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ABSTRACT

Many developments in the design and analysis of environmental epidemiology have been made in air pollution
studies. In the analysis of the short-term effects of particulate matter on daily mortality, Poisson regression models
with flexible smoothing methods have been developed for the analysis of time-series data. Another option for such
studies is the use of case–crossover designs, and there have been extensive discussions on the selection of control
periods. In the Study on Respiratory Disease and Automobile Exhaust project conducted by the Japanese Ministry of
the Environment, we adopted a new 2-stage case–control design that is efficient when both exposure and disease are
rare. Based on our experience in conducting air pollution epidemiologic studies, we review 2-stage case–control
designs, case–crossover designs, generalized linear models, generalized additive models, and generalized estimating
equations, all of which are useful approaches in environmental epidemiology.
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INTRODUCTION

What is environmental epidemiology? How can
environmental epidemiology be differentiated from other
subspecialties of epidemiology? According to the current
edition of A Dictionary of Epidemiology, environmental
epidemiology1 is defined as the “branch or subspecialty of
epidemiology that uses epidemiological principles, reasoning,
and methods to study the health effects on populations of
exposure to physical, chemical, and biological agents external
to the human body and of immediate and remote social,
economic, and cultural factors (eg, urbanization, agricultural
development, energy production/combustion) related to these
physical, chemical, and biological agents.” However, this
definition is not specific to environmental epidemiology.

The definition of environmental epidemiology in a
textbook edited by Steenland and Savitz2 invokes a key
concept to contrast environmental epidemiology from
other subspecialties of epidemiology. They suggest that
“environmental epidemiology may be defined as the
epidemiologic study of the health consequences of
exposures that are involuntary and that occur in the general
environment.” The key word here is “involuntary.” If we
adopt this definition, as shown in their textbook, passive

smoking is within the scope of environmental epidemiology,
whereas active smoking is not. This core characteristic of
environmental epidemiology, ie, involuntary exposure in
the general environment, creates difficulties in exposure
assessment in the field of environmental epidemiology.
There is great diversity in the manner of exposures in
human populations and considerable space–time variability,
which is influenced by several external conditions. Various
study designs and methods of data analysis have been
developed in the process of overcoming these difficulties.
In this review, we explain several recent methodological

developments. Some of these developments arose in the field
of environmental epidemiology and later crossed disciplinary
boundaries. The generalized estimating equations method, for
example, was developed to analyze repeated measurements of
health effects associated with air pollution, but is now used
widely in the social sciences, as well as in the health sciences.
We have recently utilized these designs and statistical

methods for studies on health effects and air pollution. A 2-
stage case–control design was used for the SORA (Study on
Respiratory Disease and Automobile Exhaust) project, which
is a group of epidemiologic studies of infants, schoolchildren,
and adults. Although many epidemiologic studies have shown
associations between traffic density and asthma prevalence or
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morbidity, few have examined the relationship between
asthma incidence and traffic-related exposures. Well-
designed studies are needed to assess the question of
whether exposure to traffic-related air pollutants is a risk
factor for the onset of asthma or other respiratory illnesses in
children and adults. For this purpose the Japanese Ministry of
the Environment developed SORA.

Both the case–crossover design and generalized additive
models are used extensively as powerful tools for analyzing
the relationship between short-term exposure to air pollutants
and health effects. Generalized additive models are the
standard technique for time-series analyses that assess the
health effects of environmental variables. Generalized additive
models do not assume linearity and allow for more flexible
analyses using nonparametric smoothing. A case–crossover
design is conducted to evaluate the transient effects of time-
varying exposure on events. With this design, only cases are
analyzed, and within-individual comparisons eliminate the
effects of confounding, which do not change long-term. This
method has become popular in analyzing the acute effects of
air pollutants on health.

Based on our experience in conducting air pollution
epidemiologic studies, we review 2 new study designs—2-
stage case–control and case–crossover designs—and 3
new statistical methods—generalized linear models,
generalized additive models, and generalized estimating
equations—which have proven to be useful tools in
environmental epidemiology.

TWO-STAGE (2-PHASE) CASE–CONTROL
DESIGNS

We were involved in the design, conduct, and analysis of the
ongoing SORA project. In the design of the infant
case–control study of asthma and traffic air pollution, we set
parameter values to calculate the required number of cases: the
proportions of infant living near roads were 3% and 4%, the
odds ratios for detection were 1.5 and 1.7, the case:control
ratio was 1:2, and the 1-sided alpha level was 5%. Table 1
shows the required number of cases.

A study with at least 80% power would have required more
than 1000 cases and at least 3000 study participants. Why
were such large numbers required? Because both the disease
under study (childhood asthma) and the exposure (proportion
of infants living near roads) were rare. In such a case, neither a
cohort nor a case–control study is efficient.

A 2-stage case–control design has been proposed for the
study of the relationship between a rare exposure and a rare
disease.3 In the first stage of a 2-stage case–control design, we
identify cases and controls and obtain their exposure
information, as shown on the left side of Table 2. In the
second stage, we obtain random samples from each of the 4
cells in the first stage, with sampling probability sij (i is a case
index: i = 1 if cases, i = 0 otherwise; j is an exposure index:

j = 1 if exposed, j = 0 otherwise), as shown on the right side of
Table 2. Because exposed cases are more informative than
others, s11 is often set to 1. For other cells, a balanced design
to choose nearly equal numbers as n11, may have good
efficiency (ie, a smaller standard error for an odds ratio).4

We then obtain more detailed information on exposure and
important covariates for subsamples only in the second stage.
In estimating covariate adjusted odds ratios, we need special
analytic methods that take into consideration the sampling
structure in the second stage. We assign a weight to each
second-stage participant as an inverse probability of sampling,
1/sij. For example, when s10 = 0.1, the number of unexposed
cases in the first stage would be 10 times higher. Weighted
analyses with an inverse probability of sampling weights give
an unbiased estimation of odds ratios by means of stratified
analyses or logistic regression models.3,5,6 Although we
know the true sampling probabilities, estimated weights
substantially increase efficiency when we use the first-stage
information in the estimation of weights.7

The 2-stage case–control design is useful when both disease
and exposure information is relatively easily obtained. In the
SORA project case–control study, we determined asthma
incidence by using the standard questionnaire for preschool
children, and estimated elemental carbon concentration
outside a participant’s house by using their address and
mapping information. Detailed information, such as personal
exposure estimation, life history, and blood sampling data
were obtained only from second-stage subsamples.

CASE–CROSSOVER DESIGNS

In the first half of the 20th century, several episodes of
extreme air pollution focused attention on the potential
adverse health effects of air pollution. These included an

Table 1. Required numbers of cases in a case–control study
of childhood asthma and traffic air pollution

Odds ratio = 1.5 Odds ratio = 1.7

Proportion living
near roads

3% 4% 3% 4%

Power
90% 2320 1766 1297 989
80% 1684 1282 943 719
70% 1292 984 725 553
60% 1000 762 563 430
50% 765 583 432 330

Table 2. Data layout for a 2-stage case–control design

First stage Second stage

Exposed Unexposed Exposed Unexposed

Cases N11 N10 n11 n10
Controls N01 N00 n01 n00
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episode in the Meuse Valley, Belgium, in December 1930,8

one in London, England in 1952,9 and another in Yokkaichi,
Japan in the 1960s.10 Episodes such as the one in London in
1952 resulted in a clear increase in the number of deaths
during the period concurrent with the pollution episodes.9 The
evidence that acute air pollution episodes cause short-term
increases in mortality is persuasive. Thus, we have an anchor
of certainty that air pollution causes adverse health effects in
the high-dose region of the dose–response curve.11,12

A much greater challenge is to determine whether an
analogous phenomenon occurs within the much lower range
of air pollution routinely experienced in urban areas of
modern societies.12 Such a research question arises directly
out of these historical acute episodes. Moreover, repeated,
persistent, small adverse effects in large populations have the
potential for sizable public health consequence. Some studies
have addressed the possible effects of long-term exposure to
air pollution on the development of chronic diseases such as
lung cancer and cardiovascular disease, but the current and
most intensively pursued research avenue is the short-term
effects of pollutant levels on mortality and morbidity, and the
etiologic process operating on a time scale of days rather than
years.12 There remains disagreement as to the level of
pollution that would significantly affect human health.

The case–crossover design is an attractive approach to
examine the impact of time-varying exposures that may be
triggers of adverse health events.13 It has been used, for
example, to investigate triggers of myocardial infarction14 and
road-traffic accidents.15 The case–crossover design requires
exposure data for cases only. It can be regarded as a variant of
the case–control study in which each case serves as his or her

own control. In recent years, this design has been applied to
the analysis of the acute effects of environmental exposures,
especially air pollution, because it has the advantage of
controlling for seasonal variation, time trends, and potential
confounding caused by fixed or slowly time-varying
confounders such as sex, race, diet, and age. For example,
to examine the association between short-term outdoor air
pollution and adverse health effects, a case–crossover study
was conducted in a primary care clinic in greater Tokyo,
Japan.16 In this study of children, the odds ratio in
warmer months per 10-ppb increment in the 24-hour mean
concentration of ozone was 1.16 (95% confidential interval
[CI]: 1.00–1.33) after adjustment for temperature, and 1.29
(1.08–1.55) after adjustment for particulate matter less than
2.5 microns in aerodynamic diameter (PM2.5), NO2, and
temperature.
In the case–crossover design, a case–control study is

conducted so that each person’s case period (when the event
occurred) is matched with his/her previous time period (the
control period) when he or she did not have the event
(Figure 1). The subject’s characteristics and exposures during
the case period are compared with those during the control
period. Each risk set consists of 1 individual as he/she crosses
over between different exposure levels in the interval between
the 2 time periods. These matched pairs may be analyzed
using conditional logistic regression. Multiple control periods
may be used.
Although this approach automatically controls for time-

invariant confounders by design, it may allow selection bias
and confounding by time-varying factors. For example, when
concentrations of pollutants decrease with time, and if control
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Case-crossover design

Case−control study

time

Figure 1. Designs of a case–control study and a case–crossover study
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periods were selected only retrospectively, the odds ratios
would be biased toward null (Figure 2 and 3A). The
time-stratified case–crossover design is one technique
for minimizing bias in such a case (Figure 3B).16,17 Time
stratification refers to the method by which the control
periods are chosen. Specifically, time is stratified into
months to select the days of control periods that fall on the
same day of the week within the same month as the date that
a health event occurred (the day of the case period). For
example, if death occurred on Sunday, December 12, the 3
control days would be December 5, 19, and 26. The control
periods can also be matched by the clock hour of case periods.
Therefore, this approach also controls for long-term trends,
seasonality, day-of-the-week effects, and circadian rhythm.
The alternative strategy selects controls symmetrically among
lags and leads of, say, 7 and 14 days (Figure 3C), and is
referred to as a symmetric ambidirectional case–crossover
design.18

When applied to the association of air pollution with the
risk of death, the case–crossover design has several
advantages. First, it clarifies a key feature of the study of
acute response to air pollution because, in this type of
analysis, each subject serves as his/her own control. Thus, the
use of nearby day as the control period means that all
covariates that change slowly over time, such as smoking
history, age, body mass index, usual diet, diabetes status, etc,
are controlled for by self-matching. Second, because the
case–crossover design focuses on individual events, rather
than daily counts, it permits the straightforward examination
of effect modification. Third, the case–crossover design
allows investigators to control for seasonal variations in
mortality or morbidity risk. The other technique to analyze the

association of short term changes in air quality with short term
changes in the risk of death or hospital admission has been to
collapse the data to daily counts, and use Poisson regression
of the daily data. Because these regressions make comparisons
across the full range of data, including multiple years, it is
necessary to control for season and long-term time trends.
While it is straightforward to sample control days in a

manner that removes seasonal confounding, selection bias is
possible in these analyses. For example, the result of an
ambidirectional case–crossover study to examine the transient
effects of air pollution on the risk for onset of myocardial
infarction would result in bias, because there would be a
carry-over effect of treatment.
By design, the case–crossover design controls for seasonal

variation, time trends, day-of-the-week effects on air pollution
exposure, and slowly time-varying confounders because the
case and control periods in each risk set are separated by a
relatively short time interval.

GENERALIZED LINEAR MODELS

In epidemiologic studies, regression modeling is a common
approach for adjusting confounding factors. Because the
ordinary linear regression model is the basis of regression
modeling, we first consider a linear model. As an example,
consider the hypothesis that people who live in an area with a
higher average PM2.5 concentration will have a lower percent
predicted forced expiratory volume in 1 second (PPFEV1).
Since smoking is a well-known confounding factor in such a
study, we adjust for pack-years, where 1 pack-year is defined
as 20 manufactured cigarettes (1 pack) smoked per day for 1
year, using the following linear model:

0

0.01

0.02

0.03

0.04

0.05

0.06

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008M
on

th
ly

 a
ve

ra
ge

 c
on

ce
nt

ra
tio

n 
of

 S
P

M
 (

m
g/

m
3 )

(Year)

Figure 2. A graph of the concentration of suspended particulate matter (SPM) showing a long-term trend and seasonality.
These monthly measurements of the mean concentration of SPM at Mibu, Kyoto, Japan were obtained from the
National Institute for Environmental Studies, Tsukuba, Japan.
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PPFEV1 ¼ β0 þ β1 areaþ β2 pack-yearsþ ε;

where β0, β1, and β2 are intercept and regression coefficients,
“area” is an indicator variable (area = 1 if subject lives in an
area with a higher PM2.5 level; otherwise, area = 0) and ε is an
error term. We assume that ε follows an independent and
identical distribution with mean = 0 and variance = σ2, and
regression coefficients are estimated by fitting a model to data
under the assumption of error distribution. The right hand side
of the above model has 2 essential parts: the structural
model—β0 + β1 area + β2 pack-years—and the error term, ε.

Under the assumption for the error term, the expected
PPFEV1, μ, is written as

μ ¼ β0 þ β1 areaþ β2 pack-years:

For the same number of pack-years, mean PPFEV1 for
area = 1 would be β0 + β1 + β2 pack-years and mean PPFEV1
for area = 0 would be β0 + β2 pack-years. In other words, β1 is
interpreted as the difference between mean PPFEV1 according
to area, adjusted for pack-years. Note that this approach
assumes that the response variable, PPFEV1, is continuous,
and that it decreases (or increases) linearly with pack-years.

In general, the ordinary linear model with covariates X1,…,
Xp can be written as follows:

μ ¼ β0 þ β1X1 þ β2X2 þ � � � þ βpXp;

where effects of covariate Xs contribute additively.
Let us consider a study of the short-term effects of

particulate matter on daily mortality. Typically, daily
mortality counts from vital statistics in a specific area, and
values for air pollutants and meteorological data measured at a
representative monitoring station in that area, are arranged as
shown in Table 3. To investigate the short-term effect of
particulate matter on daily mortality adjusted for both
temperature and humidity, a regression model is often used.19

One modeling issue is that the response variable, daily
mortality, is count finite and not continuous. When a response
variable is a count, such as daily mortality, we may assume
that it has a Poisson distribution. The other issue is that ratio
measures, such as risk ratio, rate ratio, and odds ratio, rather
than difference measures, are often used in epidemiologic
applications. Generalized linear models (GLIM) extend the
ordinal linear model to noncontinuous response variables.20

In GLIM, we assume a linear model for a functional
transformation, g, of expectation, μ, as

gðμÞ ¼ β0 þ β1X1 þ β2X2 þ � � � þ βpXp:

In this model, the function, g, is referred to as a link function,

A

B
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Dec.12 Dec.19 Dec.26Dec.5

case control controlcontrol

control control control controlcase

control control case

time

time

time

Figure 3. Example of control selection strategies. (A) Retrospective fixed-interval control selection; (B) Time-stratified
case crossover design; (C) Ambidirectional fixed-interval control selection.17
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and this function determines the relationship between the
expected value, μ, of the response variable and linear
combinations of X terms. When a response variable follows
a Poisson distribution with mean = μ = Mr, where M is a
person-time and r is an event rate and the rate ratio is a
preferred measure of association, the natural log function is
used as g. This model is known as the Poisson regression
model. The rate ratio of the jth variable is expressed as
exp(βj), while each subject has a term logM instead of β0 (to
estimate rate ratios in statistical software, an option called
offset is required).

When a response variable follows a binomial distribution
with mean = μ = p, where p is the probability of an event, and
log(p/(1 − p)) is selected as a link function, the model
expresses the logistic model. In the logistic model, the odds
ratio for the jth variable is expressed as exp(βj). Iterative
calculations may be required to obtain estimates of
coefficients in GLIM.

GENERALIZED ADDITIVE MODELS

Another issue in regression modeling is the flexible
representation of the relationship between a response
variable and covariates, since we do not know their correct
functional forms. The ordinary linear model assumes a simple
linear relationship. We are not certain of the functional forms
of relationships in epidemiologic research, and would like to
avoid the substantial effect of functional form assumptions.
The linearity assumption is simple, but sometimes too strong.
One solution is the use of flexible nonparametric functions.
An additive model is a typical example of such a model.

Ordinary linear regression assumes a linear relationship.
The simplest case is that of a single covariate:

μ ¼ β0 þ β1X:

This expression shows that the relationship between μ
and X is linear. Let us assume a data-dependent relationship
and fit the more flexible function to the data. Smoothing
techniques such as spline functions or kernel smoothers can
help in achieving this requirement. We describe the model as
follows:

μ ¼ sðXÞ:
Note that we need to specify smoothing (tuning) parameters
that determine the smoothness of function s.
In the same manner, an additive model is constructed using

the additive components of the flexible functions sj(Xj):

μ ¼ β0 þ s1ðX1Þ þ s2ðX2Þ þ � � � þ spðXpÞ:
To estimate the parameters included in each sj, iterative
calculations, such as the backfitting algorithm, are needed.
Generalized additive models (GAM)21 allow a response

variable to be a count, binary, or continuous variable, by
assuming the appropriate distribution of a response variable,
as in GLIM, and the additive components of the flexible
functions sj(Xj), as in the additive model:

gðμÞ ¼ β0 þ s1ðX1Þ þ s2ðX2Þ þ � � � þ spðXpÞ:
This model is very flexible, but the fitting to data is much
more complicated. The general local scoring algorithm is a
2-stage iterative calculation that includes the algorithms of
the scoring method and backfitting.
The selection of GLIM or GAM depends on the purpose of

the study. GLIM focuses on the estimation, inference, and
interpretation of regression coefficients, while GAM is usually
used for flexible graphical descriptions of data.
Let us focus on the distinctive features of the study on

particulate matter and daily mortality. In that study, the
response variable is a count variable, and the objective is
inference to the coefficient for particulate matter, adjusting for
temperature and humidity. Because we need the estimate of a
rate ratio for the particulate matter, with flexible adjustment
for other variables, a mixture of linear and smoothing parts is
often used in the modeling.22 To partial out the long-term
trend, some investigators prefer to include an arbitrary smooth
function of calendar times.23–25 An example of such a model
using the generalized additive model is:

lnðμÞ ¼ β0 þ β1 PMþ s1ðTEMPÞ þ s2ðHUMÞ þ s3ðTIMEÞ;
where PM is particulate matter, TEMP is temperature, HUM is
humidity, and TIME is calendar time. We can estimate the risk
ratio for a 10-unit increase in particulate matter as exp(10 β1).

GENERALIZED ESTIMATING EQUATIONS

Most statistical methods implicitly assume that data are
independent, eg, one person’s disease status is not affected
by another person’s disease status. However, data may be
dependent or correlated with each other, as when peak
expiratory flow is measured repeatedly in the same person,26

when disease occurrences are observed in a family, or when
a sampling unit is a cluster or a group. In environmental
epidemiology, data are often semi-ecological. Exposure
information is obtained from a monitoring station as a
representative of a specific area, which is ecological, and

Table 3. A hypothetical data layout for a study of the short-
term effects of particulate matter on daily mortality

Day No. of deaths PM2.5 (µg/m3) Temperature (°C) …

1 18 23.6 9.3
2 16 23.8 13.2
3 16 22.2 13.7
4 20 18.8 11.3
5 11 23.1 13.8
6 21 28.6 15.4
… … … … …

Abbreviation: PM2.5, particulate matter less than 2.5 microns in
aerodynamic diameter.
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disease occurrence and covariates are collected on an
individual level. Disease outcomes of study participants
living in a specific area tend to be correlated.

In the analysis of correlated data, the usual statistical
methods yield incorrect results because they do not account
for the correlation structure of the data. Generalized estimating
equations (GEE)—which are an extension of GLIM—can be
used to properly analyze correlated data. Consider a study of
the effect of nitrogen oxides (NOx) and childhood asthma.
Data from 9 participants are collected and the logistic
regression model is fitted to estimate the odds ratio per unit
increase of NOx, while adjusting for confounding factors. The
analysis results, the test of the null exposure effect, and 95%
confidence intervals for the odds ratio will be valid when the
data are independent. If, instead, the data are classified into
3 areas and each area consists of 3 participants, we have
to incorporate the correlation structure into the analysis.
Among the possible correlation structures are an independent
structure, where

1 0 0

0 1 0

0 0 1

0
@

1
A;

an exchangeable structure, where

1 r r
r 1 r
r r 1

0
@

1
A;

a first-order auto-regressive structure, where

1 r r2

r 1 r
r2 r 1

0
@

1
A;

and an unspecified structure, where

1 r1 r2
r1 1 r3
r2 r3 1

0
@

1
A

(r denotes a correlation coefficient).
When we know the true correlation structure, we can

analyze the data using the weighted logistic model, where
weights are a function of the true correlation structure. In
epidemiologic applications, we are not entirely sure of the true
correlation structure. In such cases, Liang and Zeger have
proposed the use of a working correlation structure.27 Even
when the correlation structure is misspecified, point estimates
of odds ratios are unbiased, but their standard errors are
biased. Hence, the test of null exposure effect and the 95%
confidence intervals are not valid. To address this, they
proposed using robust estimators of standard errors that are
unbiased even when the correlation structure is misspecified.

GEE methods are useful for the analysis of correlated data.
Since GEE is an extension of GLIM to correlated data, any
type of regression model can be used to estimate the exposure

effect adjusted for confounding factors. The only restriction in
the application of GEE methods is that one needs appropriate
statistical software to calculate the robust standard errors.

SUMMARY

We focused on environmental (air pollution) epidemiology
and reviewed some of the salient epidemiologic and statistical
methods. Because case–crossover designs are variants of
matched case–control studies, the use of matched analyses,
such as the Mantel–Haenszel methods or conditional logistic
regressions, is required. For 2-stage case–control designs,
we need software with weighted logistic regressions. Most
statistical software packages have programs for matched
analyses and weighted regression analyses. Although
GLIM, GAM, and GEE require special analyses, they are
implemented in standard statistical software. With the
development of statistical software, applications of the
reviewed approaches are increasing dramatically. The
increased use of these analytical techniques would be
helpful in environmental epidemiology, and in other areas of
epidemiology, as well.
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