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Abstract: Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin’s lymphoma.
Despite being responsive to combination chemotherapy, median survival remains around 5 years due
to high rates of relapse. Sphingolipid metabolism regulates MCL survival and proliferation and we
found that sphingosine-1-phosphate (S1P) is upregulated in MCL cells. Therapeutic targeting of the
S1P1 receptor or knockdown of sphingosine kinase 1 (SK1), the enzyme responsible for generating
S1P, in human MCL cells results in a significant increase in Natural Killer T (NKT) cell activation.
NKT cells recognize glycolipid antigens presented on CD1d and can reduce MCL tumor burden
in vivo. Lipidomic studies identified cardiolipin, which has been reported to bind to CD1d molecules,
as being upregulated in SK1 knockdown cells. We found that the pretreatment of antigen presenting
cells with cardiolipin leads to increased cytokine production by NKT cell hybridomas. Furthermore,
the ability of cardiolipin to activate NKT cells was dependent on the structure of its acyl chains.
Collectively, these studies delineate novel pathways important for immune recognition of malignant
cells and could lead to the development of new treatments for lymphoma.
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1. Introduction

Mantle cell lymphoma (MCL) is characterized by its genetic hallmark, the chromosomal
translocation t(11;14), which results in increased expression of cyclin D1 in B cells, alterations in
the DNA damage response, and constitutive activation of key anti-apoptotic pathways, such as
phosphatidyl-inositol 3-kinase (PI3K)/Akt and nuclear factor-kB (NF-kB) [1]. Collectively, these
changes result in cell cycle dysregulation and give rise to profound genetic instability [2]. Despite being
initially responsive to combination chemotherapy, relapsed patients have an overall survival of less
than three years [3]. Therefore, it is essential to explore new treatment options targeting the numerous
dysregulated pathways that are operable in MCL. Immunomodulatory therapy directed towards
increasing immunologic killing of MCL cells, as well as boosting the numbers of cancer-directed
cytotoxic cells offers the possibility of long-term responses.

Natural killer T cells (NKT cells) are a subset of innate-like T cells that express certain natural
killer cell receptors and serve as a link between the innate and adaptive immune systems. NKT
cells are early producers of large amounts of Th1, Th2, and Th17 cytokines, and can directly mediate
cytotoxicity [4–6]. NKT cells have been demonstrated to play a role in autoimmune disease [7], tumor
surveillance [6,8], hematological cancers [9], infectious disease, and inflammatory conditions such
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as ischemia reperfusion injury [10]. NKT cells are characterized by a semi-invariant T cell receptor
(TCR) (Vα14Jα18 in mice and Vα24Jα18 in humans). Unlike conventional CD4 and CD8 T cells, NKT
cells are activated by glycolipid antigens presented in the context of the non-classical, class I major
histocompatibility complex (MHC)-like molecule, CD1d [11,12]. α-Galactosylceramide (α-GalCer) is
a potent activator of NKT cells [13,14], and following treatment with α-GalCer, NKT cells produce
cytokines, undergo clonal expansion, and subsequently activate other immune cells [15–19]. After
activation, human NKT cells can exhibit strong anti-tumor activity against many tumors [20,21].
Several groups have conducted clinical trials evaluating the effectiveness of α-GalCer as a potential
therapeutic immunomodulator of NKT cells that yielded modest results, potentially due to a reduction
in NKT cell number and function in cancer patients [22–27].

Sphingosine-1-phosphate (S1P) regulates proliferation, survival, and migration of mammalian
cells through both extracellular receptor-mediated and intracellular mechanisms [28–30]. S1P is
generated from sphingolipids, essential serum membrane lipids which are concentrated in lipid rafts.
There are several enzymes in this pathway, which culminates in sphingosine kinase (SK) conversion
of sphingosine into S1P. S1P is involved in malignant transformation, cancer cell proliferation,
inflammation, vasculogenesis, lymphocyte trafficking, and resistance to apoptosis. There are two forms
of sphingosine kinase: SK1 and SK2. Over-expression of SK1 has been reported to induce malignant
transformation and tumor formation in 3T3 fibroblasts [31], while SK2 has been shown to promote
acute lymphoblastic leukemia by increasing MYC expression [32]. In addition, SK1 has been shown
to be associated with tumor growth and poor outcomes in humans [33–38]. It is known that S1P has
a major regulatory role in supporting the circulating lymphocyte population [39]. Results from one
study implied a critical role for S1P signaling in MCL pathogenesis, as inhibition of S1P signaling via
treatment with FTY-720 (an immunosuppressant that binds to four known S1P receptors (S1P1, 3-5)
and inhibits downstream signaling) resulted in the time- and dose-dependent cytotoxicity of MCL
tumor cells [40]. However, the effect S1P plays in anti-tumor immune responses to MCL has yet to
be determined.

Here, we present evidence demonstrating that S1P signaling alters CD1d-dependent antigen
processing and presentation resulting in diminished NKT cell responses. We also show that blocking
S1P signaling or knockdown of SK leads to NKT cell-mediated killing of MCL. Knockdown of SK
alters the lipid repertoire of MCL, and we have identified a unique cardiolipin species that is increased
by SK knockdown and acts as an activating lipid for NKT cells. Our data suggests that SK activity and
subsequent S1P signaling by B cell lymphomas serves to facilitate evasion of lymphoma detection by
NKT cells. To our knowledge this is the first report demonstrating that SK activity and S1P signaling
by lymphomas can suppress CD1d-mediated NKT cell responses.

2. Materials and Methods

2.1. Cell Lines

DN32.D3 and N38-3C3 are type 1 NKT cell hybridoma cell lines [41]. The cells were cultured
in the presence of IMDM supplemented with 5% FBS, l-glutamine, and penicillin-streptomycin
(100 units/mL—100 µg/mL). L-CD1d cells were derived from the LMTK mouse fibroblast cell line and
were transfected to express high levels of mouse CD1d. These cells were cultured in DMEM with
10% FBS, 2 mM l-glutamine, penicillin-streptomycin (100 units/mL—100 µg/mL), and G418 sulfate
(500 µg/mL). LMTK cells transfected with an empty vector were used as controls [42]. The MCL
lines (SP53 and Jeko-1) were kindly provided by Dr. Raymond Lai (University of Alberta, Edmonton,
Canada). C1R-CD1d, a lymphoma cell line stably transfected with human CD1d cDNA was graciously
provided by Dr. Mark Exley (Harvard Medical School, Boston, MA). Healthy donor NKT cell lines
were kindly provided by Dr. Moriya Tsuji (The Rockefeller University, New York, NY) [10]. Phenotypic
characterization of all cell lines was confirmed by flow cytometry.
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2.2. Human Samples

Healthy donor sera samples (n = 10) were purchased from Innovative Research (Novi, MI, USA).
MCL patient plasma samples (n = 14) were collected from patients undergoing treatment at the
Marlene and Stewart Greenebaum Cancer Center at the UMSOM. The clinical diagnosis of MCL was
confirmed in our patient population using cytogenetics. All donors gave written informed consent
before enrolling in the study. The Institutional Review Board at the University of Maryland School of
Medicine (UMSOM) approved this investigation.

2.3. Primary Mouse Cells

All animal studies were conducted with the approval of the University of Maryland Institutional
Animal Care and Use Committee (IACUC). Spleens and livers were isolated from C57BL/6J mice
(bred in house) and pushed through a 70-µm cell strainer to generate single cell suspensions. Liver
mononuclear cells (MNCs) were separated from hepatocytes using Percoll (GE Healthcare, 17-0891-01),
as previously described [43]. The cells were then incubated in ACK Lysing Buffer (Quality Biological,
118-156-721) to remove red blood cells, washed, and counted prior to co-culture setup.

2.4. S1P Modulators, Lipids, and Reagents

SEW2871 and W146 were purchased from Cayman Chemicals. The cardiolipin mixture isolated
from bovine heart pericardium were obtained from Sigma (C1649-10MG). 18:1 cardiolipin and 16:1
cardiolipin were obtained from Avanti (710335 and 710339). S1P ELISAs were conducted in our
laboratory and by Dr. Parsons’ laboratory at the LSU School of Medicine using the S1P ELISA Kit
(Echelon, K-1900) according to the manufacturer’s instructions.

2.5. Cell Growth Assays

MCL cell lines were plated at 1e5 cells/well in 100 µL of media containing 1:10 diluted WST-1
reagent (Takara Bio, MK400). Absorbance at 440 nm was measured periodically and graphed. Each
condition was conducted in triplicate.

2.6. Co-Culture Studies

For S1P and cardiolipin, antigen presenting cells (APCs) were pulsed for the indicated time period
at 37 ◦C. The APCs were then washed with ice cold 1x PBS and set up in co-culture with NKT cell
hybridomas overnight. Then the cells were spun down and the level of IL-2 in the supernatant was
determined by ELISA (BD Biosciences, 555148). For the S1P receptor studies, the MCL cell lines Jeko-1
and SP53 were incubated with 10 µM SEW2871 (S1P1 agonist) or the S1P1 antagonist, W146, for 72 h.
The cells were then washed and set up in co-culture with primary NKT cells. After co-culture, IFN-γ
levels in the supernatant were determined by ELISA (BioLegend, 430101).

2.7. Cytotoxicity Assays

MCL cell lines were incubated with primary human NKT cells at the indicated ratios in the
presence of antigen, α-GalCer (100 ng/mL) (Avanti, 867000) for 20–24 h. NKT cell mediated cell lysis
was assessed by standard 51Cr-release assay.

2.8. RT-PCR

RNA was extracted using the RNeasy kit (Qiagen, Hilden, Germany). cDNA was reverse
transcribed by using iScript select cDNA Synthesis Kit (BioRad, Hercules, CA, USA). PCR was
performed as described [44]. In brief, mRNA was detected by RT-PCR with primers listed as follows:
hβ-actin, forward, 5′-ATCTGGCACCACACCTTCTACAATGAGCTGCG-3′, reverse, 5′-CGTCATAC
TCCTGCTTGCTGATCCACATCTCG-3′, S1P1, forward, 5′-AGCGTTCGTCTGGAGTAG-3′; reverse,
5′-TCAATGGCGATGGCGAGGAG-3′; S1P4, forward, 5′-GAACATCACGCTGAGTGAC-3′, reverse,



Cells 2020, 9, 1030 4 of 14

5′-AGATCACCAGGCAGAAGAG-3′. The thermal cycling conditions comprised of an initial
denaturation step at 95 ◦C for 10 min followed by 35 cycles of PCR using the following profile:
94 ◦C for 30 s, 60 ◦C for 1 min, and 72 ◦C for 2 min.

2.9. Real Time Quantitative PCR (qPCR) Analysis

Total RNA was isolated from lymphoma cell lines using RNeasy kit (Qiagen) and reverse
transcribed by iScript select cDNA Synthesis Kit (BioRad). Real-time quantitative PCR was performed
with an ABI prism 7300 Thermal Cycler (Applied Biosystems) using TaqMan Gene Expression Master
Mix and TaqMan Gene expression assays (Product No. 4331182 both from Applied Biosystems)
to amplify human SphK1 (Hs00184211_m1) and human SphK2 (Hs00219999_m1) according to the
manufacturer’s instructions. Data was quantitated using ImageJ (NIH) densitometry analysis.

2.10. Lipidomic Analysis

Lipidomic analysis was conducted by Lipomics, a division of Metabolon, Inc. Briefly, lipids are
extracted from samples in methanol: dichloromethane in the presence of internal standards. The
extracts are concentrated under nitrogen and reconstituted in 0.25 mL of 10 mM ammonium acetate
dichloromethane: methanol (50:50). The extracts are transferred to inserts and placed in vials for
infusion-MS analysis, performed on a Shimazdu LC with nano PEEk tubing and the Sciex SelexIon-5500
QTRAP. The samples are analyzed via both positive and negative mode electrospray. The 5500
QTRAP scan is performed in MRM mode with the total of more than 1100 MRMs. Individual lipid
species were quantified by taking the peak area ratios of target compounds and their assigned internal
standards, then multiplying by the concentration of internal standard added to the sample. Lipid class
concentrations were calculated from the sum of all molecular species within a class, and fatty acid
compositions were determined by calculating the proportion of each class comprised of individual
fatty acids.

2.11. Statistical Analysis

An unpaired two-tailed Student’s t-test and one-way ANOVA were performed using Prism
software (version 5.02 for Windows; GraphPad) to compare control and experimental groups.
A p-value < 0.05 was considered significant.

3. Results

3.1. S1P Pretreatment Inhibits CD1d-Mediated NKT Cell Activation

We first analyzed healthy donor (n = 10) and MCL patient (n = 14) plasma and found that S1P
levels were elevated in MCL patient plasma relative to healthy donors (5.31 ± 0.62 vs. 2.66 ± 0.45 µM;
Figure 1A). To examine the effects of S1P on NKT cell activation, C1R-CD1d cells were used as targets
and DN32.D3 NKT cell hybridomas served as effector cells. C1R-CD1d cells, DN32.D3, or both cell
lines were pre-treated with S1P for an hour. After co-culture, NKT cell activation was determined by
IL-2 ELISA. Pretreatment of the NKT hybridomas alone did not alter NKT cell responses compared
to untreated cells. However, pre-treatment of our target cells, C1R-CD1d, resulted in a significant
decrease in IL-2 production by NKT cells (Figure 1B). The decrease was not altered by additional
treatment of the NKT hybridomas. Taken together, these data suggest that S1P inhibits the ability of
the target cell to induce NKT cell activation and this pathway may contribute to failure of immune
surveillance in MCL.

3.2. Targeting of S1P1 Signaling Enhances NKT Cell-Mediated Lysis of MCL

We next examined whether targeting the S1P1 receptor on antigen presenting cells directly could
alter NKT cell responses. We utilized two different MCL cell lines, Jeko and SP53, as our target cells.
Both cell lines expressed the S1P receptor 1 (S1P1). Therefore, we investigated the effect of two drugs,
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SEW2871 and W146, that target S1P1 on NKT cell responses to MCL cell lines. Pretreatment of the
Jeko MCL cell line with either SEW2871 or W146 increased sensitivity to NKT cell-mediated lysis
(Figure 2A). Similarly, pretreatment of the SP53 MCL cell line with SEW2871, but not W146, resulted in
increased lysis when co-cultured with human NKT cells (Figure 2B). We next examined the expression
of different S1P receptors on each of our MCL cell lines by RT-PCR in the presence or absence of
SEW2871 or W146. We found that S1P1, to a greater extent than S1P4, was downregulated following
treatment with either SEW2871 or W146 in both the Jeko and SP53 cell lines (Figure 2C–E). Finally,
we found that pretreatment of MCL cells with either SEW2871 or W146 did not alter their ability to
induce cytokine production by human NKT cells (Figure 2F). These data demonstrate the therapeutic
potential of targeting S1P1 due to the enhanced lysis of MCL cell lines by human NKT cells following
drug pretreatment.Cells 2020, 9, x FOR PEER REVIEW 5 of 14 
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Figure 1. Pretreatment with S1P inhibits CD1d-mediated NKT cell activation. (A) S1P levels in
healthy donor and MCL patient sera were measured using ELISA. (B) NKT cells (DN32.D3) and B
cell lymphomas (C1R-CD1d) were pretreated with vehicle (DMSO) or S1P (1 µg/mL) for 1 h at 37 ◦C.
DN32.D3 (5 × 104) NKT cell hybridomas were incubated with C1R-CD1d cells (2.5 × 105) in the presence
of α-GalCer (100 ng/mL) for 20–24 h. ELISA was used to measure IL-2 production. Data was analyzed
by a two-tailed t-test with Welch’s correction. * p < 0.05.
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Figure 2. Targeting of S1P1 signaling enhances NKT cell-mediated cytotoxicity of MCL. (A) Jeko and
(B) SP53 cells were incubated with 10 µM SEW2871 or W146 for 72 h, washed, and co-cultured with
primary NKT cells at the indicated ratios in the presence of α-GalCer (100 ng/mL) for 24 h and NKT
cell mediated cell lysis was assessed by standard 51Cr-release assay. (C) MCL cell lines express S1P
receptors. Expression of S1P1 and S1P4 was determined by RT-PCR after incubation with 10 µM
SEW2871 (S1P1 agonist) or the S1P1 antagonist, W146, for 72 h. Expression was quantitated using
densitometry for S1P1 and S1P4 in (D) Jeko and (E) SP53 relative to B-actin. (F) IFN-γ levels were
determined by ELISA. Data are representative of three independent experiments. Data were analyzed
by one-way ANOVA. ** p < 0.001.
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3.3. Knockdown of Sphingosine Kinase Restores NKT Cell Responses to MCL

Next, we sought to examine the impact of directly targeting sphingosine kinase (SK). There are two
isoforms of SK, SK1 and SK2. We first measured the expression of SK1 and SK2 in the MCL lines Jeko
and SP53. There were higher expression levels of both SK1 and SK2 in SP53 cells compared to Jeko cells
(Figure 3A). In addition, SP53 cells secreted higher levels of S1P into the cell culture supernatant and
had higher intracellular levels of S1P, as measured in cellular lysates by mass spectrometry, compared
to Jeko (data not shown). Therefore, we knocked down SK in the SP53 cell line using shRNA. Although
we selectively targeted SK1, as shown in Figure 3B, the expression of SK1 and SK2 were reduced in both
SP53 clones (SK1-KD1 and SK1-KD2). After confirming that SK was knocked down, we also confirmed
that knockdown of SK corresponded to a reduction in S1P production (Figure 3C). In addition, we
found that the knock down of SK did not significantly impact cellular growth (Figure 3D).
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Figure 3. Generation of sphingosine kinase knockdown cell lines. (A) mRNA levels of SK1 and SK2 in
Jeko and SP53 MCL lines were normalized to 18S expression. (B) SP53 cells were stably transfected
with shRNA plasmids to knock down expression of sphingosine kinase 1 (SK1) or with a scrambled
shRNA control plasmid. Two clones were selected and used for experiments (SK1-KD1 or SK1-KD2).
Knockdown of SK was confirmed by quantitative real-time PCR (qPCR). SK1 and SK2 levels were
assessed relative to 18S. Expression in the parental cell line (SP53) was compared to the scrambled
shRNA control and the SK1-KD clones. (C) Reduction of SK results in decreased S1P production. S1P
levels in cell lysates were measured by ELISA. (D) Control (SP53), SK-KD1, and SK-KD2 cell growth
was monitored by WST-1 using absorbance at 440 nm. Error bars are contained within the points. Data
was analyzed by a two-tailed t-test. * p < 0.05; ** p < 0.001.

To determine whether knockdown of SK1 results in enhanced NKT cell responses, SP53-control,
SK1-KD1, or SK1-KD2 cells were co-cultured with human NKT cells. We then measured IFN-γ
production and cell lysis to determine the level of NKT cell responses. We found that human NKT
cells produced more IFN-γ when co-cultured with either SK1-KD1 or SK1-KD2 compared to SP53
(Figure 4A). We also found that human NKT cells were able to lyse both SK1-KD1 and SK1-KD2 to
a greater extent than they were able to lyse SP53 (Figure 4B). Finally, we measured the expression
of CD1d on SP53, SK1-KD1, and SK1-KD2 by flow cytometry and found all three to have similar
expression, confirming that the observed increase in NKT cell responses is not due to changes in surface
expression of CD1d (Figure 4C).
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Figure 4. Knockdown of sphingosine kinase restores NKT cell responses to MCL. (A) Human NKT
cells were co-cultured with SP53 and SK1-KD cells and NKT cell activation, as determined by IFN-γ
production, was measured by ELISA. (B) NKT cell specific lysis of SP53, SK1-KD1, and SK1-KD2
was assessed by standard 51Cr-release assay. (C) CD1d expression on SP53, SK1-KD1, and SK1-KD2
cell lines was determined by flow cytometry. Data was analyzed by one-way ANOVA. ** p < 0.001;
*** p < 0.0001.

3.4. Knockdown of Sphingosine Kinase Results in Increased Cardiolipin Levels

NKT cells can be activated or inhibited by glycolipids presented in the context of CD1d. The lipids
can be microbial in origin or they can be self-lipids. To examine differences between SP53, SK1-KD1,
and SK1-KD2, we analyzed their lipid profiles by mass spectrometry. We found increases in several
different lipid classes in the SK1-KD1 and SK1-KD2 cell lines compared to SP53, the most significant of
which was cardiolipin (Figure 5A). Cardiolipin is a tetra-acylated phospholipid found in both bacteria
and the inner-mitochondrial membrane. Therefore, we postulated that cardiolipin has the potential to
become an activating lipid for NKT cells and its increase in SK1-KD1 and SK1-KD2 could play a role in
the increased NKT cell responses previously observed.
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Figure 5. Lipidomic analysis of SP53 and SK1-KD MCL cell lines. (A) Lipidomic analysis of lipid
classes in SP53, SK-KD1, and SK1-KD2 cell lines. Three biological replicates of each cell line were
analyzed using differential mobility spectroscopy to determine the total number of moles of each lipid
class present per billion cells. The average number of moles per billion cells for cardiolipins of different
(B) acyl chain lengths, (C) saturation, and (D) select species were graphed for each of the three cell
lines. Data was analyzed by one-way ANOVA * p < 0.05; ** p < 0.001; *** p < 0.0001.

Next, we sought to further characterize the differences in cardiolipin by examining characteristics
such as acyl chain length and saturation. We found that the differences between the SK knockdown cell
lines and SP53 were greatest for cardiolipins with 16 and 18 carbon acyl chains (Figure 5B). In addition,
SK knockdown cells had increases in saturated, mono-unsaturated, and poly-unsaturated cardiolipins
(Figure 5C). Finally, we identified several subspecies of cardiolipin that showed significant differences
in expression levels (Figure 5D).
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3.5. Cardiolipin Stimulates Type 1 NKT Cells

To test whether cardiolipin can serve as an activating ligand for type 1 NKT cells, we examined
the ability of a mixture of bovine heart derived-cardiolipin to stimulate NKT cells. We pulsed L-CD1d
cells with two concentrations of the cardiolipin mixture for four hours prior to co-culture with NKT
cell hybridomas. We found that increased levels of cardiolipin resulted in increased IL-2 production
by both DN32.D3 (Figure 6A) and N38-3C3 (Figure 6B) NKT cell hybridomas. Next, we tested the
ability of cardiolipin to activate NKT cells using a primary cell culture system. Splenocytes from
C57BL/6J mice were pulsed with cardiolipin for four hours. The majority of T cells in the liver are
NKT cells, therefore, we co-cultured the cardiolipin loaded splenocytes with liver mononuclear cells
and assessed IFN-γ production. Importantly, we found that increased levels of cardiolipin resulted in
increased cytokine production (Figure 6C). Taken together, this data suggests that cardiolipin may be
an activating lipid for NKT cells.
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Figure 6. Treatment with cardiolipin enhances NKT activation. L-CD1d cells were pulsed with a
mixture of cardiolipin species (CLM) for 4 h at 37 ◦C prior to co-culture with (A) DN32.D3 or (B) N38-3C3
for 24 h. IL-2 production was measured by ELISA. (C) Mouse splenocytes were pulsed with CLM for 4
h at 37 ◦C prior to co-culture with mouse liver mononuclear cells (MNCs) for 48 h. IFN-γ levels in the
supernatant was then measured by ELISA. Each ELISA was conducted in triplicate. Data was analyzed
using a student’s t-test. * p < 0.05; ** p < 0.005; *** p < 0.0001.

To further delineate the species-specific differences observed in our lipidomic analysis, we utilized
two purified cardiolipin species, 18:1 and 16:1, that we predicted may be responsible for NKT cell
activation. We pulsed L-CD1d cells with increasing concentrations of either 18:1 or 16:1 cardiolipin
for 4 h prior to co-culture with DN32.D3 NKT cell hybridomas. There were no significant changes in
NKT cell responses following treatment of antigen presenting cells with 18:1 cardiolipin (Figure 7A).
However, NKT cell responses were significantly increased in the presence of 16:1 cardiolipin (Figure 7B).
The two cardiolipin species are identical aside from an extra two carbons on the acyl chain of 18:1
cardiolipin (Figure 7C) relative to 16:1 cardiolipin (Figure 7D). These data support the notion that
specific species of cardiolipin may induce NKT cell responses while other species may not be stimulatory.
Further studies are needed to elucidate all the structures that are activating compared to those that do
not result in NKT cell activation.



Cells 2020, 9, 1030 9 of 14
Cells 2020, 9, x FOR PEER REVIEW 9 of 14 

 

 

Figure 7. Identification of cardiolipin species that activates type 1 NKT cells. L-CD1d cells were pulsed 

in the presence of either purified (A) 18:1 or (B) 16:1 cardiolipin for 4 h at 37 °C prior to co-culture 

with DN32.D3 for 24 h. IL-2 production was then measured by ELISA. Each ELISA was conducted in 

triplicate. Structures of 18:1 and 16:1 cardiolipin are shown in (C), (D) respectively with the head 

group in blue, the acyl chain in black, and the extra carbons in red. Data was analyzed using a 

student’s t-test. * p < 0.05; ** p < 0.005. 

4. Discussion 

In this study, we present evidence demonstrating that increased S1P signaling results in changes 

in B cell antigen processing and presentation leading to reduced NKT cell activation. We also showed 

that blocking either S1P production or signaling permits NKT cell-mediated killing of MCL. Next, we 

showed that blocking S1P production through the knockdown of SK resulted in changes in several 

different lipid species, including an increased level of cardiolipin. Finally, we identified cardiolipin, 

specifically 16:1 cardiolipin, as a novel NKT agonist. These data further suggest that removal of tumor 

associated immunosuppressive factors, such as S1P, may be efficacious as a targeted therapeutic, by 

restoring presentation of endogenous NKT cell agonists. 

S1P was identified as a lipid metabolite that induces an increase in intracellular calcium and acts 

through inside out signaling [29,30]. S1P is generated from sphingolipids, essential serum membrane 

lipids which are concentrated in lipid rafts. It is synthesized via sphingomyelinase conversion of 

sphingomyelin into ceramide, then ceramidase converts ceramide into sphingosine and lastly 

sphingosine kinase converts sphingosine into S1P. S1P is involved in malignant transformation, 

cancer cell proliferation, inflammation, vasculogenesis and resistance to apoptosis. Over-expression 

of SK has been reported to induce malignant transformation, promote tumor proliferation, and be 

associated with poor outcomes in multiple tumor types [31–38]. Importantly, we have found that 

both SK1 and SK2 are highly expressed in lymphoma cell lines and that inhibiting SK1 restores NKT 

cell mediated killing and cytokine responses to MCL. Another group has found that inhibiting SK1 

results in apoptosis of MCF7, a breast cancer cell line [45]. In addition, an important role for the S1P 

pathway as a carcinogenic marker in a colon carcinogenesis model in rats has been shown, due to the 

up-regulation of Cox-2 and PGE2 [35]. 

Several studies have recently evaluated S1P as a therapeutic target for the treatment of lymphoid 

malignancies. It was shown that blocking S1P signaling with an agonist, FTY-720, resulted in 

increased apoptosis in multiple myeloma cells [46], induced cell death in chronic lymphocytic 

Figure 7. Identification of cardiolipin species that activates type 1 NKT cells. L-CD1d cells were pulsed
in the presence of either purified (A) 18:1 or (B) 16:1 cardiolipin for 4 h at 37 ◦C prior to co-culture
with DN32.D3 for 24 h. IL-2 production was then measured by ELISA. Each ELISA was conducted in
triplicate. Structures of 18:1 and 16:1 cardiolipin are shown in (C), (D) respectively with the head group
in blue, the acyl chain in black, and the extra carbons in red. Data was analyzed using a student’s t-test.
* p < 0.05; ** p < 0.005.

4. Discussion

In this study, we present evidence demonstrating that increased S1P signaling results in changes
in B cell antigen processing and presentation leading to reduced NKT cell activation. We also showed
that blocking either S1P production or signaling permits NKT cell-mediated killing of MCL. Next, we
showed that blocking S1P production through the knockdown of SK resulted in changes in several
different lipid species, including an increased level of cardiolipin. Finally, we identified cardiolipin,
specifically 16:1 cardiolipin, as a novel NKT agonist. These data further suggest that removal of
tumor associated immunosuppressive factors, such as S1P, may be efficacious as a targeted therapeutic,
by restoring presentation of endogenous NKT cell agonists.

S1P was identified as a lipid metabolite that induces an increase in intracellular calcium and acts
through inside out signaling [29,30]. S1P is generated from sphingolipids, essential serum membrane
lipids which are concentrated in lipid rafts. It is synthesized via sphingomyelinase conversion
of sphingomyelin into ceramide, then ceramidase converts ceramide into sphingosine and lastly
sphingosine kinase converts sphingosine into S1P. S1P is involved in malignant transformation, cancer
cell proliferation, inflammation, vasculogenesis and resistance to apoptosis. Over-expression of SK has
been reported to induce malignant transformation, promote tumor proliferation, and be associated with
poor outcomes in multiple tumor types [31–38]. Importantly, we have found that both SK1 and SK2 are
highly expressed in lymphoma cell lines and that inhibiting SK1 restores NKT cell mediated killing and
cytokine responses to MCL. Another group has found that inhibiting SK1 results in apoptosis of MCF7,
a breast cancer cell line [45]. In addition, an important role for the S1P pathway as a carcinogenic
marker in a colon carcinogenesis model in rats has been shown, due to the up-regulation of Cox-2 and
PGE2 [35].
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Several studies have recently evaluated S1P as a therapeutic target for the treatment of lymphoid
malignancies. It was shown that blocking S1P signaling with an agonist, FTY-720, resulted in increased
apoptosis in multiple myeloma cells [46], induced cell death in chronic lymphocytic leukemia [47], and
inhibited MCL pathogenesis in a SCID mouse model [40]. In addition, it was shown that S1P inhibited
NK cell-mediated lysis of the human melanoma cell line Hs294T [48], the Burkitt’s lymphoma cell line
Raji, and the myeloid leukemia cell line K562 [49]. This effect of S1P was reversed by FTY720 and a
second S1P1 antagonist, SEW2871.

Our data suggest that inhibiting S1P signaling may be a beneficial therapeutic modality in the
treatment of MCL because the blockade of S1P signaling could both inhibit proliferation of MCL and
restore NKT cell mediated cytotoxic responses to MCL. We found that pretreatment with SEW2871
and W146 had minimal effects on CD1d cell surface expression (data not shown), but restored NKT
cell-mediated killing of MCL. S1P is cleaved irreversibly to hexadecenal and phosphoethanolamine
(PE), by S1P lyase. PE can bind to CD1d molecules [50,51]. A recent study has shown that intracellular
pools of S1P are localized in the Golgi, as well as in late endosomal compartments [44]. We and
others previously demonstrated that CD1d molecules must traffic through endosomal compartments
in order to process and present antigen to NKT cells [41,52,53]. We also previously reported that the
activation of MAPK signaling pathways can alter CD1d-mediated NKT cell activation [54]. Perhaps
high intracellular pools of S1P in endosomal compartments of MCL alter CD1d-mediated antigen
processing and presentation.

Aberrant S1P signal transduction and intracellular transit in B cell lymphomas may potentially
result in the deregulation of CD1d-mediated activation NKT cells by lymphomas, contributing to the
NKT-cell activation deficit described here. Several possible mechanisms could contribute to the failure
of MCL cells to induce cytotoxic NKT cell responses, including alterations in lipid ligands, modifications
in intracellular trafficking of CD1d, and upregulation of MAPK or BCL-2 pro-survival signaling in
MCL cells. Of these possible mechanisms, our data demonstrates that alterations in lipid ligands plays
a role. Specifically, we found that several lipid classes, including cardiolipin, phosphatidylcholine,
phosphatidylethanolamine, and sphingomyelin were all upregulated after knockdown of SK in an
MCL cell line. Importantly, reducing SK1 resulted in the presentation of an endogenous activating
antigen (Figure 4A), without altering CD1d cell surface expression (Figure 4C). Thus, these data suggest
alterations in the repertoire of lipid classes can lead to the presentation of an endogenous activating
NKT cell ligand.

Cardiolipin is a tetra-acylated phospholipid that can be of either prokaryotic or eukaryotic origin
and regulates SK activity [55]. In prokaryotes, cardiolipin is a component of bacteria, specifically found
in the cell wall of gram-negatives. In eukaryotes, cardiolipin is only found in the inner mitochondrial
membrane [56]. Cardiolipin is known to bind to human CD1d molecules [57]. Cardiolipin has been
found to stimulate CD1d-restricted γδ T cells in mice [56]. In addition, bacterial-derived cardiolipin
was found to possibly stimulate type II NKT cells, which are CD1d-restricted but do not express the
semi-invariant NKT TCR associated with type I NKT cells [58]. An early study reported that cardiolipin
was not able to stimulate human type I NKT cells [59]; however, this study used a synthetic CD1d-Fc
fusion system to present the different lipid classes which may not completely recapitulate antigen
processing and presentation in live cells. In our study, we found that pulsing CD1d-expressing cells
with cardiolipin induced NKT cell activation. In addition, we found that certain cardiolipin species
were able to specifically activate type I NKT cells, in contrast to other species (Figure 6A,B). This was
intriguing as the acyl chain structure is known to change the ability of phospholipids to bind CD1d
and stimulate NKT cells [51], which also may explain why previous studies using bulk mixtures of
cardiolipin species did not identify it as an activating ligand. Moreover, changing the saturation status
of the cardiolipin chain causes cardiolipin to flip between activating and inhibiting TLR4 signaling [60].
In good agreement with these studies demonstrating the importance of cardiolipin’s acyl chain structure
in its function, we also have identified a unique cardiolipin species (16:1) that is able to serve as an
activating ligand for type 1 NKT cells.
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5. Conclusions

In summary, S1P plays a role in many pathways involved in tumor development and progression.
Our data suggest that S1P receptor signaling inhibitors can be used to both inhibit lymphoma growth
and to restore the anti-tumor functions of primary human NKT cells. Our studies also identified
a novel mechanism by which S1P receptor signaling inhibits CD1d-mediated NKT cell activation.
Future studies should examine the in vivo effects of SK knockdown to determine if they mirror
the in vitro systems. In addition, the mechanisms underpinning cardiolipin acyl chain regulation
in MCL along with its relationship to sphingosine kinase and S1P signaling needs to be further
elucidated. These studies will define the potential uses of S1P signaling modulators and enhance
clinical approaches for NKT cell-based immunotherapy for the treatment of MCL.
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