
PROC GLIMMIX and DATA steps of SAS 9.4 software (SAS Institute, Inc., Cary, NC, USA) were used to evaluate 
logit and probit threshold models. The linear predictor was used as follows with a log link:

η α α= + +b b( ) (3)ijk i j ijk

Where ηijk is the frequency of observing seven seeds or fewer for head (αb)ijk of genotype αi in block bj. The ran-
dom bj and (αb)ijk effects were assumed independent and identically distributed (i.i.d.) normally with a mean of 
zero and variances of σb

2 and σab
2 , respectively. Genotypic means (α

i) and confidence intervals for the genotypic 
means were obtained as inverse link estimates for each genotype in each year.

The models were fit using adaptive Gauss-Hermite Quadrature24. Model fit was evaluated across the logit and 
probit models using the corrected Akaike’s Information Criterion (AICc), Bayesian Information Criterion (BIC), 
and −2 Log Likelihood. The more conservative AICc fit statistic was examined rather than the standard AIC due 
to relatively small sample sizes25.

Statistical count models.  Counts of seed per bagged head for each genotype were analyzed by mixed 
effects analysis using PROC UNIVARIATE, PROC GLIMMIX, and PROC NLMIXED procedures in SAS 9.4 soft-
ware. Transformed response variables were incorporated into the dataset using a DATA step in SAS 9.4 software 
to evaluate the efficacy of transformed data with a normal approximation (SAS Institute, Inc., Cary, NC, USA). 
These transformations include logarithmic, square root, and exponential transformations as follows:

= +log count seed count" " log ( 1)

= +''sqrt count seed count" 3/8

=exp count seedcount" " ( )2/3

Initial analyses were done by year, and estimates for seed count were modelled as in Eq. 3, this time letting αi 
be the estimated seed count for genotype i rather than a binary response.

Distributions, GLMM estimators, and appropriate link functions for Poisson and negative binomial models 
are described in Stroup15 and given in Table 2. Zero-inflated negative binomial models were coded into PROC 
NLMIXED as shown in Eq. 1. Hurdle negative binomial models also were coded into PROC NLMIXED as shown 
in Eq. 2. The first run for each year allowed an inflation probability (π) and lambda (λ) terms specific to each 
genotype, where lambda is the mean seed count for a genotype after treatment with the CHA. The second run 
included only a single inflation probability for the experiment as a whole with individual lambda (mean count) 
terms for the Negative Binomial part of the function.

Estimates of genotypic means were obtained using LSMEANS statements in PROC GLIMMIX and 
ESTIMATE statements in PROC NLMIXED. These estimates are expressed on the data scale using the inverse log 
link function. The AICc, BIC fit statistics were used to identify best model fit. Pearson Chi-Square values (χ2/d.f.) 
were used to asses overdispersion in the Poisson models. Data also were analyzed across both 2015 and 2016, and 
included a fixed effect for year variation between the two years of testing. However, the models rarely converged 
and this limited the ability to obtain credible results from the combined analysis. A follow up study is underway 
to evaluate the results from a smaller number of genotypes across years and evaluate the genotype-by-year inter-
action in more detail.

Simulated data and power analysis.  Data were simulated for two sets of 500 experiments from a 
zero-inflated negative binomial process using DATA steps for Bernoulli and negative binomial random variables 
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within SAS 9.4 software. The selected parameters for each genotypic count mean and inflation probability are 
outlined in the supplementary online resource materials.

For each simulated experiment, Gaussian, Poisson, negative binomial and transformed data models were 
run and estimates of seed count obtained as described for the experimental data above, with the exception that 
subsampling effects were left out for computational efficiency. The results for including the subsampling term 
were nearly identical to the results without in preliminary runs of the simulations and for experimental designs 
such as this, the dropping of subsampling effects is documented in the literature26. The estimates were written out 
and the lower and upper confidence bounds were transformed to the data scale as needed for the estimated seed 
counts. Using the set parameters from which the data were simulated, the confidence intervals were tested for 
coverage—to see if the parameter was contained within the interval. Coverage was recorded as a binary variable, 
1 for true and 0 for false, where ‘false’ indicated that the true mean was not in the 95% confidence interval. The 
mean coverage was calculated for each model tested across the 500 experiments in duplicate for a total of 1000 
experiments. The empirical coverage proportion indicates how well the models tested are able to estimate the 
mean count for each genotype if the counts do arise from a zero-inflated or hurdle process.

Results
Summary of raw data and transformed variables.  The mean number of seeds per observation in 2015 
was 5.7 seeds head−1, which was reduced in 2016 to 2.6 seeds head−1. The 2016 value was less than half of the 
previous year and had a smaller standard deviation (Table 3). The improvement is attributed to greater familiarity 
and precision in using the CHA during the second year. In both years, the counts were skewed (1.8 and 3.2 in 2015 
and 2016, respectively) towards zero providing additional evidence that the assumption of the normal approxi-
mation is inappropriate. Figure 1 shows the distribution of the raw data across all genotypes. Detailed summary 
statistics including number of observations, mean, median, and mode for both years are included in Table 3.

Based on quantile distributions and the observed proportion of zero seeds, better sterility was achieved in the 
trial in 2016 where 64% of the heads had a count of zero than in the trial 2015 where the percentage of observed 
heads with a count of zero was 38% (Table 3).

Logit and probit model fit statistics and genotypic differences.  As an initial test, logit and probit 
models assuming a count of seven or fewer seeds as a success were evaluated for individual years. The fits were 
nearly identical for both models within the same year. In 2015, the probit model had an AICc of 405.43 and the 
logit model had an AICc of 409.81 (Table S2). The Type III tests for fixed effects of genotype were calculated and 
there were differences among the genotypes for frequency of meeting the threshold at alpha = 0.05 (Table 4). 

Model Estimation Technique Link Function

Gaussian (Normal Approximation) Restricted Maximum Likelihood Identity

Poisson Maximum Likelihood using the Laplace method Logarithmic

Negative Binomial Maximum Likelihood using the Laplace method Logarithmic

Log-transformed with normal approximation 
(LT) Restricted Maximum Likelihood Identity with back-transformation

Square-root-transformed with normal 
approximation (ST) Restricted Maximum Likelihood Identity with back-transformation

Exponential transformation with normal 
approximation (ET) Restricted Maximum Likelihood Identity with back-transformation

Zero-inflated Negative Binomial (ZINB) Maximum Likelihood using the Laplace method Logarithmic (Negative binomial 
process) and logit (inflation probability)

Hurdle Negative Binomial (HNB) Maximum Likelihood using the Laplace method Logarithmic (Negative binomial 
process) and logit (inflation probability)

Table 2.  Estimation methods used in each model tested.

Trait 2015 2016

Number of observations 371 182

Mean seed count 5.7 2.6

Variance 65.1 35.8

Standard deviation of seed count 8.1 6.0

Proportion of observations with 0 seeds 0.38 0.64

Skewness 1.8 3.2

Median seed count 2 0

Mode seed count 0 0

Minimum seed count 0 0

Maximum seed count 42 30

Table 3.  Summary statistics for 2015 and 2016 hybrid wheat sterility data.
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Thus, the 2015 data showed that there were significant differences among genotypes for probability of being 
sterile using a threshold of seven seeds or fewer. Least squares means were obtained for each genotype using the 
probit model (Table S3). Least squares means were also obtained for each genotype in 2016 using the logit model 
(Table S4).

In 2015, ‘TX12M4065’ had the lowest estimate at 0.32, indicating that a count of seven seeds or fewer was only 
observed 32% of the time. In contrast, ‘Ruth’ and ‘LCH13NEDH-11-24’ had an estimate of 1.00 meaning they 
were completely sterile, though some results had p-values greater than 0.05 and the confidence in the result is 
thus lower. Overall, 12 of the 26 genotypes tested in 2015 met the threshold of sterility at a minimum frequency 
of 0.90. Of the remaining genotypes, seven had mean estimates over 0.80, with the remaining eight genotypes 
ranging from 0.32 to 0.76.

In 2016, the logit model had an AICc value of 77.95 whereas the probit model’s AICc was 77.51 (Table S2). The 
Type III tests for fixed effects of genotype in 2016 revealed that there was no significant variation of frequency for 
meeting the threshold among genotypes in 2016 (Table 4). Simply put, the 2016 data had overall higher sterility 
and as a result, there were no significant differences among genotypes and every genotype was effectively steri-
lized and had less than seven seeds per head. In examining the genotype-specific means, the mean proportion was 
always greater than 70%, with most genotypes exhibiting seven seeds or fewer all of the time (Table S4).

Count model fit statistics and comparisons.  The next step was to identify the best analysis for situ-
ations in which the logit and probit approach identified that genotypic differences existed as in the 2015 data. 
These included the Poisson, negative binomial, zero-inflated, and hurdle models as well as those models that use 
a transformed response variable. Table 2 summarizes the parameterization of each of the models. The relevant fit 
statistics included the AICc, BIC, χ2/d.f., and variance estimates. Models were selected based on lowest values for 
the AICc and BIC fit statistics. However, comparing fit statistics is only appropriate between similar models (i.e. 
Poisson with NB or hurdle models). Additionally, the transformed data sets give variance estimates on a scale not 
compatible with the GLMM models, making direct comparisons difficult.

Comparing models within the 2015 dataset showed variation between the relevant fit statistics (Table S5). 
Next the Pearson χ2/d.f. value was examined for the Poisson and negative binomial models. For the Poisson 
model, this value was 4.48, indicating over-dispersion. For the negative binomial model, the observed value of 
0.98 could be considered acceptable as it is close to one15. As such, it was determined that the remaining models 
tested would utilize a negative binomial distribution as the basis. The negative binomial GLMM had an AICc 
of 1936, while the HNB was slightly worse (AICc = 1960). When zero-modified and hurdle models included 
inflation parameters for each genotype, as opposed to an overall inflation parameter (multiple pi versus single 
pi), the estimates of count and inflation parameters were sometimes non-estimable. This result was a function of 
over-parameterization of the model.

Parameter estimates of genotype effects and inflation probabilities within years.  For each 
count model tested for the 2015 data, estimates of seed count for each of the genotypes were obtained (Table 5). 
In the models examined, the Type III tests for genotypic differences in the model were significant, indicating that 

Figure 1.  Histograms showing seed count data in 2015 (left) and 2016 (right) showing high frequency of zero 
seeds.

Year Threshold Model F Pr > F

2015
Logit 1.66 0.0257

Probit 1.78 0.0136

2016
Logit 0.40 0.9914

Probit 0.63 0.7997

Table 4.  Type III tests for genotype effects in threshold models assuming a threshold of seven seeds or fewer as 
acceptable.
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the estimated seed count differences among genotypes differed due to genotypic response to the CHA treatment, 
confirming the conclusions from the logit and probit model analyses.

The hurdle negative binomial model assuming genotype-specific inflation probabilities performed well on 
the 2015 data. Of the lines tested in 2015, six had an estimated seed count (if not totally sterile) of five seeds or 
fewer, with the best line being ‘LCH13NEDH-11-24’ (2.6 seeds per head). The worst lines were ‘TX12M4065’, 
‘TX11D3129’ and ‘TX12M4063’ with counts of 15.7, 16.1, and 25.5 seeds, respectively (Table 5). Though the logit 
and probit models indicated that 2016 showed adequate sterility across most genotypes, hurdle and zero-inflated 
negative binomial models were also tested to compare estimates between years. During the 2016 trial, the infla-
tion probabilities tended to be higher, so there was more variability around the estimates of seed count than in 
2015. As a result, the confidence intervals were larger. However, 17 of the 26 lines had an estimated seed count of 
less than five seeds. In 2016, TX12M4065 was among this group, indicating that there was an interaction between 
the year and the genotype that allowed TX12M4065 to be better sterilized. The worst genotypes in 2016 were 
‘TX11D3008’ (22.2 seeds) and ‘Ruth’ (26.9 seeds) (Table S8). The differences between years indicated that the 
CHA may need to be optimized for the growing conditions as well as the genotype when used on a commercial 
scale. In addition, some genotypes such as LCH13NEDH-11-24, with estimates between 2.5 and 3 in both years, 
showed stability across differing environmental conditions.

When zero-inflated and hurdle models are run assuming a separate inflation probability for each genotype, 
the π values provide an estimate of the proportions of zeroes that are in excess of what is expected for a Poisson or 
negative binomial distribution (Tables 6 and S7). The fit statistics for zero-inflated and hurdle models considering 
an overall rather than genotype-specific inflation probability may slightly better and did not have issues with 
over-parameterization. However, there are advantages to examining genotype-specific inflation probabilities, so 
results from both approaches are examined. These advantages include allowing to compare inflation probabilities 
between genotypes and determine if there are differences in the frequency of excess zeros. For example, in 2015, 
TX12M4065 had a low inflation probability of 0.119 and a high estimated seed count, whereas another line with 
a high estimate seed count (TX12M4063) had a much higher inflation probability of 0.532.

Simulation experiments.  If data such as these counts arise from a process with zero-inflation, it is help-
ful to know if the zero-inflated models can capture that process well. It is also critical to determine how much 
information and precision is lost when using models that do not account for the excess zeros. Thus, a dataset 
known or designed to be zero-inflated can be used to show how much is lost if one uses other modeling strategies. 

Entry Name

Hurdle Negative Binomial 
(HNB) with genotype-specific 
inflation probabilities

Hurdle Negative Binomial 
(HNB) with one overall 
inflation probability Negative Binomial

Mean
95% Confidence 
Intervals Mean

95% Confidence 
Intervals Mean

95% Confidence 
Intervals

1 Freeman 5.466 3.008 9.933 5.441 2.422 12.225 1.993 0.577 6.889

2 Goodstreak 4.266 2.471 7.366 4.250 1.806 9.999 2.356 0.642 8.645

4 LCH13NEDH-11-24 2.557 1.572 4.158 2.562 1.089 6.026 2.080 0.555 7.795

5 NE07531 4.315 2.715 6.859 4.300 1.977 9.354 1.834 0.557 6.038

6 NE09517-1 8.060 4.468 14.538 8.062 2.842 22.864 3.531 0.920 13.546

7 Ruth 4.725 2.649 8.428 4.713 2.239 9.922 1.880 0.544 6.498

8 NE10683 8.502 5.117 14.125 8.493 4.724 15.269 4.625 1.438 14.872

9 Overland 4.142 2.440 7.030 4.111 2.195 7.703 2.217 0.625 7.865

10 Panhandle 5.161 2.735 9.738 5.137 2.347 11.246 2.210 0.607 8.048

11 PSB13NEDH-15-58W 7.510 4.561 12.367 7.499 4.401 12.778 2.957 0.960 9.105

12 Robidoux 8.053 4.849 13.373 8.049 3.671 17.648 3.319 1.008 10.933

13 Settler CL 13.166 6.649 26.070 13.032 5.457 31.125 9.987 2.685 37.143

14 TX09D1172 9.246 5.756 14.854 9.214 5.156 16.467 4.880 1.581 15.067

15 TX10D2063 7.782 4.458 13.583 7.741 2.919 20.531 2.906 0.785 10.755

16 TX10D2230 11.113 6.708 18.410 11.081 6.257 19.626 5.149 1.613 16.435

17 TX10D2363 7.229 4.297 12.159 7.203 3.870 13.406 2.534 0.809 7.942

18 TX11D3008 7.498 4.555 12.342 7.488 4.148 13.517 4.375 1.286 14.887

19 TX11D3026 12.435 7.567 20.434 12.411 7.225 21.319 5.805 1.806 18.662

20 TX11D3049 3.691 2.247 6.064 3.667 1.713 7.849 1.222 0.372 4.019

21 TX11D3112 7.436 4.301 12.857 7.435 3.597 15.366 3.372 0.960 11.851

22 TX11D3129 16.109 8.692 29.855 16.060 7.332 35.178 6.268 1.724 22.795

23 TX12M4004 8.780 4.732 16.292 8.773 3.781 20.355 4.880 1.169 20.379

24 TX12M4063 25.749 14.019 47.293 25.502 12.475 52.136 9.031 2.751 29.650

25 TX12M4065 15.721 9.601 25.744 15.650 8.556 28.626 11.932 3.754 37.922

26 Wesley 7.568 3.740 15.316 7.534 2.458 23.086 1.783 0.450 7.060

27 NE10478-1 9.017 5.360 15.168 9.019 4.867 16.714 4.274 1.342 13.617

Table 5.  Estimates of seed counts for each genotype in 2015 comparing negative binomial models.
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To demonstrate this, five hundred experiments were simulated two times from a zero-inflated process, and the 
models used to test the experimental crossing block data were used on each of the simulated datasets to monitor 
overall trends of fit. 95% confidence intervals for the count estimates were constructed on the same scale as the 
original data.

Empirical coverage probability was calculated as the proportion of confidence intervals that included the 
true mean of the count for that genotype. These averages are presented in Table 7. Empirical coverage probability 
ranged from 0% for the logarithmically transformed data to over 90% for the zero-inflated negative binomial 
models. Hurdle negative binomials had empirical coverage probability around 20%. For the logarithmic, square 
root, and exponential transformations, the standard errors were also calculated according to the delta method to 
account for standard errors on the same scale as the data. For these estimates, the empirical coverage probability 
was always near zero.

Discussion
We collected seed count data to determine the frequency of sterility for CHA-treated wheat. The initial data indi-
cated a mean of 5.7 seeds head−1 in 2015 and 2.6 seeds head−1 in 2016. For most wheat in the Great Plains, the 
average head of wheat has 30 seeds27. Using these estimates, the combined sterility across the genotypes tested was 
greater than 80% in both years. Researchers in hybrid wheat have not yet set a rule regarding the proportions of 
sterility required for producing hybrid wheat seed for testing, but it is anticipated that it will be around 75%. Our 
target number of selfed seeds per head would therefore be seven seeds. As such, this was the cutoff point set for 
our logit and probit models. Certified hybrid seed for small grains produced using chemical hybridization must 
be 95% pure hybrid with a maximum of 5% of self-fertilized female parent seed28. Under a requirement of 95% 
hybrid purity, the maximum number of selfed seeds per head is 1–2. However, at the first stages of a breeding pro-
gram and experimental hybrid testing, the application of the CHA will not be optimized to the female genotype as 
in commercial seed production; hence a wider range of selfed seed values would be expected from the experimen-
tal hybrid crossing block. In addition, few studies have specifically examined the seed count and relative sterility 
after CHA application, making this approach novel and timely for plant breeders and seed production scientists.

Seed counts were generally lower in 2016 than in 2015, despite keeping treatment rates the same and treatment 
conditions as similar as possible between the two years. Weather affects the efficacy of the CHA5. Both years had 
higher than normal precipitation for Eastern Nebraska, but at different times. In 2016, the weather was warmer 
following CHA treatment and may have led to higher sterility. Also, 2015 was the first year of testing with the 
CHA and due to heavy rainfall in 2015, heads may have been covered later than what would be optimal due to 

Genotype Entry Estimate
95% Confidence 
Intervals

Freeman 1 0.384 0.263 0.522

Goodstreak 2 0.463 0.355 0.575

LCH13NEDH1124 4 0.306 0.186 0.463

NE07531 5 0.444 0.336 0.557

NE095171 6 0.446 0.333 0.564

Ruth 7 0.500 0.401 0.599

NE10683 8 0.411 0.299 0.535

Overland 9 0.167 0.076 0.334

Panhandle 10 0.363 0.241 0.504

PSB13NEDH1558W 11 0.380 0.267 0.508

Robidoux 12 0.333 0.215 0.475

Settler CL 13 0.668 0.518 0.790

TX09D1172 14 0.286 0.178 0.426

TX10D2063 15 0.400 0.278 0.535

TX10D2230 16 0.353 0.238 0.489

TX10D2363 17 0.498 0.402 0.595

TX11D3008 18 0.230 0.123 0.389

TX11D3026 19 0.312 0.195 0.459

TX11D3049 20 0.498 0.403 0.593

TX11D3112 21 0.332 0.210 0.482

TX11D3129 22 0.400 0.280 0.533

TX12M4004 23 0.280 0.155 0.451

TX12M4063 24 0.532 0.423 0.636

TX12M4065 25 0.119 0.048 0.264

Wesley 26 0.663 0.512 0.787

NE104781 27 0.334 0.218 0.474

Table 6.  Estimates of inflation probabilities for each genotype in 2015 with the hurdle negative binomial model. 
All estimates were significant at α = 0.05 against a null hypothesis assuming no zero-inflation.
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above-average rain at flowering. This delay would have meant the plant may already have been cross-pollinated 
and counts were thus biased upwards. The combination of more optimal weather conditions and increased famil-
iarity with using the CHA provided overall better sterility in 2016 than in 2015.

The next step was to test if genotypes differed in seed count as a result of the CHA application. The first way 
this was examined was using logit and probit models and a threshold of seven seeds as a ‘success’ for the binary 
response variable. The 2015 data showed that there was variation for the frequency of successes as a function of 
genotype, whereas there were no significant differences among genotypes in 2016. Because the overall sterility 
was better in 2016, either a lower value could be set to define successes and failures and the models re-tested, or 
the conclusion could be made that there was high enough sterility in that environment to be confident in the 
hybrid purity of the seed produced. The mean frequency of meeting the threshold in 2016 across all genotypes 
was over 0.7, indicating that adequate sterility was achieved at least 70% of the time. In 2015, due to the differ-
ences in sterility among genotypes, further evaluation was warranted to better understand those genotypes that 
were not adequately sterilized. Obtaining more detailed information directly relating to the estimated seed count 
then became more useful for 2015 and count-based models provided the best information from a biological per-
spective. The estimates of seed count from the count models can be used in downstream analyses to determine 
which genotypes are better suited to chemical hybridization if hybrid performance is similar.

Using a number of statistical models, we measured estimated genotypic differences to CHA sterilization on the 
count of seeds directly. A standard approach in agronomic research to data that are not normally distributed is to 
apply a variance-stabilizing transformation to the data. The analysis then uses the transformed response variable 
and assumes it to be normally distributed11. The data in this study showed evidence of over-dispersion, and after 
transformation the variance was not well-controlled. In addition, data transformation in this data set resulted in 
some values of negative seed count, which is nonsensical, and in all cases complicated the estimation of standard 
errors or confidence intervals. Using the practical constraint that says that negative estimates of seed count are not 
appropriate or possible, the results from analyses with data transformation could be considered irrelevant even if 
the fit statistics are better18. In addition, the use of generalized linear mixed models to model the data directly is 
preferred as estimates are on the same scale as the data. Thus, the best approach was to use models with a Poisson 
or negative binomial distribution that allow for modeling the counts directly.

The Pearson fit statistic indicated that the Poisson model had issues with over-dispersion. For biological count 
data, it is common to have variance that exceeds the mean and thus the use of negative binomial models are com-
mon in fields like agronomy and biology11. The next step was to see how the negative binomial model performed 
when accounting for excess zeros. The zero-inflated and hurdle models sometimes had poorer fit compared to 
their standard Poisson or negative binomial GLMM counterparts for each year of testing. The poorer fit may 
derive from the “small n problem” in which the number of observations from bagged heads that were present 
for collection for each genotype were too small to obtain good estimates14. However, it makes sense that the data 
would arise from a zero-inflated- or hurdle-type process from a biological perspective.

The zero-inflated and hurdle models provided additional information compared to the other models. Because 
these models separate counts of zero explicitly from the negative binomial process, estimates of the inflation 
probability can be obtained as well as estimates of the number of seeds expected for each genotype. Obtaining 
the inflation probability that can reflect the excess number of zeros from the count if the head is only partially 
sterilized is helpful for researchers in hybrid wheat. The estimates of π and seed count might assist hybrid wheat 
breeders in selecting genotypes to use as seed (female) parents based on the consistency of sterilization when 
using a CHA. Genotypes that have higher inflation probabilities and lower estimates of seed count are preferred 
in that they will produce purer hybrids. The estimates of seed count can also be used in the analysis of the hybrid 
yield trials. Because the seed count data are collected the year prior to the planting of the hybrid seed, the esti-
mates of seed count could be helpful in explaining differences in vigor or uniformity of the hybrid plots.

For manufacturing process analysis, results from zero-inflated models were shown to be more conservative in 
their estimates than directly applying Poisson or Negative Binomial GLMMs, thus lowering Type I error21. Thus it 
was unsurprising that confidence intervals for the estimates of seed counts from zero-inflated and hurdle models 
were wider than those from the Poisson and Negative Binomial models. This represents a decrease in precision 

Model Coverage Std Error Coverage

Gaussian 0.089 0.285

LTa 0.0002 0.013

STb 0.003 0.052

ETc 0.005 0.069

Poisson 0.001 0.032

Negative Binomial 0.525 0.499

HNBd 0.199 0.399

ZINBe 0.920 0.277

Table 7.  Estimated coverage probabilities for simulated data of a zero-inflated negative binomial distribution 
under each mixed model. 500 simulated datasets were created and evaluated. aLT, model using log-transformed 
response variable; bST, model using square-root transformation of the response variable; cET, model using an 
exponentially transformed response variable; dHNB, Hurdle Negative Binomial; eZINB, Zero-inflated negative 
binomial.
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of the estimates, but simulations indicated that use of the wrong model on data with excess zeros gave confidence 
intervals that did not include the true value of the parameter, and hence were less accurate. The simulations 
showed that models such as the Poisson and Negative Binomial GLMMs have limits if data shows zero-inflation. 
For the Poisson and Negative Binomial models, the 95% confidence intervals only contained the true means up to 
53% of the time (Table 7). For the zero-inflated models, these values were above 90% while controlling for Type 
I error. For the transformed data, confidence interval coverage was unreliable even when using the delta method 
to construct confidence intervals with empirical coverage proportions sometimes as low as zero. This research 
further indicates that for data that arises from a zero-inflated process, it is best to model that reality appropriately. 
If coverage is low and Type I error is not well-controlled, standard errors often underestimate the actual variability 
of the data. However, for zero-inflated and hurdle models, the standard errors are calculated based on the Poisson 
or negative binomial process, thus making them more accurate. The transformed data models have much poorer 
coverage values compared to the appropriate count models because the standard errors are too small to provide 
adequate confidence intervals and Type I error is not controlled. In the Gaussian case, the variance is independent 
of the mean. In contrast, the variance of Poisson and negative binomial models are directly related to the mean15. 
The best models, therefore, can be evaluated by their ability to accurately estimate variability in addition to tar-
geting the true mean. An initial surprise was the poor performance of the hurdle negative binomial model on the 
data. However, because the data were generated using a true zero-inflated approach, wherein the zeros could arise 
from a situation in which zero seeds were observed both as a result of natural processes and use of the CHA, this 
result is less unexpected. It highlights the importance of incorporating the biology of the data with the statistical 
strategy: having the models reflect the actual process by which the data arose.

Overall, the confidence intervals for the zero-inflated models, both with experimental and simulated data, are 
wider than those for other models. However, the simulations indicate that these intervals are much more relia-
ble in covering the true means than for either the transformed data models or the standard Poisson or negative 
binomial models. What is lost in precision (control of Type I error) is made up for in confidence of the estimates.

In conclusion, the biological complexity of count data from experiments like these allow agronomists to 
rethink how they analyze data. Including a logit or probit model as a first step can provide guidance to research-
ers on the need for further evaluation of models and to see if additional useful information can be gained using 
mixture distribution approaches including zero-inflated and hurdle negative binomial models. Successful imple-
mentation of models that account for excess zeros is well-established in medicine, engineering, and ecology. 
Integrating it into agronomy and plant breeding research is a natural progression.

The estimates from the zero-inflated and hurdle models on the seed count data allowed for separation of 
genotypes in which the estimate differed by a count of ten seeds or more. As with many experiments, increasing 
the number of observations enhances the power. The authors recommend that the number of heads isolated 
to check for sterility are increased, ideally to 10 bags per plot and methods to mechanize the counting process 
could also play a role in decreasing the cost and time of this assay. Production of hybrid seed on larger scales (i.e. 
when preparing for advanced yield trials and in commercial settings) may require a different sampling strategy 
to enhance precision and account for greater spatial variability. Increased observations in the future will provide 
more information on variability and will decrease the width of confidence intervals.

This research also helps establish best practices for the use of CHAs, establish adequate methods for testing the 
success of CHA applications, and set appropriate counts of seed to achieve adequate sterility. This work demon-
strated that logit and probit models are useful in establishing if a CHA worked as expected. When logit and probit 
models indicated that there may be genotypic differences, zero-inflated Poisson and zero-inflated negative bino-
mial models provided additional information about the response of a genotype to the CHA. The levels of sterility 
have broad implications in the study of hybrids produced using chemical hybridization methods, and the ability 
to demonstrate differences is crucial to researchers producing and evaluating these hybrids. There is little research 
in the literature examining the relationship between genetics and CHA use in developing hybrids making this 
work novel and instrumental in planning the future of hybrid wheat breeding.

Data availability
Scripts used to evaluate the various models as well as the simulations and data are available at https://github.com/
aceasterly/WheatSterility.
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