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ABSTRACT

Metagenomic sequencing has greatly enhanced the
discovery of viral genomic sequences; however, it re-
mains challenging to identify the host(s) of these new
viruses. We developed VirHostMatcher-Net, a flexi-
ble, network-based, Markov random field framework
for predicting virus–prokaryote interactions using
multiple, integrated features: CRISPR sequences and
alignment-free similarity measures (s∗

2 and WIsH).
Evaluation of this method on a benchmark set of 1462
known virus–prokaryote pairs yielded host predic-
tion accuracy of 59% and 86% at the genus and phy-
lum levels, representing 16–27% and 6–10% improve-
ment, respectively, over previous single-feature pre-
diction approaches. We applied our host prediction
tool to crAssphage, a human gut phage, and two
metagenomic virus datasets: marine viruses and vi-
ral contigs recovered from globally distributed, di-
verse habitats. Host predictions were frequently con-
sistent with those of previous studies, but more im-
portantly, this new tool made many more confident
predictions than previous tools, up to nearly 3-fold
more (n > 27 000), greatly expanding the diversity of
known virus–host interactions.

INTRODUCTION

Viruses are the most abundant and highly diverse biologi-
cal entities on Earth (1,2). Viruses infect all domains of life,
including archaea, bacteria and eukaryotes. For prokary-
otic viruses, especially those that infect bacteria, there have
been extensive studies about their diversity (3,4), functions
(5–7) and impact on microbial communities through virus–
host interactions (8–11). In particular, prokaryotic viruses

can significantly impact human health (12–14) and the func-
tioning of many ecosystems (15–17) such as marine and soil
habitats. Therefore, characterizing virus–host interactions
is a critical component to understanding how biological sys-
tems work. Viruses are traditionally studied using culture-
based isolation techniques that provide direct identification
of virus–host pairs (VHPs). Isolation approaches are, how-
ever, low throughput and limited to hosts that are cultivable.
Compared to the predicted number of extant viruses, a rel-
atively small number of viruses have been discovered via
isolation-based approaches with current estimates indicat-
ing that 75–85% of viruses remain uncharacterized (11,18).
With the advent of metagenomic sequencing technologies,
genetic material from microbes including viruses, regardless
of cultivability, can be sequenced. Metagenomic shotgun se-
quencing, especially the metagenomic sequencing of virus-
like particles, has tremendously accelerated the discovery
of previously unknown viruses. An example is crAss-like
phages, a highly abundant family of ubiquitous human gut
viruses, originally discovered from the cross-assembly of fe-
cal viral metagenomic samples (19).

Identifying the hosts of viruses is important for under-
standing the impact of viruses on the host dynamics and
thus host community diversity and function. Computa-
tional methods have been developed to infer the hosts of
new viruses. Many bacteria and archaea possess CRISPR
virus defense systems whereby the host incorporates some
virus DNA fragments into its own genome forming inter-
spaced short palindromic repeats (CRISPR) spacers. There-
fore, shared CRISPR regions are direct evidence supporting
virus–host interactions (16,19) and have been used for host
prediction for viruses in previous studies (20,21). Genome
alignment matches between virus and host genomes due to
integrated prophages or horizontal gene transfer are an-
other piece of strong evidence used in predicting the host
of a virus (5,16). However, the above methods are limited by
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their low accessibility: it is estimated that CRISPRs are only
present in ∼10% of sequenced bacterial genomes (22,23);
many viruses infect hosts under a lytic mode without inte-
gration to the host genome; and many viruses do not ex-
tensively share host genes. Thus, CRISPRs and alignment-
based approaches are not applicable for predicting many vi-
ral hosts.

Several investigators have utilized the fact that viruses are
often more similar to their hosts, compared to non-host
species, in terms of genome-wide signature, i.e. k-mer us-
age, because viruses and their hosts live in the same en-
vironment and viruses use the hosts’ replication mecha-
nism for replication (11,20,24,25). This information has
been used to predict the host of a virus as the one clos-
est to the viral genome based on some similarity measures
using k-mers. These methods in general have decent pre-
diction accuracy, though the mechanism behind this phe-
nomenon is not fully understood. One plausible explana-
tion is that viruses tend to adopt the codon usage of their
hosts in order to utilize the hosts’ translational machin-
ery (26,27). The recently developed dissimilarity measure
d∗

2 that subtracts expected k-mer frequency from the ob-
served frequency achieves the highest reported host predic-
tion accuracy among all current genomic signature-based
measures, including commonly used Euclidean and Man-
hattan distances (24). Similarly, Galiez et al. (25) predicted
the host of a virus to be the one for which results from
a Markov chain model analysis had the highest likelihood
score. The method has good prediction accuracy for short
viral fragments. These genomic signature-based measures
are often referred to as alignment-free sequence compari-
son measures. The high correlation between virus and host
abundance profiles across different samples also serves as
evidence for virus–host interaction (19), but its accuracy
is not as high as the above methods (20). Edwards et al.
(20) recently provided a comprehensive evaluation of sev-
eral different computational approaches for virus–host pre-
dictions.

In addition to the methods using features defined be-
tween a pair of virus and host genomes, some researchers
have used virus–virus similarity networks to infer the host
of a query virus (28,29). The high similarity between viruses
may indicate a common host or very close host relatedness.
Network-based prediction models, whereby unknown enti-
ties are predicted based on the features of their neighbors
in a network, have been successfully applied to many bio-
logical problems, including predicting protein functions us-
ing protein–protein interaction networks (30,31), inferring
disease genes based on gene–gene networks (32–34) and
predicting the target of new drugs using drug–drug, drug–
target and target–target similarity networks (35). A few at-
tempts have been made to exploit the possibility of predict-
ing viral hosts based on virus–virus network information.
Different principles such as gene homology (36,37), protein
family (38) and genome similarity (28,39,40) were used to
define the virus–virus relationships in networks. Villarroel
et al. proposed HostPhinder (28), a method to predict the
host of a virus by searching for the virus that shares the most
k-mers from a database of viruses with known hosts. Zhang
et al. (29) identified the important k-mer features of viruses
infecting the same host genera, and built a classifier to pre-

dict whether or not a new virus belongs to the same group
of viruses. One drawback of the network-based approach
is that the performance can diminish if the query virus is
highly divergent from the known viruses in the current net-
work.

Though various methods have been proposed for predict-
ing virus–host interactions, the highest accuracy is only 43%
at the genus level using a single type of information. With
the increasing number of viruses being discovered, there is
a demand for a tool that is able to accurately and rapidly
predict the hosts of viruses, incorporating all types of virus–
host and virus–virus features. In this paper, we have devel-
oped a network-based integrated framework for predicting
virus–prokaryote interactions based on multiple types of in-
formation: virus–virus similarity, virus–host alignment-free
similarity, virus–host shared CRISPR spacers and virus–
host alignment-based matches. To the best of our knowl-
edge, this is the first time that multiple types of features
are effectively integrated into a network to complement
each other and enhance the prediction accuracy of virus–
prokaryote interactions. This integrated method markedly
improved the accuracies in predicting virus–prokaryote in-
teractions for complete viral genomes from 43% to 59%
at the genus level, and yielded 86% accuracy at the phy-
lum level, the highest among all the existing methods. The
prediction framework also had decent accuracy for shorter
viral contigs even as short as 10 kb. We have used our
method to infer the host of the first isolated strain of the
crAssphage, 1811 marine viral genomes and >27 000 vi-
ral contigs from various environments. We have provided
a user-friendly program, VirHostMatcher-Net, that uses
this framework to predict virus–prokaryote interactions. Fi-
nally, VirHostMatcher-Net provides a flexible and expand-
able network-based framework for ongoing refinement of
virus–prokaryote prediction methods.

MATERIALS AND METHODS

Datasets

All data generated or analyzed during this study are avail-
able from previously published studies (38,41,42) or are in-
cluded in this paper and the Supplementary Data. We col-
lected 2288 RefSeq viral genomes with known hosts at the
genus level from NCBI as of 11 November 2019. Among
them, 826 viruses have specific hosts (at strain level) and
those were used for training. The training set includes 817
viruses that infect bacteria and 9 that infect archaea. The
other 1462 viruses were used for validation. For simplic-
ity of presentation, we will use ‘host’ to refer to ‘prokary-
otic host’ throughout the rest of the paper. The hosts of the
viruses from which the viruses were originally isolated were
collected based on the key words ‘isolate host=’ or ‘host=’
within each GenBank file. Furthermore, for a subset of 826
viral genomes, their hosts were reported at the strain, sub-
species or serovar level, and only a single host genome was
reported in the NCBI genome database for that particular
strain, subspecies or serovar. We used the 826 viruses with
known specific host genomes as the training set. The other
viruses either have more than one specific host strains or
have host taxonomic information only down to the genus
or species level.
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We applied our method to a set of 1811 marine virus
genomes that were studied in (41). The dataset is available
from ftp://ftp.genome.jp/pub/db/community/EVG2017. In
addition, we predicted the hosts of 111 167 viral contigs
that were assembled previously from various environmen-
tal metagenomic samples (38). Accession numbers of those
viral contigs are available in Supplementary Table S19 of
Paez-Espino et al. (38). The accession numbers for the novel
VHPs predicted exclusively by our method can be found in
Additional Files 7–9 in the Supplementary Data.

Outline of the model

We formulate the virus–host interactions using a Markov
random field (MRF) model (30,42,43). Given a set of
viruses {v1, v2, . . . , vn} and a set of hosts {b1, b2, . . . , bm},
we define the set of VHPs and their interaction statuses,

K = {κi j = I(vi , b j ), i = 1, 2, . . . , n; j = 1, 2, . . . , m},
where I(v, b) = 1 if v infects b and I(v, b) = 0 otherwise. We
construct a VHP network where nodes are VHPs and edge
weights are the pairwise similarities between two VHPs.

The interaction statuses of all VHPs depend on two es-
sential components: (i) the likelihood of the interaction sta-
tus of each individual VHP and (ii) the linkage between each
VHP and all others. In the following sections, we first show
how an MRF model can take the first component into con-
sideration. Next, we introduce a similarity measure that de-
scribes the linkage between a pair of VHPs. Then, we de-
fine all other features that can be used to estimate the sec-
ond component. Finally, we derive two models for host pre-
diction given virus genomes and contigs, respectively. We
emphasize that the MRF model described below is used
to motivate our methods for predicting virus–host interac-
tions. As for most practical problems, the assumptions of
the models are most likely violated. The final prediction
model is evaluated using an independent dataset of virus–
host relationships.

An MRF approach for virus–host interactions

We model the likelihood of virus–host interaction statuses
by considering two components: the fraction of interact-
ing VHPs among all the VHPs and the similarity net-
work among the VHPs. For the first component, we use
a Bernoulli model that assumes the interaction statuses of
VHPs are independent. For the second component, we use a
network model based on the similarity network among the
VHPs. The two components are integrated by multiplying
the probabilities from both components. More specifically,
the likelihood of an assignment K of the infection statuses
for all the VHPs in the network is proportional to the like-
lihood of the assignments of the VHP nodes and the like-
lihood of the pairwise labels of VHPs given the network.
Let π be the probability for a VHP to interact. Then, for
each pair (vi, bj), the likelihood of the interaction status,
P(Ki j = κi j ), can be expressed as πκi j (1 − π )1−κi j according
to the Bernoulli model. By considering all VHPs and assum-
ing their assignments are independent, the likelihood of an
assignment of K is equal to the product of the likelihood for

all the VHPs, that is

∏
i, j

πκi j (1 − π )1−κi j =
(

π

1 − π

)F1

(1 − π )F = λ exp (βF1) , (1)

where F1 = ∑
κ ij, F = ||K|| is the size of K, β =

log[π/(1 − π )] and λ = (1 − π )F.
Next consider the relationship between two VHPs in the

network. The probability of two similar VHPs having the
same 0–1 status is higher than the probability of having dif-
ferent 0–1 assignments. Let Si j,i ′ j ′ be the similarity between
two VHPs (vi, bj) and (vi ′ , b j ′ ). Conditional on the similar-
ity between two VHPs, we model the probability for them
to be labeled as (1, 1), (1, 0) and (0, 0) by aSi j,i ′ j ′ , bSi j,i ′ j ′ and
cSi j,i ′ j ′ , respectively, where a, b and c are parameters. Math-
ematically, we can write the probability of (vi, bj) labeled as
κ ij and (vi ′ , b j ′ ) labeled as κi ′ j ′ by

P(Ki j = κi j ,Ki ′ j ′ = κi ′ j ′)

= aκi j κi ′ j ′ Si j,i ′ j ′ b(1−κi j )κi ′ j ′ Si j,i ′ j ′ +(1−κi ′ j ′ )κi j Si j,i ′ j ′

× c(1−κi j )(1−κi ′ j ′ )Si j,i ′ j ′

= exp(γ2κi jκi ′ j ′ Si j,i ′ j ′ + γ1((1 − κi j )κi ′ j ′ Si j,i ′ j ′

+(1 − κi ′ j ′)κi j Si j,i ′ j ′ ) + γ0(1 − κi j )(1 − κi ′ j ′)Si j,i ′ j ′ )),

where γ 2 = log(a), γ 1 = log(b) and γ 0 = log(c). We assume
that the labeling of the VHP pairs is independent. Then, we
can multiply the above equation over all the VHP pairs to
obtain

exp(γ2 F11 + γ1 F01 + γ0 F00), (2)

where Fcc′ is defined as the sum of similarities among VHP
pairs labeled as (c, c′), c, c′ = 0, 1, namely

F11 =
∑

(i, j )�=(i ′, j ′)∈K
κi jκi ′ j ′ Si j,i ′ j ′ ,

F01 =
∑

(i, j )�=(i ′, j ′)∈K
(1 − κi j )κi ′ j ′ Si j,i ′ j ′ + (1 − κi ′ j ′)κi j Si j,i ′ j ′ ,

F00 =
∑

(i, j )�=(i ′, j ′)∈K
(1 − κi j )(1 − κi ′ j ′ )Si j,i ′ j ′ .

By multiplying Equations (1) and (2) and then normaliz-
ing to a probability distribution, we model the probability
of the assignment conditional on the similarity network as

Pr(K|θ ) = 1
Z(θ )

exp(U(K))

= 1
Z(θ )

exp (βF1 + γ2 F11 + γ1 F01 + γ0 F00) ,

where θ = (β, γ 2, γ 1, γ 0) are the parameters, U(K) = βF1 +
γ2 F11 + γ1 F01 + γ0 F00, and Z(θ ) is the normalizing factor.

With this distribution function, for any κi j ∈ K , we can
calculate

Pr(κi j = 1|K[−i j ])
Pr(κi j = 0|K[−i j ])

= exp
(
β + (γ2 − γ1)mi j

1 + (γ1 − γ0)mi j
0

)
,

ftp://ftp.genome.jp/pub/db/community/EVG2017
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where

K[−i j ] = K \ κi j , mi j
1 =

∑
κi ′ j ′ ∈K[−i j ],κi ′ j ′=1

Si j ,i ′ j ′ ,

mi j
0 =

∑
κi ′ j ′ ∈K[−i j ],κi ′ j ′=0

Si j ,i ′ j ′ .

Then, the log odds of the probability Pr(κi j = 1|K[−i j ], θ ) is

logit
(

Pr(κi j = 1|K[−i j ], θ )
) = β + (γ2 − γ1)mi j

1 + (γ1 − γ0)mi j
0 .

Denote γ + = γ 2 − γ 1 and γ − = γ 1 − γ 0. We have

logit
(

Pr(κi j = 1|K[−i j ], θ )
) = β + γ+mi j

1 + γ−mi j
0 .

The similarity between two VHPs and the generalized prob-
ability model for a VHP to interact

The MRF network model is constructed based on the simi-
larity between pairs of VHPs Si j ,i ′ j ′ . Various similarity mea-
sures between VHPs can be defined. In this study, we de-
fine the similarity between two VHPs as the similarity be-
tween the two viruses plus the similarity between the two
hosts. To measure the similarity between two genomic se-
quences, we previously developed dissimilarity measures d∗

2
and d S

2 for alignment-free sequence comparison using k-
mers as genomic signatures (44–47), and showed that the
dissimilarity measures d∗

2 and d S
2 have high correlation with

alignment-based distance measures (48). Since viruses are
highly diverse and alignments of highly divergent sequences
are challenging, alignment-free measures are more suitable
for sequence comparison than the alignment-based meth-
ods. Furthermore, Ahlgren et al. (24) showed that d∗

2 out-
performed d S

2 for the comparison of virus and bacterial se-
quences for the purpose of virus–host interaction predic-
tion. Therefore, here we choose to use d∗

2 and transform it
to s∗

2 to measure the similarity between two sequences.
For each sequence, we represent it by the normalized k-

mer frequency vector ( f̃w, w ∈ Ak), where A is the set of al-
phabets {A, C, G, T}, k is the length of k-mer and

f̃w = (Nw − Ew)/
√

Ew,

with Nw and Ew being the observed and expected numbers
of occurrences of word w in the sequence. The expected
count is calculated under a Markov chain model for the
sequence as described below. Since it was shown in (24)
that k = 6 and second-order Markov chain performed well
in virus–host interaction prediction, we choose k = 6 and
second-order Markov chain in this study. The similarity be-
tween two sequences, s∗

2 , is defined as the uncentered corre-
lation between their corresponding normalized frequency
vectors. That is,

s∗
2 (v, b) = 1 − 2d∗

2 (v, b) =
∑

w∈Ak

f̄ (v)
w f̄ (b)

w ,

where d∗
2 (v, b) is the dissimilarity measure used in the pre-

vious studies, and f̄w = f̃w/|| f || with ||f|| being the Euclid
norm of the feature vector f = (

f̃w, w ∈ Ak
)

and the super-
script indicates the virus v or bacterial b sequence. Thus, we

define the similarity

Si j ,i ′ j ′ = s∗
2 (vi , vi ′ )I(b j = b j ′ ) + s∗

2 (b j , b j ′ )I(vi = vi ′).

Plugging Si j ,i ′ j ′ into the logit function, we have

logit
(

Pr(κi j = 1|K[−i j ], θ )
) =β + γ+SVi j

+ + δ+SBi j
+

+ γ−SVi j
− + δ−SBi j

−,
(3)

SVi j
+ =

∑
I(v′,b j )=1,v′ �=vi

s∗
2 (v′, vi ),

SBi j
+ =

∑
I(vi ,b′)=1,b′ �=b j

s∗
2 (b′, b j ),

SVi j
− =

∑
I(v′,b j )=0,v′ �=vi

s∗
2 (v′, vi ),

SBi j
− =

∑
I(vi ,b′)=0,b′ �=b j

s∗
2 (b′, b j ).

The above formulation takes into account both the sim-
ilarity network between viruses and the similarity network
between hosts. In our dataset, however, each virus has only
one reported host. So, when we train the model using the
current dataset, both SBi j

+ and SBi j
− are set to zero. Then,

the model reduces to

logit
(

Pr(κi j = 1|K[−i j ], θ )
) = β + γ+SVi j

+ + γ−SVi j
−.

Though the terms SBi j
+ and SBi j

− cannot be used given the
current dataset, as more VHPs are collected in the training
data, the host–host similarity network will contribute to the
prediction model and the two-layer MRF network will be
fully utilized based on Equation (3).

Incorporating similarity between virus and host for interac-
tion prediction. The assumption that any VHP has the
same probability π for interaction is not realistic. Different
pairs of virus and host have different features that affect the
probability of interaction. For example, the probability can
be associated with the similarity between the virus and the
host (24). Thus, the probability π is modeled specifically to
each individual pair (vi, bj),

log
(

πi j

1 − πi j

)
= α + βs∗

2 (vi , b j ). (4)

Then, the logit model with the generalized probability can
be written as

logit
(
Pr(κi j = 1|κ[−i j ], θ )

) =α + βs∗
2 (vi , b j ) + γ+SVi j

+

+ γ−SVi j
−.

Therefore, the network-based MRF for predicting virus–
host interaction is finally written as a logistic regression
model where the predictors are the features of virus–virus
similarity and virus–host similarity,

logit(Pr(I(v, b) = 1)) =α + βs∗
2 (v, b) + γ+SV+(v, b)

+ γ−SV−(v, b),
(5)
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where α is a constant and (β, γ +, γ −) measure the contri-
butions of the features s∗

2 (v, b), SV+(v, b) and SV−(v, b),
respectively. We expect β and γ + to be positive and γ − to
be negative. However, we do not make these assumptions
and let the data inform us the values of these parameters.
To learn the parameters, we trained the model in a smaller
training dataset, and predicted virus–host interactions in
the network of all viruses and hosts. Since the scales of
SV+(v, b) and SV−(v, b) are proportional to the size of the
dataset, in practice we used the normalized variables, that
is

SV+(v, b) = 1
||Hb||

∑
v′∈Hb

s∗
2 (v, v′),

SV−(v, b) = 1
||Hc

b ||
∑

v′∈Hc
b

s∗
2 (v, v′),

where Hb = {v′|I(v′, b) = 1, v′ �= v}, Hc
b = {v′|I(v′, b) =

0, v′ �= v} and ||·|| is the size of the set. When Hb or Hc
b is

an empty set, the value of SV+(v, b) or SV−(v, b) is set to
zero.

To achieve the best performance, in addition to the simi-
larity score s∗

2 , we integrate other types of features, includ-
ing the CRISPR score and the alignment score between the
virus v and host b into the framework.

Sharing of CRISPR spacers between the virus and the host

The CRISPR systems play an important role as an adaptive
and heritable immune system for prokaryotes. They help the
host fight against the invasion of specific viruses by insert-
ing small fragments of viral genomes (typically 21–72 bp) as
spacers into a CRISPR locus. The spacers are transcribed
and are used as a guide by a Cas complex to target the degra-
dation of the corresponding viral DNA (49).

Given a host genome, the CRISPR locus can be compu-
tationally located and thus the spacers can be extracted. In
our study, we used the CRISPR Recognition Tool (50) to
find spacers. The spacers in a host genome (if available) were
aligned to a viral genome by blastn (51) and alignment
with E-value <1 was recorded. This threshold was chosen
the same as the one used in a previous study (20). Since a
lower E-value between a spacer and a virus genome indi-
cates high similarity between them, we use −log(E-value) to
measure the strength of association between the spacer and
the virus genome. It is possible that a host genome may con-
tain multiple spacers and the strongest association between
these spacers and the virus genome indicates the strength of
association between the host and the virus. Therefore, for
each pair of virus and host, we define the score SCRISPR(v,
b) as the largest value of −log(E-value). If there is no match
between a virus and host, a score of zero is assigned. De-
tails of the programs and parameters used in this analysis
are given in the Supplementary Data.

With the CRISPR information, we modify the model of
π ij in Equation (4) to

log
(

πi j

1 − πi j

)
= α + βs∗

2 (vi , b j ) + ηSCRISPR(vi , Gb j ),

and our logistic regression model in Equation (5) to

logit(Pr(I(v, b) = 1)) =α + βs∗
2 (v, b) + γ+SV+(v, b)

+ γ−SV−(v, b) + ηSCRISPR(v, Gb),
(6)

where Gb is the set of hosts that belong to the same genus
as host b, and

SCRISPR(v, Gb) = max
b′∈Gb

SCRISPR(v, b′).

Due to the limited availability of CRISPR information in
the training data, as shown in Figure 2, we group hosts by
genus for the CRISPR feature.

The fraction of virus genome aligned to the host genome

Viruses and their hosts frequently exchange genetic material
and viruses play important roles in horizontal gene transfer.
Therefore, similar regions in virus and host genomes can
provide a strong evidence for linking a virus into its poten-
tial host. On the one hand, phages, especially the temper-
ate phages, are able to integrate their own genomes to the
hosts. On the other hand, phages can obtain genetic mate-
rial from their hosts. If a genetic element brings an evolu-
tionary advantage to the virus, the borrowed genetic seg-
ment will be preserved in the viral genome (20). One exam-
ple is cyanophages, phages that infect cyanobacteria. Many
cyanophages acquire and express host photosystem genes
that are thought to bolster photosynthetic energy during in-
fection (52).

Similar to the method in (20), we used blastn to find
similarities between each pair of virus and host genomes.
For each VHP, their similarity, Sblastn(v, b), is defined as
the fraction of the virus genome that can be mapped to the
host genome. Only matches with percent identity >90% are
used for prediction. Note that different parts of the virus
genome can be matched to different positions on the host
genome and all contribute to the coverage percentage. We
used the same parameter settings as in (20) for our analysis.
Details of the program and parameters used in this analysis
are given in the Supplementary Data.

Finally, with the CRISPR feature and the alignment-
based similarity, we have the following model:

logit(Pr(I(v, b) = 1)) =α + βs∗
2 (v, b) + γ+SV+(v, b)

+ γ−SV−(v, b) + ηSCRISPR(v, Gb)

+ δSblastn(v, b).

(7)

Incorporation of WIsH score for predicting hosts of virus con-
tigs

In many metagenomic studies, the whole genome of a virus
may not be available. Instead, only parts of the virus genome
referred to as contigs that were assembled from shotgun
reads are known. Several algorithms such as VirFinder, Vir-
Sorter, etc. (53–58) can be used to decide whether the con-
tigs come from virus genomes. Our objective is to predict
the hosts for full virus genomes as well as viral contigs.

Galiez et al. (25) recently developed a program, WIsH,
to predict the hosts of viral contigs and showed that WIsH
outperforms d∗

2 for predicting the hosts of viral contigs as
short as 5 kb. WIsH trains a homogeneous Markov chain
model for each host genome, and calculates the likelihood
of a viral contig based on each Markov chain model. In-
stead of using s∗

2 (v, b) as a feature, we hereby replace it with
the log-likelihood of viral contig v fitting to the Markov
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chain model of bacteria b, SWIsH(v, b). WIsH (25) scores
were computed using WIsH 1.0 with the default parame-
ters. Then, the model for predicting the host b of viral contig
v becomes

logit(Pr(I(v, b) = 1)) =α + βSWIsH(v, b) + γ+SV+(v, b)

+ γ−SV−(v, b) + ηSCRISPR(v, Gb),
(8)

corresponding to Equation (6), and

logit(Pr(I(v, b) = 1)) =α + βSWIsH(v, b) + γ+SV+(v, b)

+ γ−SV−(v, b) + ηSCRISPR(v, Gb)

+ δSblastn(v, b),

(9)

corresponding to Equation (7).
Note that both SV+(v, b) and SV−(v, b) are still computed

by s∗
2 , since WIsH is not able to depict the similarities be-

tween viral contigs.

Model training and evaluation

Among the 2288 viruses obtained from NCBI, we used the
set of 826 viruses whose exact host genome sequences were
known and the set of their corresponding 185 hosts as the
positive training set. We randomly select 826 pairs of virus–
host within the 826 viruses and 185 hosts as negative train-
ing data. To alleviate potential false negative interactions,
we required that the selected host for each virus is not in
the same phylum level as the true host. We then learned
the model based on the training data for the various mod-
els. We repeated the selection of negative training sets for
100 times. For real applications and the software, we set the
coefficients by averaging over 100 times of the training pro-
cedure to reduce randomness.

It is possible that the selected 826 non-interacting pairs
may contain some positive yet unknown interaction pairs,
which may influence the training and test results. We rec-
ognized this possibility while assuming the fraction of such
pairs is relatively low since the virus–host interaction is spe-
cific so that the overall fraction of virus–host interacting
pairs among all the pairs is very small. The additional re-
quirement that the host in a negative VHP comes from a
different phylum level further mitigates this potential prob-
lem.

The trained models were then used to predict the hosts
of the remaining 1462 viruses against 62 493 candidate
prokaryotic hosts. For each virus, we estimated its probabil-
ity of infecting any hosts, and the one with the highest prob-
ability was predicted as its host. For a taxonomic group S at
an upper taxonomic level containing a set of hosts, we de-
fine the prediction score between v and S as the maximum
probability between v and all hosts in S, that is

P(I(v,S) = 1) = max
b∈S

P(I(v, b) = 1).

We predict the host group of the virus v by the one hav-
ing the highest prediction score P(I(v,S) = 1). In case of
ties, we first checked the number of hosts having the high-
est probability in each group and chose the one with the
largest number of hosts having the highest probability. Fur-
ther, if there were more than one taxon with the same num-

ber of bacteria having the highest probability, all taxa were
reported.

We then compared the predicted host taxonomic groups
with the true taxonomic group of every virus at several tax-
onomic levels: genus, family, order, class and phylum. At a
particular taxonomic level L, let Tv be the set of predicted
groups and CL(v) = I(hv, Tv)/||Tv||, where I(hv, Tv) = 1 if
the true host of v, hv, belongs to the set of the predicted host
groups Tv, and I(hv, Tv) = 0, otherwise. The prediction ac-
curacy for a certain taxonomic level is defined as

AccL = 1
||V||

∑
v∈V

CL(v),

where V is the set of viruses for prediction.

Clustering of viral contigs

To examine the relatedness of viral contigs for novel host
predictions, proteins encoded on viral contigs were pre-
dicted by Prodigal 2.6.3 (with default parameters).
BLASTp 2.6.0 was then used to search for similar pro-
teins shared between viral contigs. The percentage of genes
shared between two contigs was defined as the number of
pairs of homologous proteins between the two contigs di-
vided by the average number of proteins of the two contigs.

Consideration of virus–host co-abundance in host prediction

In order to investigate whether co-abundance can help the
prediction of virus–host interactions, we incorporated this
feature to the model in a smaller dataset to evaluate its con-
tribution. The dataset included a subset of 2695 prokary-
otic reference genomes and 1403 viruses (see below). A total
of 148 stool metagenomic samples from the Human Micro-
biome Project (HMP) (59) and 103 metagenomes from the
Tara Ocean (filter size 0.22–3 �m) (60) were collected. We
used centrifuge (56) (centrifuge-1.0.3-beta) to
compute the abundance of virus and bacteria genomes in
each of the metagenomes, resulting in an abundance pro-
file of a 251-dimensional vector for every virus and host
genome. The co-abundance feature Sco-abundance(v, b) was
defined by the Pearson correlation between the abundance
profiles for the pair of virus and bacterium. We then modi-
fied the integrated model to

logit(P{I(v, b) = 1}) =α + βs∗
2 (v, b) + γ+SV+(v, b)

+ γ−SV−(v, b) + δSco-abundance(v, b).

We compared the performance of this model with that of
the model in Equation (5). Both models were trained based
on a subset of 308 viruses and 50 hosts, including 308 pairs
of true interacting pairs and 308 randomly chosen nega-
tive pairs. After both models were trained, we predicted the
hosts of 1095 viruses. The results are shown in Additional
File 14 in the Supplementary Data. The co-abundance fea-
ture itself had weak prediction ability and adding it to the
model did not help prediction. Therefore, we did not con-
sider it as a feature in the final model presented in the main
text.
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Alternative methods

Support vector machines (SVMs) and random forests (RFs)
are among the most popular machine learning tools for
classification (61). In this study, for each pair of virus and
host, we considered two network-based features introduced
by the MRF framework, SV+ and SV−, and three additional
features: s∗

2 , Sblastn and SCRISPR. We learned the SVM and
RF models based on the five features using the same train-
ing data by 5-fold cross-validation. The learned models were
then evaluated on the validation set. Additional File 16 in
the Supplementary Data shows SVMs and RFs do not per-
form as well as our integrated MRF-based approach. The
details are given in the Supplementary Data.

Software

We developed a computational tool, VirHostMatcher-Net,
implementing our network-based integrated method for
virus–host predictions. The software is publicly available
at https://github.com/WeiliWw/VirHostMatcher-Net. The
tool supports parallel computing and has the option of
choosing the type of query viruses (complete genomes or
contigs). It also provides the option of specifying a cus-
tomized subset of candidate hosts for prediction. The tool
provides informative outputs including all the feature scores
of the query viruses against all candidate hosts, and a sum-
marized table listing top predictions for each virus with their
feature scores, score percentiles and accuracy. The score per-
centile of a VHP is defined as the percentile of this score
among all scores between that virus and all the candidate
hosts. A large percentile suggests high relevance of the fea-
ture score. The percentile of SV−, the only feature with a
negative coefficient, is reversed to be consistent with other
feature score percentiles. The percentile information helps
to better understand how relevant each feature score is for a
particular prediction. We also provide ‘accuracy’ that gives
the fraction of correct predictions when VHPs with predic-
tion scores above the particular threshold are declared as
interacting.

RESULTS

A novel network-based integrated framework for predicting
virus–host interaction

We collected from NCBI the genomes of a set of known
virus–host interaction pairs, S+, and generated a set of ran-
dom VHPs that most likely do not interact, S−, as the train-
ing data for this study. Our objective was to develop a ma-
chine learning approach to predict the probability of inter-
action between a query VHP (v, b), denoted as P(I(v, b) =
1), where I(v, b) denotes the interaction status of a virus v
and a host b with value 1 indicating interaction and 0 in-
dicating no interaction. In order to achieve the best perfor-
mance, we comprehensively considered various factors that
contribute to the interaction of a VHP (v, b). First, if a virus
is genetically close to viruses infecting a particular host, this
virus is highly likely to infect the same host (28,29). On the
other hand, if a virus infects a host, the virus should be ge-
netically distant from the viruses that do not infect the host.
Second, the similarity among hosts indicates the possibility

of infection by the same virus (62,63). If a potential host
belongs to the same taxon as the known host of the virus,
then that host is likely to be infected by the virus. Third, the
similarity between VHPs in terms of genomic signatures re-
flects the likelihood of interaction (24). If a virus genome is
similar to a host genome in terms of the alignment-free k-
mer usage pattern, the pair is predicted to have a high prob-
ability of interacting. Finally, the existence of virus–host
shared CRISPR spacers and the alignment-based matches
(i.e. BLASTn) is strong evidence of interaction.

Altogether, virus–virus similarity, host–host similarity
and virus–host similarity can be integrated to form a two-
layer network connecting viruses and hosts. Thus, we con-
structed a VHP network where nodes are VHPs and edge
weights are the pairwise similarities between VHPs. We
developed an integrated network-based MRF approach
that systematically and comprehensively integrates various
types of features to predict interacting VHPs. The probabil-
ity of a given VHP to be interactive is based on the charac-
teristics of this VHP itself, and the connectivity between this
VHP and its neighbor VHPs in the network. Intuitively, the
characteristics of a VHP itself include alignment-free score,
the fraction of alignment-based matches and the existence
of shared CRISPR spacers. The connectivity between this
VHP and other VHPs is defined based on the genome simi-
larity between the virus and other viruses infecting the same
host. The outline of the framework is demonstrated in Fig-
ure 1. The details of the models for this framework can be
found in the ‘Materials and Methods’ section.

Feature scores are significantly different between positive and
negative VHPs

We incorporated multiple types of features that contribute
to the prediction of virus–host interactions. To assess the
discriminatory power of each feature, we compared the dis-
tributions of the feature values between the virus–host in-
teracting pairs and the non-interacting pairs. A set of 826
known virus–host interacting pairs was used as the posi-
tive set, and a set of the same number of randomly selected
VHPs was used as the negative set. See the ‘Materials and
Methods’ section for details of the data collection and the
simulation of negative pairs. We used a one-sided t-statistic
to test whether the feature values in the positive set are sig-
nificantly higher or lower than the ones in the negative set.

First, the alignment-free similarity score s∗
2 (v, b) was used

to measure the similarity between virus and host pairs,
where s∗

2 = 1 − 2d∗
2 and the k-mer-based dissimilarity score

d∗
2 is defined in our previous work (24). The measure s∗

2
has an advantage over other classical similarity measures
because of its precise correction of background noise, and
has shown superior accuracy for predicting virus–host in-
teractions (24). See the ‘Materials and Methods’ section
for the definition of s∗

2 (v, b). The s∗
2 score had significantly

higher values (P-value <2.2e−16, one-sided t-test) for posi-
tive VHPs than the negative pairs (Figure 2A). The mean s∗

2
similarity score between positive pairs was 0.52, while the
mean s∗

2 similarity between negative pairs was 0.24.
The WIsH score, proposed by Galiez et al. (25), is another

alignment-free similarity measure for a VHP. It uses a log-
likelihood score of a Markov chain model to measure sim-

https://github.com/WeiliWw/VirHostMatcher-Net
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Figure 1. Overview of the network prediction framework. A novel two-
layer network is constructed for representing virus–virus, host–host and
virus–host similarities. Viruses (red circles) are connected based on se-
quence similarity (red edges). Similarly, hosts (blue squares) are connected
based on sequence similarity (blue edges). The thickness of the edges in-
dicates the degree of similarity. The interaction between a virus and host
pair (green edges) can be predicted using multiple types of features: (i) the
similarity between the virus and other viruses infecting the host; (ii) the
similarity between the host and other hosts infected by the virus; (iii) the
alignment-free sequence similarity between the virus and the host based on
k-mer frequencies; (iv) the existence of shared CRISPR spacers between
the virus and the host; and (v) alignment-based sequence matches between
the virus and the host. Finally, a network-based machine learning model is
used to integrate all different types of features and to predict the likelihood
of the interaction of a VHP.

ilarity between viruses and hosts. We computed the WIsH
scores for both positive and negative VHPs, and found that
the WIsH scores for positive virus–host interacting pairs
were significantly higher than those for the negative VHPs
(P-value = 1e−10; Figure 2B). In fact, we observed that the
WIsH and s∗

2 scores were highly correlated (Pearson cor-
relation coefficient ρ = 0.85, P-value <2.2e−16). We pre-
dicted a VHP as interacting if one of the similarity mea-
sures, s∗

2 or WIsH, was above a threshold and, by changing
the threshold, the corresponding receiver operating charac-
teristic curve was plotted. The area under the receiver oper-
ating characteristic curve, which measures the discrimina-
tive ability between positive and negative pairs, was 0.91 for
s∗

2 and 0.86 for WIsH (Additional File 1 in the Supplemen-
tary Data). Though the distinguishing power using WIsH
was lower than that of s∗

2 using complete genomes, WIsH
was previously shown to be more effective than s∗

2 when pre-
dicting hosts of partial viral genomes (25). Therefore, we de-

cided to use s∗
2 to measure virus–host alignment-free simi-

larity when the length of viral sequence is close to the size of
a complete genome, and to use WIsH to measure the virus–
host similarity for short contigs.

Second, for a given VHP (v, b), we defined the similar-
ity between a virus v and other viruses infecting the host b,
denoted as SV+(v, b), and likewise, the similarity between
virus v and other viruses not infecting the host b, denoted as
SV−(v, b). See the ‘Materials and Methods’ section for the
details of their definitions. We hypothesized that, for a true
interacting VHP (v, b), other viruses that infect the same
host b should exhibit high similarity to the virus v, result-
ing in a high SV+(v, b). At the same time, other viruses not
infecting the host b should have low similarity to the virus v,
resulting in a low SV−(v, b). For a non-interacting VHP, the
above trend of SV+(v, b) and SV−(v, b) should be opposite.
Consistent with our hypothesis, SV+(v, b) scores were sig-
nificantly higher for positive VHPs than negative pairs, and
vice versa for SV−(v, b) scores (both P-values <2.2e−16;
Figure 2C and D).

Third, we included information from CRISPR matches
and alignment-based genome similarity between viruses
and hosts. The CRISPR score was defined as the highest
alignment score between the predicted CRISPR spacers in a
host and a viral genome, and the alignment-based matching
score was defined as the fraction of virus genome that sig-
nificantly matches the host genome using blastn (>90%
identity; see the ‘Materials and Methods’ section). Thus, for
simplicity, we refer to the alignment-based matching score
as the BLAST score. Both CRISPR and BLAST scores
were significantly higher for the true interacting VHPs
than the non-interacting pairs with P-values of 0.0001 and
<2.2e−16 for one-sided t-tests, respectively. Figure 2E and
F also shows the limited frequency of CRISPR and BLAST
matches between viruses and hosts.

Integrated approach markedly increases host prediction ac-
curacy

We integrated the multiple types of features proposed pre-
viously to predict virus–host interactions using a general
framework of MRF, where the nodes were VHPs and edges
were the similarities between the VHPs. We investigated
the prediction accuracies of the newly developed integrated
models in Equations (6) and (7) (see the ‘Materials and
Methods’ section), and compared the accuracies with those
using the individual features. The model in Equation (6) in-
corporates the network features including virus–virus sim-
ilarities SV+ and SV−, the virus–host similarity s∗

2 and the
CRISPR score. The model in Equation (7) combines fea-
tures in Equation (6) plus the BLAST scores. For each of the
integrated models, we learned the parameters using the 826
positive and the same number of negative VHPs, and then
tested the trained model on the remaining 1462 viruses for
which their true hosts are known against 62 493 candidate
hosts.

We assessed the prediction accuracies of the trained mod-
els using an independent set of 1462 viruses at different
taxonomic levels, including genus, family, order, class and
phylum. For each virus, we computed the prediction scores
between this virus and all candidate hosts (n = 62 493)
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Figure 2. Distributions of the different feature values among 826 interacting and non-interacting VHPs. The positive set consists of 826 known infecting
VHPs (positive set) and the same number of randomly selected virus and host pairs were used as the non-interacting, negative set. (A) Box plots of similarity
defined by s∗

2 (v, b). (B) Box plots of the log-likelihood scores given by WIsH. (C) Box plots of SV+(v, b) scores. (D) Box plots of the SV−(v, b) scores. (E)
Box plots of BLAST scores. (F) Box plots of the CRISPR scores. For all figures, the horizontal bar displays the median; boxes display the first and third
quartiles; whiskers depict minimum and maximum values; and points depict outliers beyond the whiskers.

using the trained models, and predicted the host as the
one having the highest prediction score. The prediction ac-
curacy was calculated as the percentage of viruses whose
predicted hosts had the same taxonomy as their respec-
tive known hosts. Host prediction accuracies were markedly
higher for the integrated approach using network features
and CRISPR scores than using s∗

2 or CRISPR scores alone

(Figure 3). For example, at the genus level, prediction accu-
racy was 31% and 43% when using s∗

2 and CRISPR, respec-
tively. Combining network similarity features together with
CRISPR score (Equation 6) increased prediction accuracy
to 59%, or a 1.4-fold increase.

Alignment-based BLAST scores alone had a prediction
accuracy of 41%, comparable to that based on CRISPR
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Figure 3. Prediction accuracies of the different approaches for 1462 viruses. Prediction accuracies for 1462 viral genomes whose true hosts are known against
62 493 candidate hosts, binned by taxonomic level. The first three bars show results using individual features of s∗

2 (v, b), CRISPR score or alignment-based
similarity score (blastn), respectively. The remaining bars show results with integrated network models, trained using 826 positive and the same number
of negative VHPs as in Figure 2. In order, these are the model in Equation (5) that incorporates the network-based features SV+(v, b) and SV−(v, b),
alignment-free virus–host similarity s∗

2 (v, b), in addition to the blastn scores (‘Network + BLAST’), the model in Equation (7) (‘Network + CRISPR +
BLAST’), and the model in Equation (6) (‘Network + CRISPR’). Error bars for the network-based results depict 95% confidence intervals using 100
replicates of negative training sets (random VHPs).

scores. However, incorporating BLAST into the network
model in Equation (5) or Equation (6) does not yield a bet-
ter performance than the model in Equation (6) (Figure 3).
Therefore, the model in Equation (6) that incorporates the
network features, virus–host similarity s∗

2 and CRISPR had
the highest accuracy and was used in the subsequent host
prediction applications. For the higher levels of taxonomy
like family, order, class and phylum, the network-based in-
tegrated framework also achieved large improvements over
the prediction accuracy of individual features, yielding 70%,
78%, 83% and 86% prediction accuracy, respectively. At the
species level, the prediction accuracy is 43%. The estimated
coefficients and the corresponding P-values of the features
are shown in Table 1. All the coefficients had the expected
signs that were consistent with the observations in Figure 2,
and the statistical significance P-values for the coefficients
were all <0.05.

Integrated approach improves host prediction accuracy of
short viral sequences

Viral contigs assembled from metagenomic data often rep-
resent partial viral genomes. We tested an integrated model
in Equation (8) that uses WIsH scores instead of s∗

2 for mea-
suring the alignment-free similarity between viruses and
hosts. We evaluated the accuracy of the model for predict-

ing the hosts of viral contigs at various lengths, and inves-
tigated the effect of viral sequence length on the prediction
accuracy. To evaluate the performance of host prediction for
short viral contigs, we randomly subsampled fragments of
different lengths (1, 2, 5, 10 and 20 kb) from each of the 1462
viral genomes. For a given viral genome and a fixed contig
length, we randomly chose a segment of fixed length uni-
formly from the genome. If the fixed length was longer than
the size of the complete genome, we took the entire genome.
This procedure was repeated 10 times for each contig length.
We then computed all the features of the contigs using the
same procedure as for the complete viral genome analyses,
with the only difference being that s∗

2 similarity was replaced
with the WIsH score (25). The model was trained with the
same set of 826 virus–host positive pairs and the same num-
ber of negative pairs using the same scheme as before by re-
placing s∗

2 with the WIsH likelihood score. With the trained
model, we predicted the hosts for all subsampled contigs.
The results for different models on viral contigs of length 5
kb are shown in Figure 4. With WIsH score alone, the pre-
diction accuracy at the genus level was 35%. Adding the net-
work features SV+ and SV− improved the accuracy to 48%.
Similar to the results for predicting complete viral genomes,
the model in Equation (8) performed best (Figure 4). For
viral contigs of length 5 kb, the model has 53% prediction
accuracy at the genus level and 85% at the phylum level.
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Table 1. The estimated coefficients and corresponding P-values for host prediction features

Model s∗
2 SWIsH SV+ SV− SCRISPR

Complete genomes Coeff. 16.41 4.44 −27.38 0.13
using Equation (6)a P-value <2e−16 <2e−16 <2e−16 0.0002
Short contigs Coeff. 25.96 6.46 −15.29 0.19
using Equation (8)b P-value <2e−16 <2e−16 <2e−16 0.0069

aResults for complete viral genomes using the network-based integrated model in Equation (6).
bResults for short viral contigs using the model in Equation (8).
‘Coeff.’ = coefficient. Since different negative training sets yielded slightly different estimated coefficients of the features, we show one example here.
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Figure 4. Prediction accuracies of the different approaches for viral con-
tigs of length 5 kb. Prediction accuracies for viral contigs of length 5 kb,
binned by taxonomic level. The first bar shows results using WIsH method
alone, as in (25). The remaining bars show results with integrated network
models, similar to Figure 3. All bars are calculated based on the average
accuracies for 10 different sets of viral contigs.

The average prediction accuracies for each contig length
are shown in Figure 5. Our model (solid lines) achieved a
large improvement compared to the results of WIsH alone
(dashed lines). For example, when the contig length was
20 kb, the prediction accuracy using our model was ∼19–
26% higher than that of WIsH at the genus, family and order
levels. As expected, the prediction accuracy of our model
(solid lines) increases with contig lengths. For instance, at
the genus level, the accuracy increased from 42% for 1 kb
long contigs, 48% for 2 kb, to 53% for 5 kb, to 55% for 10
kb and to 57% for 20 kb (Figure 5). Given the results, we
provide our framework with two models for host prediction:
one for complete or nearly complete viral genomes using the
model in Equation (6), and one for short viral contigs using
the model in Equation (8).

Thresholding on the prediction score further improves accu-
racy

In many situations, investigators are interested in making
sure the predicted hosts are as accurate as possible, i.e.
the predictions have high precision or low false discovery

rate. Therefore, we investigated how the accuracy changes
by thresholding on the predicted probability of interaction
P(I(v, b) = 1). In the above analysis, we predicted the host
of every virus as the one with the highest score. However,
sometimes the highest score was relatively low. For example,
as shown in Figure 6, the highest prediction score among
the 62 493 hosts for some viruses in the complete genome
test set was as low as 0.31. Low scores may occur, for ex-
ample, when the true host is not in the database of poten-
tial hosts. In order to improve the prediction accuracy, we
can set a threshold such that host predictions are only made
if the score is above that threshold. For instance, when a
threshold was set at 0.95, there was an improvement of pre-
diction accuracy at all taxonomic levels. Specifically at the
genus level, accuracy was improved by 13%, from 59% to
72% ; at the phylum level, accuracy was improved by 4%,
from 86% to 90%.

Prediction accuracy varies for different viral families

Viruses from three major families, Siphoviridae, Myoviri-
dae and Podoviridae, are highly represented in our eval-
uation dataset (42%, 24% and 18%, respectively). Previ-
ous host predictions with s∗

2 showed notable differences in
prediction accuracy among these families (24). Therefore,
we examined prediction accuracies using our model (Fig-
ure 7). We found that the Siphoviridae family of viruses in
our dataset had generally higher prediction accuracy than
other families of viruses, achieving 72% accuracy compared
with the average accuracy of 59% for all types of viruses,
consistent with previous results using the s∗

2 scores alone
(24). The prediction accuracies for the different virus fam-
ilies with various thresholds on the prediction score are
shown in Additional File 2 in the Supplementary Data. We
also noticed that the top prediction scores for the Siphoviri-
dae family of viruses are significantly higher than those for
the other two families (Kolmogorov–Smirnov test, P-value
<1e−15). The above observations may be explained by the
fact that (i) Siphoviridae is the most abundant viral family in
the training data (75%, n = 618) and (ii) siphoviruses typ-
ically have relatively narrow host ranges and podoviruses
and myoviruses often have broader host ranges (64–66),
though recent studies suggest that current isolation tech-
niques may result in the under-representation of broad host
range viruses and that the true host range of viruses is hard
to define (62,67).

To investigate whether the high host prediction accuracy
for siphoviruses is due to their high abundance in the train-
ing set, we trained a new model only on podoviruses (n
= 76) and myoviruses (n = 113), and tested the model on
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siphoviruses in the validation set (n = 607). Comparing the
performance of this model with the model trained with the
full training set, we found the difference in prediction accu-
racy is <1% for each taxonomic level, from the species to
the phylum (Additional File 4 in the Supplementary Data).
To further investigate the sensitivity of the model to the
training data, we similarly trained a model excluding a cer-
tain group of viruses from the training set and evaluated
the host prediction accuracy for that group of viruses in
the validation set. The same procedure was conducted for
several groups, including the other two major virus families
(Myoviridae and Podoviridae) and groups of viruses infect-
ing the common host taxonomic groups (Escherichia coli,
Proteobacteria, Actinobacteria and Firmicutes). The over-
all decrease in host prediction accuracy for the excluded
groups of viruses is on average 2.6%. The detailed results are
provided in Additional File 4 in the Supplementary Data.

Prediction of the host of crAss-like phage �crAss001

CrAssphage was first discovered through the cross-
assembly of human fecal metagenomes and was originally
published as an individual genome that is referred to as
prototypical crAssphage (p-crAssphage) (19). Though
crAssphage is ubiquitous in human gut samples and com-
prises up to 90% of the sequencing reads in some fecal viral
metagenomes (19), little is known about the biological sig-
nificance and the hosts of crAssphage, due to the difficulty
of culturing crAssphage and the high divergence between
crAssphage and known viruses. Different methods have
been used to predict the hosts of crAssphage. Dutilh et al.
(19) predicted its host as the phylum Bacteroidetes using
the co-occurrence profile between crAssphage and 404
potential human gut bacteria hosts across 151 human gut
metagenomes from the HMP. Ahlgren et al. (24) compared
the alignment-free similarity between crAssphage and the
potential hosts, and the genera Bacteroides, Coprobacillus
and Fusobacterium were found to have significantly high
similarity to crAssphage.

Recently, Shkoporov et al. (42) isolated a particular strain
of crAssphage, �crAss001, by enriching viral fraction gut
samples on a collection of 54 bacteria strains from the hu-
man gut. They subsequently showed that �crAss001 specif-
ically infects only one of the 14 strains of Bacteroides tested,
Bacteroides intestinalis 919/174. We first predicted the host
of �crAss001 using 22 species of the bacteria used to enrich
�crAss001 (and whose genomes are available) that span 4
phyla and 14 genera (Additional File 3 in the Supplemen-
tary Data). A B. intestinalis strain had the highest predic-
tion score of 0.962, congruent with the experimental results
of Shkoporov et al. (42). Alignment-based scores such as
CRISPR and BLAST were all 0 and did not contribute
to the prediction. The main contribution comes from the
alignment-free similarity score s∗

2 of 0.5 and the CRISPR
signal. We then applied the integrated approach to predict
the host of �crAss001 using the large database of 62 493
host genomes and found that all of the top 25 predictions
belong to the Bacteroidetes phylum, including 23 belonging
to the genus Prevotella. �crAss001 was classified as a genus
VI crAssphage (42). Guerin et al. (68) previously hypothe-
sized that genus VI crAss-like phages infect Prevotella based

on the observation that these two genera of virus and host
were both enriched in malnourished and healthy Malawian
infants. Our host prediction of �crAss001 is therefore con-
sistent with this hypothesis.

Host prediction for marine environmental viral genomes

Metagenomic sequencing has provided access to a broad
range of viral genomes and has played an important role
in studying uncharacterized marine viral genetic materials.
Nishimura et al. (41) compiled a set of 1811 marine envi-
ronmental viral genomes (EVGs) including those newly as-
sembled from the Tara Ocean (6) and Osaka Bay viromes
and previously reported EVGs (69–71). They predicted pu-
tative hosts of the EVGs based on the gene-based similar-
ity between the EVGs and the cultured viral genomes with
known hosts. In particular, they compiled another set of
cultured viral genomes as a reference (RVGs) and created
a proteomic tree for all EVGs and RVGs by the all-against-
all distance matrix calculated from tBLASTx. They first as-
signed hosts by directly comparing the proteomic similar-
ity between the EVGs and RVGs resulting in host assign-
ment for 29 EVGs. They then constructed genus-level ge-
nomic operational taxonomic units (gOTUs) according to
the proteomic tree. Based on the identification and phylo-
genetic analysis of various functional genes in EVGs and
their closeness to related RVGs in the proteomic tree, they
predicted the hosts of gOTUs at different host taxonomic
levels (phylum to genus). In total, they predicted the hosts
for 564 EVGs.

We used our integrated model in Equation (6) to predict
the hosts for the 1811 EVGs using a set of 4034 marine bac-
teria as host candidates. We set a cutoff of 0.95 on the pre-
diction score to ensure 90% prediction accuracy at the phy-
lum level (Figure 6). With this cutoff, our model was able
to make host predictions for 676 EVGs, among which 233
EVGs also had phylum-level host predictions by Nishimura
et al. (see Additional File 6 in the Supplementary Data for
the prediction results). Compared with the predictions of
Nishimura et al., our method had consistent predictions for
172 (74%) out of the EVGs at the phylum level and 156
(77%) out of the 203 EVGs at the class level (only 203 EVGs
have predictions by our method and Nishimura et al.). In
particular, our predictions were consistent with the previous
predictions for the entire group of 16 cyanobacteria viruses.
For a group of viruses that Nishimura et al. predicted to in-
fect Proteobacteria, our predictions agree with theirs in 24
out of 39 cases at the phylum level. For another group of
158 viruses that were previously predicted as Flavobacteri-
aceae (within the phylum Bacteroidetes) phages, our predic-
tions were consistent with theirs for 127 viruses at the family
level. Note that the inconsistency between our predictions
and Nishimura et al. may due to the different choices of fea-
tures used for prediction. Predictions of Nishimura et al. are
based on the similarity between virus genomes, while our
method uses not only the similarity between viruses, but
also the CRISPR scores between virus and host genomes,
which are direct evidence for interactions. In addition, our
method was able to predict more hosts at lower taxonomic
levels compared with the previous method. We had all 233
EVGs predicted at the order level or lower host taxonomic
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levels, a 9% increase in the number of EVGs that the previ-
ous method was able to predict.

For the 443 viruses whose hosts were not predicted pre-
viously and only predicted by our method, their predicted
hosts include 4 phyla and 22 genera. In particular, we dis-
covered 11 viruses infecting 8 novel host genera that are ab-
sent from the dataset of 2288 isolate virus genomes (Addi-
tional File 6 in the Supplementary Data).

Host prediction for metagenomic viral contigs from various
habitats

Paez-Espino et al. (38) analyzed over 3000 geographically
diverse metagenomic samples and identified 125 842 puta-
tive metagenomic viral contigs of median length 11 kb, re-
vealing the extended viral genetic diversity in various envi-
ronments (38). In the original prediction, the metagenomic
viral contigs and other 2536 isolated contigs were first clus-
tered into viral groups or singletons. They predicted the
hosts of the viral contigs using a series of analyses includ-
ing projecting the isolate viral host information onto viral
groups, matching viral contigs to a database of 3.5 million
CRISPR spacers found in prokaryotic genomes and identi-
fying tRNA sequences in corresponding hosts. The analysis
predicted hosts for 9992 (7.7%) viral contigs. To evaluate
our integrated approach for host prediction, we first used
our method in Equation (8) to predict the hosts of those
putative metagenomic viral contigs. We then compared our
predictions with those of Paez-Espino et al. by concentrat-
ing on 5105 metagenomic contigs whose previously pre-
dicted host families were present in our host database and
having a prediction score above 0.95. Our predictions were
consistent with the vast majority of the original predic-
tions, having 96% consistency at the phylum level (Table
2). Our predictions matched the previous predictions at an
even higher rate (97% at the phylum level) for 62.7% of
viruses whose hosts were previously inferred based on di-
rect evidence of CRISPR spacer matches or tRNA matches
to the hosts. For viruses whose hosts were inferred indi-
rectly based on the hosts of other viruses in the same vi-
ral groups, our predicted hosts had 93% consistency with
those based on the previous method at the phylum level.
Thus, the inconsistent predictions mostly occurred for the
viruses whose hosts were previously inferred based on vi-
ral group membership. For those viruses with inconsistent
predictions, 88% of our predictions had significant network
scores (>95% percentile), 86% had significant WIsH scores
and 43% had significant CRISPR scores.

We then predicted the hosts for the remaining available
contigs that were not predicted in Paez-Espino et al. (n =
101 343; note not all of the contigs from Paez-Espino et al.
are accessible at IMG/VR). Viruses were parsed by the
type of sample from which they were obtained (human-
associated, marine and all other environments/sample
types) and predictions were made against collections of host
genomes corresponding to the sample type (human-related
genomes, n = 9097; marine genomes, n = 4034; or all 62 493
host genomes, respectively). This resulted in 7653, 12 014
and 8013 viral contigs with prediction scores above 0.95
(Additional Files 7–9 in the Supplementary Data) or 27 680
viral contigs in sum. In combination with viral contigs with

Table 2. Proportions of congruent predictions for viral contigs between
our method and those in Paez-Espino et al. (38)

Genus Family Order Class Phylum

Overalla 82% 86% 90% 90% 96%
Extensive predictions onlyb 75% 78% 82% 82% 93%
Excluding extensive
predictionsc

86% 91% 95% 95% 97%

aCalculated based on all 5105 metagenomic viral contigs.
bCalculated based on 3203 metagenomic viral contigs whose predictions
were previously inferred indirectly from group membership instead of di-
rect evidence.
cCalculated based on 1902 metagenomic viral contigs whose previous
predictions were inferred directly by CRISPR spacer matches or tRNA
matches.

overlapping predictions by Paez-Espino et al., we were able
to make confident host predictions for 27% of all the re-
maining viral contigs, representing 2.7-fold more host pre-
dictions than previously by Paez-Espino et al.

We analyzed more specifically the predicted hosts for con-
tigs with length ≥10 kb and for which ≥90% of their genes
belong to known viral protein families (a criterion used in
the original paper). There were 545 contigs from human-
associated samples that met the above criterion, and we re-
stricted our host predictions to 9097 human-associated bac-
terial genomes. In total, 173 human-associated viral con-
tigs were successfully predicted by our method with a score
above 0.95 (Additional File 10 in the Supplementary Data).
The predicted hosts of these 173 viral contigs belonged to
12 host genera. In particular, we discovered 24 viral con-
tigs predicted to infect four host genera that have no known
infecting viruses. To study the virus diversity within those
hosts, we clustered the 24 viral contigs based on their per-
centage of shared genes using the UPGMA hierarchical
clustering method (Additional File 11 in the Supplemen-
tary Data). Some viruses infecting the same host genus were
found in the same habitat. For example, all three viruses
predicted to infect Prevotella were found in human tongue
dorsum; the two viruses predicted to infect Neisseria were
found in human supragingival plaque. On the other hand,
the 18 viruses predicted to infect Veillonella were found in
human tongue dorsum, throat and saliva, probably indicat-
ing a higher viral diversity in this host genus. Meanwhile,
the large cluster of 10 viruses of host genus Veillonella was
from different samples in multiple studies (as assessed by
contig IDs, WUGC, Baylor and LANL representing differ-
ent studies), indicating those VHPs were common across in-
dividuals.

Similarly, we applied our method to a set of 558 marine
viral contigs that were not predicted by Paez-Espino et al.
using the same criteria as above. Prediction was restricted to
the set of 4034 marine hosts defined previously by Ahlgren
et al. Our model predicted hosts for 160 viral contigs using
a score threshold of 0.95. The predicted hosts belonged to
four host genera (Additional File 12 in the Supplementary
Data). In particular, the newly identified VHPs expanded
the universe of known Cellulophaga viral diversity, a nascent
marine heterotrophic model system. Previously, Holmfeldt
et al. (72), by sequencing 31 viral isolates, demonstrated the
existence of several viral genera associated with this ma-
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rine group. Here, we found additional 102 viral contigs that
putatively infect Cellulophaga. Using the same gene-based
method for hierarchical clustering as in (72), the newly dis-
covered 102 viruses clustered into multiple groups, includ-
ing one having 31 contigs (group A) and one having 17 con-
tigs (group B), which are separate from the group contain-
ing the 31 known isolates (Additional File 13 in the Supple-
mentary Data). Overall, we identified at least three novel
genera with each having >10 viral contigs, representing a
sizable increase from the previously known diversity. Gen-
era were defined, for consistency as in Holmfeldt et al., as
pairs of genomes sharing >40% of their gene content. Those
new virus groups were found in multiple locations such as
the Delaware Coast, Pacific Ocean and North Sea, indicat-
ing their ubiquity and potential impacts on communities of
Cellulophaga, an important degrader of complex organic
matter. In addition, our method predicted 49 viruses as
cyanobacterial phages (cyanophages) infecting Prochloro-
coccus, a group of globally abundant marine cyanobacteria
(73). We independently confirmed that 33 of these are actu-
ally cyanophages based on significant nucleotide or protein
similarity to cyanophage isolate genomes (≥70% nucleotide
identity for ≥10% of the contig or ≥50% of proteins on the
contig shared ≥40% identity to cyanophage proteins). The
remaining 16 contigs thus represent potentially novel lin-
eages that have no significant nucleotide similarity to known
cyanophage isolates. This showcases both the diversity of
virus–host interactions and the power of our method to cap-
ture groups with relatively few known representatives.

Computational cost

For a set of 1500 complete viral genomes, the prediction
requires no more than 16 GB of memory for host predic-
tions. However, due to the implementation of WIsH score,
it requires up to 100 GB for the same size of query viral
contigs. In practice, we recommend analyzing the viral con-
tigs in smaller groups at a time if the memory is a major
constrain. Using an eight-core E5-2640v3 CPU, the analy-
sis takes <1 h for 1500 complete genomes and <4 h for the
same size of viral contigs.

DISCUSSION

The interactions between virus and prokaryotic hosts play
important roles in human health and ecosystems. Millions
of new viruses have been identified using high-throughput
metagenomic sequencing technologies, but little is known
about their biological functions and the prokaryotic hosts
with which they interact. We developed a network-based in-
tegrated framework for predicting the hosts of prokaryotic
viruses. The new method provides a sizable improvement on
prediction accuracy compared with previous methods by in-
tegrating multiple measures for informing host prediction.
Based on the evaluation of the methods using a large bench-
mark dataset containing 1462 viruses and 62 493 hosts, the
method achieves 59% and 86% prediction accuracy at the
genus and phylum levels, respectively, yielding 16% and 6%
improvements at the genus and phylum levels compared to
the highest accuracy achieved by previous single methods.

The novel two-layer network of virus–virus, host–host
and virus–host genomic similarity lays the foundation for

this method. The employment of a two-layer network is in-
spired by underlying biological phenomena. First, it is ob-
served that genetically similar viruses tend to infect closely
related hosts (62,63). So, the host of a new virus can be
partly inferred based on the similarity to related viruses with
known hosts. Similarly, the host of new viruses could po-
tentially be inferred through similarity of hosts. Second, be-
cause viruses depend on the cellular machinery of their host
to replicate, viruses often share highly similar patterns in
codon usage or short nucleotide words with their hosts. The
host of a new virus can be predicted using nucleotide word
similarity between the virus and candidate hosts (11,20,24).
Thus, the two-layer network model is a natural formula-
tion of the biological relationships described above. Despite
the fact that the viruses in our current database only have
one reported host for each virus such that host–host net-
work connections cannot be incorporated into the predic-
tion model, the novel two-layer network can be fully im-
plemented in the future as multiple hosts of viruses are re-
vealed.

Multiple types of features, including shared sequences be-
tween host CRISPR spacers and viral genomes and virus–
host BLAST matches, combined with the network-based
features, were tested in the integrated framework for host
prediction. The CRISPR and BLAST features are based
on the biological process that some viruses and their hosts
share a portion of their genomes due to CRISPR defense
systems, horizontal gene transfer or prophage integration.
Although these features have been investigated individually
in previous studies (20,24,25,36), this is the first time that
multiple types of features have been integrated into a uni-
fied framework for virus–host prediction. We interestingly
found that addition of the BLAST feature did not signifi-
cantly improve over the model that included CRISPR and
k-mer frequency similarity, possibly because BLAST infor-
mation is incorporated in informative CRISPR matching
feature results. In the future, more sophisticated and sen-
sitive approaches, beyond simple BLAST searches, could
be developed for identifying genes shared between hosts
and their phage via horizontal gene transfer. Our results
show that the integrated method combining multiple fea-
tures achieves a higher prediction accuracy than use of in-
dividual types of information.

Our model also markedly improved the host prediction
accuracy on shorter viral fragments at all taxonomic levels
when compared to WIsH (25), a recently developed prob-
abilistic method for predicting hosts of viral contigs. Our
method was able to obtain 57%, 55% and 53% prediction
accuracies at the genus level for 20, 10 and 5 kb sequence
lengths, respectively. The prediction accuracies for 20, 10
and 5 kb contigs were all above 84% at the phylum level.

Setting a minimum threshold for making predictions led
to a notable improvement in accuracy. We also investigated
the host prediction accuracy for different groups of viruses.
Specifically, our observations indicate that viruses in the
Siphoviridae family have higher prediction accuracy than
the other Caudovirales families, consistent with the fact
that siphoviruses tend to have a narrower range of target
hosts (65,66). Likewise, restricting the possible hosts from
all available prokaryotic genomes to a focused set of rele-
vant microbes can help improve prediction accuracy, as was
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the case of predicting hosts of human-associated viruses us-
ing the 9097 human-related host genomes and predicting
marine viruses using 4034 marine host genomes.

Our model was trained on a selected set of known VHPs,
mostly represented by well-studied virus–host systems (e.g.
E. coli viruses). Therefore, it was important to assess the
sensitivity of our approach to the sets of viruses used for
model training. The model was tested by excluding sev-
eral groups of viruses, either by virus family (Myoviridae,
Podoviridae, Siphoviridae) or by the taxonomic group of
hosts they infect and then assessing accuracies for predict-
ing the hosts of those groups of viruses (Additional File
4 in the Supplementary Data). Prediction accuracies were
largely similar when using models trained with all available
or the restricted sets of viruses and hosts, strongly support-
ing that our integrated approach can be extended to make
predictions on novel groups of viruses. Indeed, in the ap-
plications above, we make confident new predictions for
viruses for which their predicted host taxa are not repre-
sented in the training dataset. We conjecture that the ap-
plicability of this approach to novel viruses reflects that the
features used and their underlying molecular processes are
common across viral groups. In particular, CRISPR defense
systems have been found across many prokaryotic phyla,
and more importantly, the mechanisms and thus the molec-
ular signals underlying the CRISPR defense systems are
conserved.

We utilized our model to predict the host of a new strain
of crAss-like phages, �crAss001. Until the recent isolation
of �crAss001, the host of crAss-like phages was unknown,
but surmised to be Bacteroidetes based on bioinformatic
analyses (19). It was recently isolated and was found to in-
fect B. intestinalis among a set of 54 strains belonging to 22
bacterial species (42). Our computational prediction for the
host of �crAss001 against the 22 species for which genomes
were available is consistent with the culture-based results.
When we predicted its host against the 62 493 candidate
genomes, the genus Prevotella within the Bacteroidetes phy-
lum was the top predicted host. Although this genus is dif-
ferent from the experimentally determined host, the pre-
diction of Prevotella is consistent with the hypothesis of
Guerin et al. (68) that genus VI crAss-like phages, to which
crAss001 belongs, infect Prevotella.

We also applied our method to predict hosts for viruses
in two large-scale metagenomic datasets, one focusing on
marine viral genomes such as those discovered in Tara
Oceans, and the other including viral contigs in over 3000
geographically diverse metagenomic samples including ma-
rine and HMP samples. Our predictions had high consis-
tency with previous predictions made using simpler meth-
ods such as CRISPR or tRNA matches or gene-based sim-
ilarity to known reference viruses. More importantly, our
method greatly increased the number of viruses for which
predictions could be made, nearly 3-fold more viruses than
by Paez-Espino et al. These predictions were made using
a minimum score threshold of 0.95, with a false discovery
rate of <10% for nearly complete genomes and contigs of
length >10 kb at the phylum level. The newly predicted
VHPs revealed viruses for hosts without known infecting
viruses, and also expanded the diversity of viruses for hosts

with known isolate viruses, showcasing the usefulness of our
method in expanding knowledge of hosts in both ways.

A major advantage of our network-based integrated
framework is that it can be easily extended to incorporate
more meaningful features that can better inform virus–host
interactions in the future. Virus–host co-abundance profiles
have been shown to provide some evidence of virus–host in-
teractions (74,75), but Edwards et al. (20) suggested that its
performance on host prediction was relatively poor com-
pared to other measures such as CRISPR and sequence ho-
mology. Coenen et al. (76) also showed that virus–host cor-
relations are poor predictors of virus–host interactions. Our
preliminary analysis of incorporating such co-abundance
data as a feature likewise showed the model did not benefit
from adding the co-abundance feature (see Additional File
14 in the Supplementary Data). In general, co-abundance
can be a misleading feature because virus–host interac-
tions may not always yield positive or negative correla-
tions depending on the complexity of virus lifestyles (e.g.
lytic versus lysogenic) (77). In fact, we noticed that the fea-
ture coefficient for co-abundance when incorporated into
the model was not statistically significant, indicating that
the co-abundance cannot consistently be a useful predic-
tor. Moreover, virus–host interactions are dynamic with de-
lays and fluctuate over time, while metagenomic sampling
only captures the community at a single time point. Also,
the interactions can be nonlinear because of the compli-
cated many-to-many virus–host networks (76). Likewise,
non-specific hosts and viruses can exhibit spurious corre-
lations due to the computational bias in terms of the com-
positional data where the abundance vector is constrained
to a constant sum. Similarly, hosts may be incorrectly pre-
dicted to infect certain viruses because their hosts coinci-
dentally share similar niches and dynamics. Significant co-
abundance between a virus and a host nonetheless is con-
sistent with and can support in some cases the discovery
of a true virus–host interaction, but co-abundance evidence
alone should be taken with caution. Although we do not
exclude the possibility that co-abundance could be useful
under certain environments or for certain types of viruses,
it is not likely that a simple co-abundance measure based
on non-time series samples can well describe the virus–host
dynamics in general. More sophisticated model-based ap-
proaches that utilize virus and host abundances for host pre-
diction could in theory be incorporated in our model in the
future.

If other promising predictive virus–host features are dis-
covered in the future, these can easily be incorporated into
our framework. As noted above, inclusion of the BLAST
feature did not significantly improve the prediction model.
Simple nucleotide BLAST results, however, may not be
best suited for detection of genes shared between cross-
infecting viruses and their hosts. The discovery of auxil-
iary metabolic genes (AMGs) in viruses has emerged as a
valuable means to connect viruses to their hosts (16,78–80).
Protein-based homology searches or phylogenetic-based
detection of AMGs may be more informative means for
host prediction, and further development and incorpora-
tion of an improved AMG matching feature in our model
framework could further improve host prediction.



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 17

Sequence-based and alignment-based measures such as
CRISPR and BLAST scores generally have limited avail-
ability, but can provide solid evidence for virus–host in-
teractions when such signals are present. On the other
hand, alignment-free s∗

2 similarity can be computed for any
VHPs, but may not always perform as well as CRISPR
and BLAST. We compared the prediction accuracies for s∗

2
score and BLAST score when the hosts belonging to the
true host genus of the viruses are removed from the candi-
dates. The result showed that when the specific hosts were
removed, the prediction accuracy for BLAST at the family
level decreased markedly to 0.20, while the accuracy for s∗

2
was 0.32 (Additional File 15 in the Supplementary Data).
Therefore, alignment-based methods depend heavily on the
existence of the true host in the database, and they can per-
form much worse than the alignment-free methods for pre-
dicting hosts of new viruses when the true host genus is not
in the host candidate set. These results highlight again how
the integrated framework combining both alignment-based
and alignment-free features helps to complement the two
types of methods and improve the overall prediction accu-
racy.

Although the new model makes sizable improvements
over existing methods for both complete viral genomes and
viral contigs at different taxonomic levels, the prediction ac-
curacy at the genus level is still 59% for complete genomes
and 55% for 10 kb contigs. It is expected that with an
increased dataset of hosts and virus–host interactions for
training our models, the prediction accuracy of our method
will further increase. Our host dataset will be gradually up-
dated to include more newly discovered VHPs for training
and testing. However, we note that prediction accuracy at
the phylum level is already very high (∼90%). Since there
are many prokaryotic phyla (>75%) for which their viruses
have yet to be identified, our tool is promising to greatly ex-
pand characterization of novel groups of viruses.

In summary, our novel network-based integrated ap-
proach demonstrates how integration of multiple features
informative of virus–host interactions significantly im-
proves host prediction than any single feature. Application
of our method to a few datasets of metagenomically as-
sembled contigs demonstrates the strong prediction ability
of the model––yielding predictions largely congruent with
previous methods but more importantly generating many
more host predictions and identifying novel virus–host in-
teractions than previous approaches. This approach will be
valuable for identifying the putative hosts of newly discov-
ered viral genomes, particularly for the flood of new vi-
ral metagenomic data currently being generated. The flexi-
ble nature of our prediction framework also has the poten-
tial to be updated as new computational theories and bi-
ological understanding in virus–host interactions become
available.

DATA AVAILABILITY

Accession numbers for viral contigs in the real data stud-
ies can be found in the ‘Datasets’ section. All other relevant
data for training and testing the model and code are avail-
able at https://github.com/WeiliWw/VirHostMatcher-Net.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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gut: interactions between host, bacteria and phages. Nat. Rev.
Microbiol., 15, 397–408.

9. Hannigan,G.D., Duhaime,M.B., Koutra,D. and Schloss,P.D. (2018)
Biogeography and environmental conditions shape
bacteriophage–bacteria networks across the human microbiome.
PLoS Comput. Biol., 14, e1006099.
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