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ABSTRACT: In this study, we observed the enhanced photocatalytic activity of
a few-layer WS2/ZnO (WZ) heterostructure toward dye degradation and H2
production. The few-layer WS2 acted as a co-catalyst that separated
photogenerated electron/hole pairs and provided active sites for reactions,
leading to the rate of photocatalytic H2 production of WZ being 35% greater
than that over the bare ZnO nanoparticles. Moreover, vortex-stirring accelerated
the mass-transfer of the reactants, leading to the efficiency of dye photo-
degradation being 3 times higher than that obtained without high-speed stirring.
We observed a similar effect for H2 production, with greater photocatalytic
performance arising from the increased mass-transfer of H2 from the catalyst
surface to the atmosphere.

■ INTRODUCTION

In the quest to overcome energy shortages and solve wastewater
problems, finding environmentally friendly and low-cost
methods remains challenging.1−8 Among them, semiconduc-
tor-based photocatalysts have great potential because they can
harvest and convert light into chemical energy.9−11 For example,
transition-metal dichalcogenides are particularly useful, having
high intrinsic electrical conductivities, tunable band gaps, and an
abundance of active sites for photocatalytic reactions.12−14 In
particular, WS2 is well established as an active photocatalyst for
dye degradation andH2 generation. However, the photocatalytic
ability of WS2 is highly correlated to its thickness. As the
thickness and the size of WS2 decrease, the band gap of WS2 is
larger and more active sites are exposed at the edge of the
nanosheets, leading to the enhanced photocatalytic efficiency
under solar light.15 Furthermore, WS2 is generally hybridized
with other materials for use as a co-catalyst to enhance charge
separation and inhibit exciton recombination.16−19 For
instances, Xu et al. demonstrated a 26-fold enhancement of
H2 production rate of few-layered 2H-WS2 on CdS, comparing
to bare CdS.20 On the other hand, ZnO is one of the excellent
candidate materials for sustainable energy production in
consideration of its high photoactivity, low cost, nontoxicity,
and stability.21,22 Nonetheless, its applicability has been limited
by fast charge recombination and a wide band gap (ca. 3.37
eV).23 Therefore, we anchored few-layer WS2 (with sufficient
active sites) onto ZnO to facilitate charge separation and
photocatalytic reactions, suspecting that we might also improve
the ability of ZnO to utilize solar light.24

The mixing of reactants can increase their mass-transfer
effects and their abilities to interact with substrates, thereby

accelerating catalytic reactions.25−27 Steady mixing can
effectively enhance the mass-transfer and mobility of generated
reactive species from the catalyst surface (or boundary layers)
into solution to form free radicals and, thereby, facilitate catalytic
reactions.28 For example, mass transfer is one of the rate-limiting
steps of theH2 evolution reaction (HER).

29 Photocatalytic HER
begins with the generation of photoexcited electrons and their
transport to the surface of the catalyst. The number of active
sites and the charge recombination rate influence the efficiency
of proton reduction to produce H2, with mass-transfer of the
generated H2 subsequently occurring at the interfaces.

30,31

Previous studies showed that catalytic performances for
wastewater treatment and H2 evolution depend on not only the
activity of catalysts but also several parameters such as the mass
transfer of reactants and products within the solution.32,33

However, the effects of the stirring on the photocatalytic
efficiency are not yet studied in detail. Herein, we conducted the
experiments to understand the stirring effect on photocatalytic
abilities for both dye degradation and H2 evolution. The WS2/
ZnO (WZ) heterostructures as the photocatalysts were
synthesized through the liquid-phase exfoliation (LPE) and
solvothermal process. We found that the stirring improves the
catalytic efficiency of the WZ heterostructures, and the H2
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production rate increases with the increase in stirring speeds and
has the optimized value with the appropriate stirring speed.

■ RESULTS AND DISCUSSION
Scanning electron microscopy (SEM) revealed the morpholo-
gies of the synthesized catalysts. After LPE (Figure S1,
Supporting Information), the few-layer WS2 possessed a
nanosheet-like structure (Figure 1a). We used a solvothermal

method to synthesize ZnO nanoparticles (NPs) and annealed
them at 250 °C for 4 h (Figure S2); Figure 1b reveals that they
formed aggregated structures with diameters of approximately
50−100 nm. Physically mixing the WS2 nanosheets and ZnO
NPs produced the WZ heterostructure. Figure 1c,d reveals that,
after ultrasonication for 30 min, the morphology of the WZ
structure featured the few-layered WS2 nanosheets attached to
the surfaces of the ZnO NPs. Figure 1e displays the X-ray
diffraction (XRD) patterns of ZnO NPs and the WZ
heterostructure. The strong peaks of ZnO matched well with
those of the crystal planes of wurtzite ZnO (JCPDS no. 36-
1451). For the WZ heterostructure, the major diffraction peaks
were those of ZnO, but small peaks appeared for the (002) and
(103) planes of exfoliated WS2 (JCPDS no. 08-0237). The
relatively low peak intensities of WS2 implied that it was present
in low amounts and highly dispersed in the WZ heterostructure.
Figure 1f provides the Raman spectra of the few-layer WS2, the
ZnONPs, and theWZ heterostructure. The characteristic peaks
at 351.4 and 417 cm−1 of the few-layer WS2 correspond to its
E2g1 and A1g resonance modes, respectively.34 The peaks at
436.8 and 481.5 cm−1 in the spectrum of the ZnO NPs
correspond to its E2 and 2LA modes, respectively.35 For the WZ
heterostructure, the Raman spectrum featured peaks of both
ZnO and WS2, revealing the successful synthesis of the
heterostructure. To confirm the enhanced light absorption of
theWZ heterostructure, we measured the light absorption of the
various samples (Figure 1g). The strong absorption edge of ZnO
at 385 nm corresponds to the absorption resulting from its band
gap. After ultrasonication with the few-layer WS2 nanosheets to
form the heterostructure, the visible-light absorption intensity of
the WZ heterostructure was enhanced, consistent with the
strong light-harvesting ability of few-layer WS2 in the visible
region.36

We used transmission electron microscopy (TEM) and
atomic force microscopy (AFM) to obtain detailed micro-
structural information about the WZ heterostructure. Figure

Figure 1. (a−c) SEM images of (a) the few-layer WS2 nanosheets after
exfoliation, (b) the ZnO NPs, and (c) the WZ heterostructure. (d)
Magnified SEM image of the area in the white box in (c). (e) XRD
patterns of the ZnO NPs and WZ heterostructure. (f) Raman spectra
and (g) UV−vis spectra of the few-layer WS2, the ZnO NPs, and the
WZ heterostructure.

Figure 2. (a,d) TEM images of theWZ heterostructure. (b)Magnified TEM image of the area in the white box in (a). (c) HRTEM image of the area in
the white box in (b). (e) AFM image of the exfoliated WS2 nanosheets. (f) AFM topographic image revealing that the thickness of exfoliated WS2 was
6.695 nm. (g) Distribution of the number of layers of the exfoliated WS2.
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2a,b presents low-magnification TEM images of the hetero-
structure, revealing that, after ultrasonication for 30 min, the
few-layer WS2 had indeed adsorbed on the surface of the ZnO
NPs, consistent with the SEM images (Figure 1c,d). The high-
resolution TEM (HRTEM) image of the WZ heterostructure
(Figure 2c) reveals an exfoliated few-layer WS2 nanosheet
having eight layers and a lattice spacing of 0.16 nm,
corresponding to the (110) plane of ZnO. Moreover, Figure
2d and the elemental mapping of WZ (Figure S4) indicate that
the units of few-layer WS2 were dispersed well on the ZnO NPs.
To prepare the catalysts, we employed LPE, with centrifugation
at 7000 rpm, to obtain a few-layeredWS2. AFM analysis revealed
exfoliated WS2 having lateral dimensions in the range 50−150
nm (Figure 2e) and a flake having a thickness of 6.695 nm,
approximately nine layers (Figure 2f) if the thickness of
monolayer WS2 is 0.7 nm.37 The thickness distribution of the
exfoliated WS2 (Figure 2g) revealed that, on average, exfoliated
WS2 comprised approximately eight layers, with most of the
flakes having 3−10 layers, consistent with the results of the TEM
(Figure 2c) and AFM (Figure 2f) analyses.
We examined the degradation of MB under a 150-WHg lamp

to evaluate the photocatalytic performance of our various
samples. Figure 3a presents the absorption spectra of MB
recorded after irradiation in the presence of the WZ
heterostructure; the intensity of the peak centered at 664 nm
decreased over time and nearly disappeared after 90 min. Figure
3b displays the changes in the MB concentration after
degradation for various periods of time over the ZnO NPs and
the WZ heterostructure; here, C is the remaining concentration
of MB at time t and C0 is the initial concentration of MB.
Wurtzite-structured ZnO and WS2 have been reported to
possess piezoelectrical potentials that can enhance their catalytic
abilities.38,39 We suspected that the improved mass-transfer in

the photocatalytic reactions and the piezoelectric potentials
produced by the materials were responsible for the superior
performance of the stirred catalytic reactions. Accordingly, we
examined the degradation in the dark to clarify the influence of
light on the catalytic reaction. Because the dye degradation of
the samples in the dark was negligible (see the ZnO v and WZ v
curves in Figure 3b), we could eliminate the effect of the
piezoelectric potential of the samples in this present system.
Figure 3b reveals that the degradation ratio of the ZnONPs was
only 21.6% after 120 min of irradiation. After loading with the
few-layer WS2 to form the WZ heterostructure, the photo-
degradation ratio increased to 80.5%, confirming the enhance-
ment effect of the few-layer WS2 co-catalyst on the degradation
process. The degree of dye degradation was further enhanced
when stirring the reaction; the degradation ratios for the
catalytic reacts over the ZnO NPs and WZ heterostructure both
increased to approximately 63 and 100%, respectively, after 120
min. Figure 3c presents the temporal degradation curves of MB
with respect to −ln(C/C0), fitted using eq 1

− =C
C

ktln
0

i
k
jjjjj

y
{
zzzzz (1)

Figure 3d plots the rate constants of the reactions catalyzed by
the ZnO NPs and WZ heterostructure under the various
experimental conditions. Here, the rate constant (k) functions as
a measure of the catalytic ability. Among our tested samples and
conditions, WZ under irradiation and high-speed stirring
exhibited the highest catalytic activity, with a value of k
(0.04073 min−1) that was approximately 450% greater than that
of ZnO (0.00898 min−1) and 300% greater than that of WZ (k =
0.01329 min−1) under irradiation.

Figure 3. (a) Absorption spectra of MB recorded at various time intervals in the presence of the WZ heterostructure. (b) Degradation efficiency, (c)
kinetics, and (d) rate constants of the degradation of MB over the ZnO NPs and WZ heterostructure under irradiation, with and without high-speed
stirring (stirring/vibration and irradiation with light are indicated by the descriptors v and l, respectively).
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We conclude that stirring did not provide a piezocatalytic
effect, as mentioned above; nevertheless, it might have enhanced
the heterogeneous photocatalytic activity of WZ through
improved mass-transfer of reactive oxygen radicals, facilitating
their interactions with MB molecules and, thereby, increasing
the degradation efficiency. Specifically, the electrons (e−) in the
valance band of WZ were excited to the conduction band after
absorbing light energy under irradiation; the same amount of
holes (h+) was formed in the valence band. The excited electrons
reacted with O2 to generate superoxide radicals (O2

•−), with
hydroxyl radicals produced through h+ being trapped by
hydroxyl ions (OH−); these processes are described in eqs
2−440

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ + +− +WS /ZnO
light irradiation

WS /ZnO e h2 2 (2)

+ →− •−O e O2 2 (3)

+ →− + •OH h OH (4)

Both radicals have great abilities to attract electrons (i.e., great
oxidizing ability), thereby degrading the dye molecules. Thus,
the removal of MB resulted mainly through radical-mediated
reactions. The high velocity of the stirred fluid presumably

accelerated the mass-transfer of reactive oxygen radicals from
the catalyst surface and boundary layer to the liquid, while also
assisting the homogeneous mixing and reaction of the radicals
and MB molecules.28 Sun et al. has demonstrated that a higher
rotation speed is beneficial for the uniform flow field distribution
and diffusion of MB molecules, resulting in favorable conditions
for degradation.41

Next, we examined the effect of stirring on the H2 evolution
performance, through its effects on mass-transfer and the
photocatalytic performance. Figure 4a,b presents the photo-
catalytic H2 production obtained over the WZ heterostructure,
plotted with respect to time and the stirring speed (from no
stirring to 600 rpm), and the corresponding reaction rates.
Greater stirring speeds led to greater rates of H2 production. The
optimal rate of H2 production was 327 μmol h−1 g−1 when
stirring at 300 rpmapproximately 3 times greater than the H2

production of the unstirred counterpart. We attribute this
behavior to the increased mass-transfer of generated H2 and the
greater probability of contact between the electrons and holes
when increasing the stirring speed, both resulting in higher
degrees of H2 production.

29,42 Nevertheless, any further increase
in the stirring speed did not benefit the reaction, presumably
because unstable rotation of the magnetic stirrer impeded mass-

Figure 4. (a) Photocatalytic H2 evolution and (b) rates of H2 evolution over theWZ heterostructure at various stirring speeds. (c) Repeated tests of the
regeneration of WZ heterostructures for photocatalytic H2 evolution at 300 rpm. (d) Schematic representation of H2 evolution over the WZ
heterostructure with Na2S and Na2SO3 as sacrificial agents.

Table 1. Comparison of Photocatalytic H2 Evolution of WZ Heterostructure and Other ZnO-Based HER Photocatalysts

photocatalyst hydrogen production rate (μmol h−1 g−1) sacrificial reagents light source refs

WS2/ZnO 327 Na2S/Na2SO3 300-W Xe lamp (with AM-1.5) this work
ZnO/ZnS heterostructure 415.3 Na2S/Na2SO3 300-W Xe lamp (with λ ≥ 420 nm) 43
ZnO/ZnS heterostructure 384 glycerol 350-W Xe lamp 44
g-C3N4/ZnO 322 triethanolamine 300-W Xe lamp (with λ ≥ 420 nm) 45
ZnO/ZnxCd1−xTe 265 Na2S/Na2SO3 300-W Xe lamp (250 < λ < 780 nm) 46
3.0 wt % MoS2/ZnO 165 Na2S/Na2SO3 300-W Xe lamp (with λ ≥ 400 nm) 47
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transfer. Indeed, the visibly turbulent flow of the solution at 600
rpm decreased the rate of H2 production to slightly less than that
observed at 100 rpm. Figure S5 compares the rates of H2

production over the bare ZnO NPs and the WZ heterostructure
at 300 rpm. The rate of H2 production was improved 35%
merely by loading a low amount of the few-layer WS2 (0.68 wt
%) on the ZnO NPs. Figure 4c displays the excellent repeated
ability of WZ heterostructures. It is clear that WZ retains
photocatalytic ability without remarkable decline after three
repeated tests. Table 1 shows the comparisons of the
photocatalytic H2 production of the WZ heterostructure with
the ZnO-based study in the literature. Obviously, the H2

production in the present study is comparable with that of
ZnO-based photocatalysts in the literature.
Figure 4d presents a possible mechanism for the photo-

catalytic reaction for H2 production over the WZ hetero-
structure. The experimental results can be ascribed to two
factors: (i) better charge separation and more active sites for the
HER provided by the few-layer WS2 co-catalyst on the ZnO
NPs; (ii) accelerated mass transfer resulting from higher rates of
stirring. The band alignment of WZ facilitates the transfer of
carriers from the conduction band (CB) of ZnO to the CB of
WS2, thereby prolonging the lifetime of the photoexcited
carriers. Once the carriers are produced in the materials through
the absorption of light, the electrons transfer to the CB of the
few-layer WS2. The exfoliated WS2 not only served as a co-
catalyst to enhance charge separation but also exposed an
abundance of active edge sites for the HER.36 On the other
hand, stirring also enhanced the photocatalytic H2 production
through two possible mechanisms. First, mass-transfer in the
suspension will be accelerated upon increasing the speed of
stirring; a higher rate of mass-transfer of generated H2 from the
catalyst surface to the atmosphere would benefit H2 production
and diminish the backward reaction of H2.

29 Second, a greater
speed of stirring will accelerate the flow rate of the solution,
thereby increasing the probability of contact between the
photoexcited electrons and protons. The increased accessibility
of H+ ions within the solution for reaction with electrons on the
catalyst surface might also enhance the HER performance. In
general, the approach of speeding up the magnetic stirring is an
effective and simple means of further boosting the efficiency of
the photocatalytic HER.

■ CONCLUSIONS

In summary, we have fabricated ZnO NPs and few-layer WS2
through a solvothermal method and LPE, respectively, and then
used ultrasonication to obtain a WZ heterostructure. With the
addition of the few-layer WS2 as a co-catalyst, the hetero-
structure exhibited enhanced photocatalytic ability, which we
attribute to WZ displaying enhanced charge separation, an
abundance of active sites, and improved absorption in the visible
region. A study of the mass-transfer effect revealed improved
photocatalytic dye degradation (k = 0.04073 min−1) and the
highest rate of H2 generation (327 μmol h−1 g−1) being
obtained. Accordingly, we conclude that the photocatalytic
performance was boosted by accelerated mass-transfer of the
reactants and products, as well as the increased probability of
contact between the reactants. We hope that the insights
obtained from this study may initiate new practical ways to
perform wastewater treatment and the photocatalytic HER.

■ EXPERIMENTAL SECTION

Chemicals. Tungsten disulfide (WS2, powder, 2 μm, 99%,
Sigma-Aldrich), zinc nitrate hexahydrate [Zn(NO3)2·6H2O,
99%, Alfa Aesar], potassium hydroxide (KOH, 85%, ECHO),
ethylenediamine (C2H8N2, Sigma-Aldrich), and ethanol
(C2H5OH, 99.5+%, ECHO) were used without further
purification.

Liquid-Phase Exfoliation of WS2. LPE was used to obtain
a few-layerWS2 (Figure S1). BulkWS2 (400 mg) was added into
35% ethanol (50 mL) as a dispersive agent and then the mixture
was ultrasonicated for 16 h at a power of 100 W and a frequency
of 37 kHz. The suspension was then centrifuged (7000 rpm, 10
min) twice to separate the exfoliated structures, and the
supernatant of yellowish-brown color was collected to give a
few-layer WS2 solution. The concentration of the WS2
nanosheet solution was kept at 6.785 ppm for the formation of
the heterostructures, and the concentration was determined by
ICP−MS (Agilent 7500ce).

ZnO Nanoparticles. ZnO nanoparticles (NPs) were
synthesized using a solvothermal method. Zn(NO3)2·6H2O
(1.19 g, 4.00 mmol) and KOH (0.226 g, 4.00 mmol) were
dissolved in 95% ethanol (20 mL) under continuous stirring.
Ethylenediamine (0.3 mL) was added and then the mixture was
stirred for 10 min. The as-prepared solution was transferred into
a Teflon-lined stainless-steel autoclave. The autoclave was
heated to 120 °C at a rate of 5 °C//mmin and then kept at 120
°C for 16 h. After cooling, the suspension was washed several
times with ethanol and deionized water to collect the precipitate,
which was dried at 60 °C for 6 h. The as-synthesized ZnO was
then annealed at 250 °C for 4 h.

WS2/ZnO Heterostructure. The few-layer WS2 solution
(50 mL) and the ZnO NPs (50 mg) (1:1) were mixed in a
beaker (Figure S2). The mixture was ultrasonicated for 30 min
to induce physical adsorption. The color of the solution changed
from translucently brown to opaquely brown when adding the
ZnO NPs into the WS2 nanosheet solution, and the solution
became transparent after stored in the dark for 1 day, which
implies the heterostructures formed and then precipitated at the
bottom of the solution (Figure S3). WS2/ZnO-heterostructured
sediment was collected and dried at 60 °C for 6 h.

Characterization. The crystallographic properties of the
catalysts were characterized using XRD (Bruker D2 phaser) with
Cu Kα radiation. The morphologies were observed using SEM
(Hitachi SU8010); detailed information was obtained using
HRTEM (JEOL ARM-200F) and a Cs-corrector. The thickness
of the samples was measured using AFM (Bruker Dimension
Icon). Raman spectra were recorded at room temperature using
a Micro-Raman spectrometer (ProTrusTech, MRI-1532A) and
a 532-nm excitation laser. UV−vis absorption spectra of the
samples were recorded using a UV−vis spectrometer (Avantes
AvaSpec-2048UV spectrum).

Photocatalytic Degradation of MB. The photocatalysis
test of WS2/ZnO (WZ) was performed by using methylene blue
(MB, C16H18ClN3S, also known as methylthioninium chloride).
The catalyst (2 mg) was dispersed in a MB solution (5 ppm, 5
mg/L, 15 mL). The mixture was stirred magnetically for 20 min
at room temperature in the dark to establish an adsorption/
desorption equilibrium between the photocatalyst and MB.
Degradation tests were performed under irradiation with light
from a 150-W Hg lamp and continuous stirring. A vortex mixer
(MX-S) was used to provide extra high-speed stirring. The dye
degradationmeasurements were carried out with the pH value of
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around 5−6 at room temperature. At different intervals during
the degradation process, samples (1.5 mL) of the suspension
were collected and centrifuged (10,000 rpm, 5 min) to settle the
catalyst at the bottom of the tube. The absorption spectrum of
the supernatant and the concentration of the remaining MB
were analyzed using a UV−vis spectrometer (Avantes AvaSpec-
2048 UV spectrum).
Photocatalytic H2 Evolution. A photocatalytic H2

evolution was tested in a glass vial (20 mL) closed with a sleeve
stopper. The catalyst (3 mg) was dissolved in a mixture of Na2S
and Na2SO3 (0.45 M, 10 mL) in the vial with magnetic stirring.
The vial was purged with Ar for 15 min to eliminate air. The H2
evolution test was performed under a 300-W Xe lamp with an
AM-1.5 filter and continuous stirring. The speed of magnetic
stirring was varied to test the relationship between the dispersity
and the photocatalytic activity. The total H2 produced in the
reactor was measured using gas chromatography (GC,
Shimadzu GC-2014).
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