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In allogeneic transplantation, genetic disparities between patient and donor may lead to

cellular and humoral immune responses mediated by both naïve and memory alloreactive

cells of the adaptive immune system. This review will focus on alloreactive T and B cells

with emphasis on the memory compartment, their role in relation to kidney rejection, and

in vitro assays to detect these alloreactive cells. Finally, the potential additional value of

utilizing donor-specific memory T and B cell assays supplementary to current routine

pre-transplant risk assessment of kidney transplant recipients will be discussed.
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INTRODUCTION

Immunological memory, the capacity to mount a rapid and robust immune response when a
given antigen is re-encountered, protects individuals against a wide range of pathogens following
infections or vaccinations (1). Both cellular and humoral adaptive immune responses contribute
to this long-lasting protection, making long-lived memory T and B cells the central players in
immunological memory. These cells are generated by clonal expansion of a subset of antigen-
specific naïve cells during primary immune responses, and can persist over decades after the
pathogen has been eliminated (2–4). Although recent evidence suggests that some features of
immunological memory exist in innate immune cells, memory T and B cells of the adaptive immune
system will be the focus of this review (5).

While being extremely effective in protecting individuals against pathogens, memory T and B
cells can sabotage successful allogeneic transplantations by eliciting vigorous alloimmune responses
to donor antigens. Alloreactive memory T and B cells may arise as a result of exposure to
allogeneic human leukocyte antigens (HLA) through blood transfusions, pregnancies or previous
transplantations. Interestingly, individuals who have never been exposed to alloantigens may as
well harbor alloreactive memory as a result of heterologous immunity (6, 7).

Advances in immunosuppressive drugs have led to a dramatic reduction in acute rejection
rates resulting in significant improvements in short term allograft survival. However, lack of
improvement of long-term graft survival remains a major problem in kidney transplantation.
Furthermore, repeat transplantation candidates, as well as those with a history of pregnancy and
multiple blood transfusions who have broad HLA sensitization tend to accumulate on transplant
waitlists. These patients are not only difficult to pair with a crossmatch negative donor in order to
be transplanted but are also more susceptible to develop T cell and/or antibody-mediated acute and
chronic rejection unless special allocation algorithms or desensitization treatments are used (8–12).
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In the setting of kidney transplantation, the current practice
of immunological pre-transplant risk assessment mainly focuses
on the presence or absence of plasma cell-derived donor HLA
directed antibodies (DSA) in the serum of patients, in addition
to HLA matching between the patient and donor (13, 14).
This strategy, however, ignores the potential contribution of
alloreactive memory cells to graft rejection (15–19). In this
review, we will focus on alloreactive (memory) cells and their
possible contribution to rejection episodes primarily in the
setting of kidney transplantation, and provide an overview of
in vitro assays to detect alloreactive memory T and B cells.
Furthermore, we will elaborate on the potential use of these
assays in pre-transplant immunological risk assessment of kidney
transplant recipients.

CONTRIBUTION OF ALLOREACTIVE
T AND B CELLS TO GRAFT REJECTION

Alloreactive T Cells
Alloreactive T cells are considered to be the central players in
mediating allograft rejection. They contribute to both acute and
chronic rejection depending on the pathway utilized to recognize
donor antigens (both major and minor histocompatibility
antigens). T cells recognize alloantigens through the direct,
indirect or semi-direct pathway (Figure 1). The direct pathway
of T cell recognition is unique to allogeneic transplantation, and
involves both CD4 and CD8T cells of the recipient recognizing
intact allogeneic major histocompatibility complex (MHC)
antigens class II and I, respectively, expressed on the surface
of donor cells (Figure 1A). This pathway of allorecognition is
considered to be short-lived, especially for HLA class II, due
to the limited life-span of donor dendritic cells migrating to
lymphoid tissues of the recipient to initiate the immune response.
Therefore, the direct pathway T cells are considered to be the
predominant mediators of acute cellular rejections in the early
post-transplantation period, although MHC expressed on graft
parenchyma may as well directly activate T cells at any time after
transplantation, contributing to long term injury (20–23).

In comparison to conventional T cell responses to protein
antigens, the direct pathway alloimmune response is stronger,
likely due to the high frequency of direct pathway alloreactive
T cells (24). This allows for measurement of direct pathway
alloimmune responses in vitro without the need for priming
in mixed lymphocyte reactions (MLR). T cell alloimmune
responses measured in vitro involves CD4 and CD8T cells with
contributions both from naïve and memory T cell fractions
(25, 26). Between 1-10% of circulating T cells in humans are
known to be alloreactive as tested by traditional assays (27, 28).
Recently, using high throughput sequencing in combination
with MLR in healthy individuals, Emerson et al. observed an
average of 14,000 alloreactive T cell clones in each experiment
they performed. Strikingly, antigen-experienced memory T cell
clones made up to 60% of the alloreactive T cell repertoire (29).
In addition, the alloreactive memory T cell repertoire could
be detected at similar clonal frequencies in a later time point
sample when the same allogeneic donor was used for stimulation

in MLR, indicating their persistence in circulation. Presence of
alloreactive memory T cells in individuals who have never been
exposed to alloantigens is supportive for a role of heterologous
immunity by which T cells generated in response to infectious
or environmental antigens can cross-react with allogeneic MHC
antigens (30). Indeed, cross reactivity of virus-induced memory
T cells with allogeneic HLA has been shown to be common (7).
A classic example of cross reactivity of virus-induced memory
T cells with alloantigens is that of HLA-B∗08:01 bearing patients
who have been exposed to Epstein-Barr virus (EBV) infection
showing cross-reactivity to allogeneic HLA-B∗44:02 (6, 31).
Cross-reactivity of virus-induced T cell receptors (TCR) with
alloantigens could be of clinical relevance because they have been
shown to directly recognize donor MHC and cause allograft
rejection in murine studies. However, a significant impact on
transplantation outcome in humans has not been shown so far
(32, 33).

The indirect pathway is analogous to adaptive T cell responses
mounted to common protein antigens, and involves alloreactive
T cells of the recipient recognizing allogeneicMHC class I or class
II as processed peptides presented in the context of self MHC
class II (Figure 1B). Indirect pathway alloreactive CD4T cells can
provide help to induce cytotoxic CD8T cells and are known to be
the only cells that can provide help to alloreactive B cells (34–
36). The indirect pathway of T cell allorecognition is considered
to be long-lasting and particularly important in the development
of chronic allograft rejection because of exclusive cognate help
provided by indirect CD4T cells to alloreactive B cells leading
to alloantibody production. Indirect allorecognition can also
apply to alloreactive CD8T cells through cross-priming whereby
antigen presenting cells (APC) present alloantigenic peptides in
the context of class I molecules (37). However, indirect pathway
CD8T cells have been shown to have no role on alloimmune
response to vascularized cardiac allografts in murine models,
possibly because CD8T cells require direct contact with target
cells to exert their cytolytic effects (38). Additionally, indirect
alloresponses against minor histocompatibility antigens may also
occur. However, in comparison to the enormous polymorphism
of MHC, indirect allorecognition of minor antigens appears to be
less relevant (39).

Finally, in the semi-direct pathway, recipient T cells recognize
intact allo-MHC similar to direct way of allorecognition but on
the surface of self APC that have acquired allo-MHC by various
means including cell to cell contact or exosomes, suggesting a role
for both direct and indirect allorecognition pathways in chronic
alloimmune responses (Figure 1C) (40, 41).

Alloreactive B Cells
Humoral alloimmunity can lead to antibody mediated rejection
(ABMR), of which the chronic form is the leading cause of
graft loss in kidney transplantation (42). Interaction between
alloreactive T and B cells plays a key role in the generation of
full-blown humoral alloimmune responses. Help from indirect
pathway CD4T cells is essential for generating antibodies against
HLA, as with conventional protein antigens. Typically, when a
naïve B cell ligates a protein antigen via its B cell receptor (BCR)
in secondary lymphoid organs, it internalizes the antigen by
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FIGURE 1 | T cell allorecognition pathways. (A) (Direct pathway) Recipient T cells recognize intact donor alloantigens on the surface of donor APC. (B) (Indirect

pathway) Recipient T cells recognize processed donor allogeneic peptides presented on the context of self MHC antigen by recipient APC. (C) (Semi-direct pathway)

Recipient T cells recognize intact donor MHC acquired by recipient APC. MHC, major histocompatibility complex; APC, antigen presenting cell.

receptor mediated endocytosis and then migrates to the interface
between the B cell follicles and the T cell zone of the lymphoid
tissue. At the T-B cell border of the lymphoid tissue, activated B
cells present the processed peptide in the context of self MHC
class II to cognate CD4T cells in the presence of CD40-CD154
ligation (43). Activated B cells receiving help from CD4T cells
at the T-B cell border can either form an extrafollicular response
and become short-lived plasma cells or go back to B cell follicles
and initiate germinal center reactions (44). In the pre-germinal
center period, class switching to IgG isotype may occur whereas
somatic hypermutations are not observed and antibodies of
the extrafollicular foci are known to be low/moderate affinity
antibodies (45). Some of the activated B cells in the extrafollicular
foci may give rise to germinal center independentmemory B cells.
Within germinal centers, B cells undergo somatic hypermutation
to increase the affinity of their BCRs for the antigen. B cells that
recognize the antigen presented by follicular dendritic cells in
germinal centers internalize, process and present the peptides

to follicular T helper cells (Tfh) (46). In germinal centers, B
cells compete for limited availability of Tfh interactions of which
are critical for high affinity B cells to be selected further (47).
Those B cells that have an improved affinity for the antigen are
selected to leave the germinal centers either as isotype switched
memory B cells or plasma cells producing high affinity isotype
switched antibodies (IgG, IgA, and IgE). While B cells with
highest affinity antigen receptors are preferentially recruited to
the plasma cell pool, B cells with less high BCR affinity may be
selected for the memory B cell pools. Less stringent selection
criteria for memory B cells generates a more diverse memory B
cell repertoire compared to long-lived plasma cell pools (48, 49).
Some germinal center B cells leave germinal centers before the
class switch recombination occurs and may give rise to IgM
memory B cells which have the capacity to re-enter germinal
centers and give rise to new IgG memory B cells (45).

Following germinal center reactions, plasma cells home to the
bone marrow and mucosal tissues to become long-lived plasma
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cells, whereas memory B cells circulate in their quiescent form
until a reencounter with the antigen takes place. Despite the fact
that the fate of B cells following germinal centers is extensively
investigated in studies focusing on responses against pathogenic
or vaccine antigens, it is still unknown what proportion of B cells
going through germinal center reactions is committed to become
plasma cells or memory B cells. For some viral and vaccine
antigens, correlations of memory B cells with serum antibodies
are known (3) but it is not clear whether immunization against
a certain HLA antigen will always result in generation of
both memory and plasma cells and whether the ratio of these
cells is different in individuals, per route of immunization,
and even per HLA antigen encountered. Likewise, while more
diversity has been shown for the memory B cell repertoire in
comparison to serum antibodies using high throughput heavy
chain variable region sequencing of BCR and serum IgG in the
setting of tetanus toxoid vaccination in humans (49), knowledge
on memory B cell derived vs. serum HLA antibody profiles is
newly emerging with indications suggesting that they are not
identical (50–52). The latter is particularly important considering
the property of memory B cells to rapidly differentiate into
antibody producing cells and to give rise to donor-specific
antibody (DSA) responses in patients previously known to have
no serum DSA (53). In addition to antigen-specific re-encounter,
anamnestic responses can also derive from bystander activation
of HLA-specific memory B cells upon infection or vaccination
(54). In this context, given that exposure to viral infections shapes
the alloreactive T cell repertoire of an individual, we wondered
whether this would hold true for B cells as well. However,
by testing several virus-specific monoclonal antibodies against
HLA andmanyHLA-specificmonoclonal antibodies against viral
antigens, we did not detect such a cross-reactivity between viral
antigens and HLA for B cells at least at the level of monoclonal
antibodies (55).

T-B Cell Interactions
Interactions between alloreactive T and B cells in secondary
lymphoid organs may have implications on the strength and
specificity of alloantibody produced. A recent study in a
mice heart transplant model, designed to investigate solely the
contribution of indirect allorecognition to ABMR in the absence
of direct pathway CD8 cytotoxic T cells, showed that when a
high number of alloreactive CD4T cells are present to provide
help to B cells, this may lead to extrafollicular alloantibody
responses with moderate affinity yet still capable of binding to
endothelial cells and activating complement and causing acute
ABMR, regardless of the number of allospecific B cells (56). On
the contrary, germinal center activity leading to high affinity
antibody production and progression to chronic allograft injury
was more profoundly influenced by the number of antigen-
specific B cells provided that they receive help from Tfh cells (57).
Differences in the nature of interactions between alloreactive
CD4T cells and B cells shown in these studies suggest that some
de novo DSA that disappear early after transplantation may be a
product of extrafollicular foci, whereas those that persist may be
high affinity DSA produced by long-lived plasma cells and both
with the capacity to mediate ABMR.

Conventionally, CD4T cells and B cells that are specific for
different epitopes of the same antigen cooperate through linked
recognition in order to generate long-lasting humoral immunity
specific for a protein antigen. Interestingly, studies in mice have
shown evidence that B cells recognizing one donor MHC could
receive help from T cells specific for another allogeneic MHC on
the donor organ although the alloantibody levels generated were
relatively lower compared to the conventional way of receiving
help in this “unlinked help condition” (58). Interestingly, when
naïve CD4T cell help was abolished by co-stimulation blockade
targeting CD40/CD154 interactions, interferon-gamma (IFN-
γ) producing memory CD4T cells could still provide help to
B cells (59, 60). Hypothetically, in a setting where there are
multiple HLA mismatches between the patient and donor and
alloreactive T cell activation is independent of alloreactive B
cell activation, memory CD4T cells generated in response to a
previous alloantigen may provide help to a naïve B cell leading to
the production of a different alloantibody specificity and isotype
at least through extrafollicular immune responses (58). This type
of immune response in humans could also occur when high
frequency alloreactive memory CD4T cells are present before
transplantation as a result of previous alloantigen exposure or
heterologous immunity.

IN VITRO METHODS TO DETECT
ALLOREACTIVE T AND B CELLS

The development of in vitro methods allowing for accurate,
sensitive and reproducible detection and quantification of donor-
specific alloimmune responses has long been a challenge in the
field of transplantation immunology. Such assays are required
not only to detect the sensitization against a potential donor
before transplantation, and thus select the patient-donor pair
with the lowest risk of alloimmune responses, but also to
be able to monitor the ongoing alloimmune response post-
transplant with non-invasive methods in order to adjust the
immunosuppressive treatments. Currently available methods to
detect alloreactive T and B cells are outlined in Figures 2, 3,
respectively, and in Table 1.

Direct Pathway T Cells
T cells with direct alloreactive capacity have been shown to
play a predominant role in acute rejection occurring early after
transplantation. Mixed lymphocyte reaction (MLR) stands as the
traditional and most commonly used method to measure donor
HLA class II specific T cell alloreactivity and forms the basis for
complementary approaches to further assess the frequency and
diversity of the alloreactive T cell repertoire. The MLR is based
on culturing patient peripheral blood mononuclear cells (PBMC)
or T cells as responder cells with irradiated allogeneic donor cells
(stimulator) for 5–7 days (Figure 2A). For an accurate donor-
specific response calculation, autologous cells of the patient
against irradiated autologous targets, fully HLA-mismatched
third-party cells as stimulators, and a non-specific stimulation
of patient T cells (e.g., PHA or Concavalin-A) as a positive
control should preferentially be included. Approximately 18–24 h
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FIGURE 2 | Methods to detect alloreactive T cells. (A) Proliferation of direct pathway alloreactive T cells following 5–7 days incubation of recipient cells (responder)

with irradiated donor cells (stimulator) can be measured by 3H-thymidine incorporation into proliferating cells in MLR. (B) Following a 18–24 h MLR in ELISPOT plates,

IFN-γ producing direct pathway primed/memory T cells can be visualized by addition of the IFN-γ detection antibody. (C) Following a 6-day MLR, CFSE-low dividing

direct pathway alloreactive T cells are sorted by FACS and genomic DNA is isolated for high throughput TCR-β CDR3 sequencing. This generates an alloreactive TCR

repertoire which can then be compared to the TCR repertoire of the unstimulated patient sample. 3H-thymidine, tritiated thymidine; CFSE, carboxyfluorescein

succinimidyl ester; MLR, mixed lymphocyte reaction; TCR-β, T cell receptor beta chain; FACS, fluorescence activated cell sorting; CDR3, complementarity

determining region-3. Dark blue circles represent alloreactive T cells. *These methods are also being used for detecting indirect pathway alloreactive T cells by

replacing irradiated donor cells with donor cell fragments, synthetic peptides or synthetic HLA molecules.

before the end of the MLR, cells are pulsed with radioactive
thymidine to determine the level of proliferating patient T cells.
Early studies have defined the relative donor-specific response
rate either as hypo-responsiveness or as hyper-responsiveness
in kidney transplant recipients and related these responses to
good graft function or acute rejection within the first year after
transplantation, respectively (61, 62). However, limited predictive
value of the MLR for acute rejection has been reported since
(63, 64).

Measuring proliferation alone in MLRs does not give accurate
information on the effector functions or the frequency of donor-
specific alloreactive cells. While tedious limiting dilution assays
can be used to quantify both cytotoxic T lymphocyte precursors
and IL-2 producing helper T cells (65, 66), a carboxyfluorescein
succinimidyl ester (CFSE)-based MLR can easily help to
dissect precursor frequencies of dividing alloreactive CD4 and
CD8T cells. Measuring CFSE dilutions in MLR using flow

cytometry provides a better estimation of precursor frequencies,
since CFSE dilution indicates the number of times the cells
have divided throughout the entire MLR rather than giving
a snapshot of proliferation over a period of time in culture
as thymidine incorporation does. Macedo et al. showed that
CD4 and CD8T cells proliferated equally in response to allo-
stimulation with average frequencies of 4% of total T cells
by using a CFSE-MLR in combination with additional cell
markers (25). However, precursor frequency calculations should
be interpreted carefully because of the potential bystander
proliferation of non-alloreactive clones in MLRs.

Both naïve and memory T cells contribute to alloimmune
responses (25, 26, 30). Given that memory T cells are primed
to respond to alloantigens more rapidly in comparison to
their naïve counterparts, Heeger and colleagues developed an
enzyme-linked immunosorbent spot (ELISPOT) assay in which
IFN-γ producing alloreactive primed/memory T cells could
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FIGURE 3 | Methods to detect HLA-specific memory B cells. (A) Peripheral blood B cells can be polyclonally activated and IgG isolated culture supernatants can be

screened for memory B cell derived-HLA antibodies using luminex single antigen bead assays. (B) Peripheral blood B cells can be stained with HLA-tetramers using

flow cytometry. (C) HLA-specific memory B cells can be quantified by ELISPOT assay using either synthetic or donor-derived HLA molecules following in vitro

polyclonal activation. ELISPOT, Enzyme-linked immunosorbent spot.

be detected and quantified upon 18–24-h MLRs (Figure 2B)
(67, 68). Using the IFN-γ ELISPOT assay, several researchers
found a correlation between pre-transplant alloreactive memory
T cell frequencies and subsequent acute rejection within the first
year of kidney transplantations, independent of HLA antibodies
or HLA matching (16, 67–69). These results, in combination
with efforts to bypass the need for donor cells inspired its
utilization as a screening tool against a panel of allogeneic
stimulator cells (panel of reactive T cells-PRT) in pre-transplant
risk assessment of kidney transplant recipients, analogous to
panel reactive antibody testing (70–72). Using this PRT approach,
Poggio et al. showed that 63% of pre-transplant PRT-positive
patients experienced acute cellular rejection in a small cohort of
30 transplant recipients (72). However, a recent study performed
on 168 consecutive kidney transplant recipients concluded

that pre-transplant IFN-γ ELISPOT positivity correlated with
biopsy proven acute rejection only when performed in a donor-
specific manner and not against a panel of surrogate donors
(17). While a clear correlation between donor-specific pre-
transplant IFN-γ ELISPOT and acute rejection risk could not
be established in a multicenter clinical trial of 176 kidney
transplant recipients (73), Crespo et al. found a strong correlation
between IFN-γ ELISPOT positive patients and early acute
cellular rejections only in a subset of patients not receiving T
lymphocyte depleting induction therapy (74). The latter finding
is particularly interesting considering that after T lymphocyte
depleting therapies, homeostatic proliferation favors memory
T cell population. Yet, lower memory T cell frequencies
may be due to the effect of other immunosuppressive agents
used in combination with T cell depleting agents such as
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TABLE 1 | Overview of methods to detect alloreactive T and B cells.

Method Principle Duration Properties Limitations

T cells Mixed lymphocyte

reaction (MLR)

Incubation of recipient

cells with intact donor

cells (direct

allorecognition) or

fragmented donor cells

(indirect allorecognition)

6–7 days -Proliferation by thymidine

incorporation

-Frequency calculation by limiting

dilution or CFSE-dilution analyses

-Cytokine and sCD30 measurement

in culture supernatants possible

-Measurement of direct and indirect

alloreactive T cell responses

-Requirement for donor cells

-Too labor intensive for accurate frequency

calculation

-Bystander proliferation of non-alloreactive

T cell clones

-Indirect pathway measurement lacks

specificity and sensitivity

IFN-γ ELISPOT MLR in ELISPOT plates 18–24 h -Number of IFN-γ producing

alloreactive primed T cells

-Measurement of direct and indirect

alloreactive memory T cell responses

-Low predictive capacity for clinical

outcome at individual patient level

-Indirect pathway measurement lacks

specificity and sensitivity

TCRβ-CDR3

sequencing

CFSE-MLR followed by

high throughput

sequencing

6–7 days -Longitudinal monitoring of changes

in the alloreactive clone size and

diversity

-Currently only used to measure

direct alloreactive T cell responses

-Requirement for pre-transplant MLR

-Current assay costs

B cells B cell culture

supernatant

analysis

In vitro polyclonal

activation of peripheral

blood B cells

10 days -Qualitative assay detecting

memory-B cell derived HLA

antibodies in supernatants

-Enables direct comparison of serum

and memory HLA antibody profiles

-Easy-to-apply and standardize in all

HLA labs

-High sensitivity and specificity

-Does not allow for quantification of

HLA-specific memory B cells

-Long culture time

HLA-specific

tetramer staining

Binding of HLA

tetramers to B cell

receptors

1 days -Quantitative assay providing

percentage of HLA-tetramer positive

B cells

-Straightforward method using

flow-cytometry

-Non-specific tetramer binding to B cells

-Not all HLA-tetramer positive B cells

secrete antibodies

-Requires a second step of cell sorting

and culturing

-Limited resources for synthetic HLA class

II molecules

HLA-ELISPOT In vitro polyclonal

activation of peripheral

blood B cells followed

by binding of IgG to

synthetic or lysate HLA

6–7 days -Fully quantitative assay

-Each HLA-antibody producing

memory B cell can be visualized as

spots

-Labor intensive

-Difficult to test against multiple donor

HLA mismatches when using synthetic

HLA molecules

-Limited resources for synthetic HLA class

II molecules

-Requirement for donor cells when lysate

is used

-Difficult to standardize for clinical use

TCRβ-CDR3, T cell receptor-beta chain, complementarity determining region 3; CFSE, carboxyfluorescein succinimidyl ester; sCD30, soluble CD30.

calcineurin inhibitors (75, 76). Moreover, although a harmony
on standardization and validation of IFN-γ ELISPOT assays
between different laboratories has been shown (77, 78), the
IFN-γ ELISPOT approach suffers from predicting outcomes for
individual patients despite correlations with outcome at the
population level (79).

CD30 is considered to be a marker to identify a subset of
alloreactive T cells producing IFN-γ in vitro (80). Several studies
showed the pre- and post-transplant prognostic value of serum
soluble CD30 (sCD30) levels in predicting graft survival and
efficacy of immunosuppressive treatments in kidney transplant
recipients (81, 82). More recently, Velasquez et al. have shown
the predominant dependence of sCD30 release on memory
CD4T cells in MLR culture supernatants, suggesting that high
serum sCD30 levels in kidney waitlist patients could be attributed
to active memory T cell responses (83). While this may be an
explanation for the significantly lower 3-year graft survival rate

in patients with simultaneous pre-transplant DSA and sCD30
positivity in comparison to those with DSA only (84), lack of
direct biological link between deleterious DSA and sCD30 as well
as the absence of evidence on whether sCD30 release is correlated
with donor-specific T cell proliferation render sCD30 to be a
non-specific marker of immune activation.

Recently, with the advent of T cell receptor deep sequencing
in combination with CFSE-MLR, the size and diversity of the
donor-specific T cell repertoire of a particular patient can be
monitored before and after transplantation (29, 85). This can
be achieved by fluorescence activated cell sorting (FACS) of
alloreactive CD4 and CD8T cells of the patient based on CFSE-
MLR, isolating genomic DNA from the divided alloreactive
populations as well as from unstimulated patient cells and
comparing TCR-beta chain complementarity determining region
3 (CDR3) using high throughput sequencing (Figure 2C). Since
each individual T cell clone has a distinct CDR3 sequence, such
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an approach allows for generation of a “catalog” demonstrating
alloreactive clone size and diversity for a patient. Using
this approach in a cohort of combined kidney-bone marrow
transplant patients, Morris et al. found a decrease in circulating
pre-transplant donor-reactive CD4 and CD8T cell clones in
tolerant patients, whereas such a reduction was not observed
in non-tolerant patients on immunosuppression (85). The same
approach can be used for monitoring changes in frequencies
of alloreactive naïve and memory T cells by mapping MLR-
expanded alloreactive T cell fractions to the sorted naïve
or memory fractions of the unstimulated population (26).
However, cell numbers, as well as low frequency clones may
be a limiting factor in practice. Even so, TCR-beta CDR3
sequencing stands out to be a highly promising method by
which post-transplantation fate of donor-specific direct pathway
alloreactive T cell clones can be monitored in comparison to pre-
transplant “catalog” of a patient without the need for further
functional assays.

Indirect Pathway T Cells
Several studies suggested a role for indirect pathway alloreactive
T cells in both acute and chronic allograft rejection of kidney,
heart and lung transplant patients using the MLR-based methods
originally applied for direct allorecognition (20, 21, 23, 86–90).
Since indirect allorecognition is caused by the activation of T cells
by processed alloantigens presented as peptides in the context of
self MHC class II, properly fractionated cells can theoretically
be used as the source of antigens, given the assumption that no
intact HLA molecules are remaining (21, 23). Increased indirect
pathway responses in kidney transplant recipients experiencing
chronic rejection were found when cytoplasmic membrane
proteins from donor cells were used to stimulate patient T cells
in MLR (21). Using a similar approach in IFN-γ ELISPOT assays,
a significant correlation between proteinuria and indirectly
activated IFN-γ secreting primed/memory T cells in patients >2
years after kidney transplantation was shown (23). While cellular
fragments likely provide a proper representation of the donor
alloantigen repertoire, controls should be taken along in order
to exclude involvement of direct/semidirect pathway recognition
which may activate patient T cells due to residual intact antigens
in these donor cell fragment preparations. On the other hand,
lack of standardization in preparation of cellular fragments may
lead to poor reproducibility. To overcome this issue, synthetic
peptides produced in a standardized way, corresponding to
polymorphic domains of mismatched donor MHC class I and
II as well as peptides deriving from oligomorphic domains can
be used. However, one should be aware of the possibility of
the recognition of neo-epitopes which do not exist in vivo on
peptides by recipient T cells and include peptides from self HLA
as controls (91–94). Recently, HLA monomers were suggested
as tools to study indirect alloreactivity, but the requirement for
very high concentrations of these monomers in order to induce
a reproducible indirect T cell response limited their use as the
antigen source in this setting (95, 96).

Methods to detect indirect pathway are particularly important
since only indirect pathway CD4T cells can provide help for
alloreactive B cells to produce alloantibodies, as shown in animal

models (35, 36). On the other hand, currently there is no reliable
in vitro assay to detect indirect pathway CD4T cells mainly due
to the problems related to the antigen source used to activate
these T cells (specificity) and the low frequency of indirectly
recognizing T cells (sensitivity) (97).

HLA-Specific Memory B Cells
Humoral alloimmune responses to mismatched donor HLA can
be detected as circulating HLA antibodies or as HLA-specific
memory B cells. Serum antibodies are produced by long-lived
plasma cells residing in the bone marrow, whereas memory B
cells are quiescent cells that continuously circulate between the
secondary lymphoid organs and peripheral blood. In kidney
transplantation, pre-existence or de novo development of IgG
isotype DSA has been clearly shown to be associated with both
acute and chronic ABMR and poor graft survival (11, 12, 98).
Given that memory B cells may replenish the pool of long-lived
plasma cells and may harbor a more diverse repertoire than
serum (99), current immunological risk assessment based on
detection of circulating HLA antibodies may be incomplete due
to the lack of information on the possible presence of donor-
reactive memory B cells (53).

Unlike plasma cells that spontaneously produce antibodies,
memory B cells need to be stimulated either by re-encountering
the same antigen they have seen in primary responses or
via bystander activation in a non-antigen specific manner to
become antibody producers (54, 100). In order to be detected
as antibody secreting cells in vitro, memory B cells need to
be polyclonally activated (101). While several protocols exist
to activate B cells in vitro, it is critical that the polyclonal
activation cocktail does not induce isotype switching in the naïve
B cell population allowing for accurate detection of antibodies
deriving from only pre-existing memory B cells. These cocktails
stimulate B cells either by ligation to the BCR or Toll-like
receptors and/or costimulatory molecules in combination with
B cell cytokines and growth factors (102, 103). The ability of
in vitro activated B cells from alloantigen exposed individuals
to secrete HLA-specific antibodies was first demonstrated by
our group, paving the way to the development of HLA-specific
memory B cell assays (104). In a few studies screening for HLA
antibodies in culture supernatants, neat culture supernatants
were 10-fold concentrated in order to increase the detectability
of the HLA antibodies. A recent method developed by our
group in which IgG isotype of antibodies are isolated from
culture supernatants resulted in ∼20% increase in detectability
of HLA-specific memory in alloantigen exposed individuals in
comparison to 10-fold concentration (Figure 3A) (52). In a small
cohort of 13 alloantigen exposed individuals, we showed that
HLA antibody profiles derived from serum and memory B cells
were not identical. Unlike the sequencing of BCR and serum IgG
in the setting of tetanus toxoid vaccination (49), a broader serum
repertoire was the most commonly observed profile, followed by
a complete overlap of HLA antibody specificities in serum and
culture supernatants. Interestingly, 10% of the HLA antibody
specificities were only found in the memory B cell compartment,
which may be of clinical relevance. In a cohort of 20 kidney
patients transplanted across a DSA barrier we found that
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concurrent presence of donor-specific memory and serum DSA
pre-transplantation was associated with higher 1-year incidence
of ABMR and more severe microvascular inflammation in
allograft biopsies (19). While supernatant analysis of IgG isolated
cultures is an easy and sensitive way of profiling memory B
cell derived HLA antibodies in addition to its potential in
clinical use, it does not allow for quantification of HLA-specific
memory B cells.

One way to quantify HLA-specific memory B cells is based
on the ability of BCR to bind to synthetic HLA molecules and
can be achieved by flow cytometric analysis upon staining B cells
withHLA-tetramers (Figure 3B) (105, 106). Tetramer staining by
flow cytometry requires a second step of sorting and culturing
to confirm the antibody production capacity of these tetramer
positive cells. Considering that not all tetramer positive cells will
turn out to be antibody producers, in combination with non-
specific binding of BCRs to HLA tetramers, quantification of
HLA-specific memory B cells by tetramer positivity alone should
be interpreted cautiously.

HLA-ELISPOT assays combine the ability of B cells to
produce antibodies upon in vitro polyclonal activation with
BCR’s ability to bind to synthetic HLA molecules, thereby
enables detection and quantification HLA-specific memory B
cells (Figure 3C). Importantly, since ELISPOT assays purely
rely on the capacity of activated B cells to produce antibodies
in vitro, viability of the stimulated cells at the end of pre-
culture phase plays an extremely important role in the quality
and accuracy of the ELISPOT results. Hence, in contrast to
supernatant analysis favoring longer culture periods up to 10–
12 days to achieve the highest IgG concentrations in the culture
supernatants, pre-culture phase of ELISPOT assays are preferred
to be 6–7 days in order to have highest number of viable
cells producing antibodies. Following 6–7 days of culturing,
these polyclonally activated B cells are transferred to special
ELISPOT plates coated with anti-IgG antibodies to capture the
IgG isotype of antibodies produced by polyclonally activated
memory B cells. In the second phase of the assay (visualization),
antibody fingerprints captured on the filter of ELISPOT plates
can be visualized as a single spot representative of one HLA
antibody producing cell, using either synthetic (monomeric or
multimeric) or donor-lysate derived HLA molecules serving as
detection matrix (18, 107–110). Since HLA-specific memory B
cells assays are not standardized assays such as the commercially
available HLA-antibody detection kits, it is critical to include
positive and negative controls to assure a certain standard
in each phase of ELISPOT assay. In this regard, performing
total IgG ELISPOT assays with every HLA-specific memory B
cell ELISPOT is necessary in order to confirm that polyclonal
activation indeed gave rise to antibody producing cells at the
end of the pre-culture phase. Regarding the visualization phase,
one such control would be including HLA-specific hybridoma
cells to assure that the HLA target used as the detection matrix,
regardless of its source, can give rise to a positive signal (111,
112). Similarly, since no HLA-specific antibody production is
expected to occur against self, autologous controls using self
HLA as the detection matrix can serve as a negative control
in ELISPOT assays. Furthermore, when analyzing memory B

cell assays, one should take into account the frequency of
spots in autologous controls, if any, as well as the total IgG
production capacity of the polyclonally activated cells in order
to accurately define the frequency HLA-specific memory B
cells per IgG producing cells (110). Using ELISPOT methods,
increased frequencies of HLA-specific memory B cells in the
absence of serum DSA pre-transplantation and at the time of
ABMR in kidney transplant patients have been reported (18,
113). While these results demonstrate the clinical relevance of
HLA-specific memory B cell testing in addition to serum DSA
analysis, complexity of the ELISPOT method in addition to the
labor intensity necessary for accurate performance makes clinical
utility of HLA-ELISPOT assays difficult. It is important to note
that inherent to all antigen specific B cell detection methods
performed on peripheral blood samples, HLA-specific memory
B cells may not be circulating at the time of sampling and
instead can be residing in secondary lymphoid organs, precluding
their detectability.

A PLACE FOR HLA-SPECIFIC MEMORY
T AND B CELL ASSAYS IN
PRE-TRANSPLANT RISK ASSESMENT?

Alloreactive immune memory contributes to early allograft
rejection that is difficult to block or inhibit, rendering a subset
of kidney transplant recipients at risk for developing ABMR or
T cell mediated rejections (TCMR) (14). To further improve
pre-transplant risk estimation in these patients, it would be
appropriate to implement T and B cell memory assays as
additional tools.

Donor-specific alloreactive T cells are the central players
in allograft rejection and a relatively large fraction of this
repertoire consists of memory T cells (29). In this regard,
IFN-γ producing alloreactive T cell frequencies of the direct
pathway as measured by ELISPOT could be a good assay
candidate to be used in practice. However, the actual predictive
value per individual patient needs to be determined by
well-characterized large scale studies, such as the BIO-DrIM
consortium (114). Moreover, the need for donor cells in addition
to the fact that IFN-γ ELISPOT can only be used to screen
patients for living-donor transplantations due to the time
consumed to perform the assay are the obstacles in the way of
its use.

Currently, high throughput TCRβ CDR3 sequencing of
alloreactive direct pathway T cells selected upon MLR offers
the possibility to monitor the changes in the frequency of
donor-specific T cell clones after transplantation. Application of
this approach in larger cohorts may identify the dominant
T cell clones leading to rejection or tolerance, yet still
requirement for pre-transplant MLR is still a limitation
for clinical use. Nonetheless, modification of the TCRβ

CDR3 sequencing for indirect pathway T cells is desired
to improve our understanding of the mechanisms involved
in chronic allograft rejection. Since indirect allorecognition
plays a central role in graft rejection and tolerance, the
ability to measure indirect allorecognition accurately is
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an absolute requirement to understand the evolution of
alloimmune responses and aid-in application of tailor-made
immunosuppressive approaches.

Recently, high throughput sequencing technology has been
applied to monitor changes in the B cell repertoire before and
after desensitization treatments in highly sensitized individuals
with the aim to be able to distinguish responders to treatment
from non-responders however no dominant B cell clone that may
influence the response to treatment was found (115). In a recent
study involving a small cohort of pediatric kidney transplant
recipients, B cell repertoire was longitudinally assessed using
high throughput BCR sequencing. Patients who experienced
rejection had higher B cell diversity before transplantation
which decreased post transplantation in comparison to those
who did not progress to rejection or chronic injury (116).
While BCR heavy chain variable region CDR3 analyses in
these studies provide information on the bulk B cell repertoire,
HLA-specific IgG and memory B cell repertoires can also be
delineated using a similar approach in combination with HLA-
specific B cell and antibody sorting. An ideal HLA-specific
memory B cell assay, however, should be easily applicable
in all HLA laboratories in a standardized way and should
preferentially be compatible to current practice of serum HLA
antibody analysis.

CONCLUSION

Currently, no single assay is capable of capturing all aspects of
alloreactive cellular and humoral immune responses. Therefore,
combinations of different assays in addition to current practice
should be used to have a complete picture of the alloimmune
response. Inherent to all the above-mentioned assays sampling
peripheral blood, responses from circulating lymphocytes
detected in these assays may not be reflective of those infiltrating
the donor organs or some responses may be undetected because
donor-specific cells might be residing within the graft or in
secondary lymphoid organs. Nevertheless, in order to better
understand the predictive values of these assays for individual
patients, studies with larger cohorts are warranted.
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