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Marangoni-driven flower-like patterning of an
evaporating drop spreading on a liquid substrate
F. Wodlei1, J. Sebilleau2, J. Magnaudet2 & V. Pimienta1

Drop motility at liquid surfaces is attracting growing interest because of its potential appli-

cations in microfluidics and artificial cell design. Here we report the unique highly ordered

pattern that sets in when a millimeter-size drop of dichloromethane spreads on an aqueous

substrate under the influence of surface tension, both phases containing a surfactant. Eva-

poration induces a Marangoni flow that forces the development of a marked rim at the

periphery of the spreading film. At some point this rim breaks up, giving rise to a ring of

droplets, which modifies the aqueous phase properties in such a way that the film recoils. The

process repeats itself, yielding regular large-amplitude pulsations. Wrinkles form at the film

surface due to an evaporative instability. During the dewetting stage, they emit equally

spaced radial strings of droplets which, combined with those previously expelled from the

rim, make the top view of the system resemble a flower.
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Nanometer- to millimeter-sized objects undergoing spon-
taneous directional motion, deformation, or topological
changes, generically classified as active matter1,2, are

expected to find a broad range of applications in the miniatur-
ization of many devices. In such systems, energy is supplied to the
moving object by an external source3 or by making it interact
with its surroundings4,5. Drops spreading on a liquid substrate
may fall into the second category when surface tension gradients
take place, owing to phase change or to the presence of surfac-
tants. Manifestations of the Marangoni stresses associated with
these gradients are ubiquitous in liquid–liquid systems involving
film spreading6, dewetting7, ligament break-up8, interfacial
bursting9, or fingering10. These effects may even combine and
give rise to highly organized patterns11.

Under certain circumstances, the spreading of the drop may be
followed by a dewetting stage12–15. The initial spreading results
from the relative interfacial properties of the sub-phase and drop,
the latter being either surface-active13, or containing14 or pro-
ducing15 (through a chemical reaction) a surfactant, which is then
transferred to the supporting phase. This transfer modifies the
surface properties in the drop surroundings, leading to its recoil.
In most cases, these surroundings are definitively polluted and the
recoiled state stays as the final permanent drop configuration.
However, the expanding stage may sometimes repeat, provided
that the drop environment has been regenerated, making it
possible to restore the initial interfacial conditions. Few examples
of such a behavior have been reported so far, the very first
mention being for a cetyl alcohol drop on water16. Later, this
observation was renewed with a surfactant-containing oil drop
deposited on water17. Further studies of that system18 revealed
that the surfactant contaminates the water surface through local
eruption events occurring at the drop edge, whereas regeneration
results from surfactant evaporation at the aqueous surface. In
binary systems, pulsations accompanied by the ejection of a ring
of droplets were observed on a very short time scale for a cooled
drop of 1-butanol deposited on a heated water phase19. Shape
oscillations were recently reported with a drop of aniline depos-
ited on an aqueous aniline solution20. Contamination of the drop
surroundings was due to the ejection of aniline onto the free
surface, the regeneration processes being attributed to periodical
mixing of the aqueous phase ensured by Marangoni convection
and initiated by the accumulation of aniline at the drop edge.

Here we consider a simple system made of a drop of dichlor-
omethane (DCM) deposited on an aqueous substrate, with

cetyltrimethylammonium bromide (CTAB), a common cationic
surfactant21, present in both phases with the same concentration.
Interaction of the spreading drop with the supporting phase is
dominated by DCM evaporation, which induces surface tension
gradients, yielding the formation of a prominent rim and later a
Marangoni instability. The drop and the film that surrounds it up
to the rim exhibit the most regular large-amplitude pulsations
ever reported. This film undergoes a very rich succession of
hydrodynamic events (spreading, rim and wrinkles formation,
rim break-up, and droplets ejection) with a degree of organization
culminating during film recoil. Specific measurements and the-
oretical analysis enable us to establish the main characteristics of
several of these steps and reveal the underlying driving physical
mechanisms.

Results
Overall observations. A 5.6 µl DCM drop is deposited onto a 25
ml aqueous phase filling a 7 cm Petri dish. CTAB is initially
present in both phases with the same concentration (0.5 mmol l
−1). The drop life time is about 5–6 s but we focus attention on
the dynamics observed typically during the first second. Although
the whole system is chemically simple, its complexity arises from
the physicochemical properties of the involved compounds: DCM
undergoes evaporation and dissolution; it is heavier than water
and surface active at the water/air interface; CTAB gives rise to
adsorption/desorption processes at both water/air and water/oil
interfaces.

As soon as the drop is released, the surface of the supporting
aqueous solution deforms, generating capillary waves22. This
initial wave train is immediately followed by a steep wave due to
the spreading film arising from the drop. From that moment, the
drop has the role of a reservoir with radius RD surrounded by a
film with radius RF (Fig. 1a). Both RD and RF are found to
oscillate over time, so that the whole system pulsates (Fig. 2). The
generic pattern (see Methods and Supplementary Movie 1)
observed during the first four pulsations (referred to as P1–P4 in
Fig. 2) results in the occurrence of a highly complex pattern.

Although RD only slightly varies during P1, expansion starts
simultaneously at the drop and film edges during the following
pulsations. However, the drop reaches its maximum radius before
the film does, so that it recoils while the film is still growing.
Expansion of the film is made visible by the rim that forms at its
leading edge. The latter takes the form of a torus during P1
(Fig. 1a), of a ring of closely packed beads during P2 and P3

a b

RD

RF

Fig. 1 Expanding phase of a pulsation. a P1, with three images shifted by 28.3 ms superimposed; arrows indicate the way RD and RF are defined in Fig. 2; b P3,
with three images shifted by 18.9ms superimposed. The inset provides a zoom on the outer edge of the drop. Scale bars= 1 mm
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(Fig. 1b), and eventually of a corrugated torus during P4 (Fig. 3).
Born at the edge of the drop during P1, the rim occurs 3 mm apart
from this edge during P2, then 1.3 mm (resp. 0.5 mm) apart
during P3 (resp. P4). Based on the evolution of this initial
distance, the sequence should rather be ordered as P2–P3–P4–P1.

In a later stage, the rim breaks up into a large number of
droplets. The number of ejected droplets yields the same ordering
(with 560, 240, 120, and 30 ejecta for P2, P3, P4, and P1,
respectively) and so does their diameter (75, 100, 240, and 340
µm, respectively). The size dispersity of ejected droplets also
evolves according to the same sequence: the droplet ring is
perfectly monodisperse during P2, with a tiny satellite in between
two droplets during P3, with an increasing number of satellites
during P4 and P1. The thicker the expanding rim, the larger the
number of satellites23.

The velocity of the advancing rim slowly decreases over time.
Its typical magnitude is ~45 mm s−1 during pulsation P1 and 30
mm s−1 during the next three pulsations. Variations in RD stay
below measurement accuracy during P1, increase during P2 and
P3, and become significant during P4. There the drop grows for a
while with a radial velocity about 10 mm s−1. Its recoil is milder,
with a velocity approximately three times smaller. The drop
shrinks until it reaches a minimum radius which then remains
constant for a while, in relation with the dewetting dynamics of
the surrounding film. Radial stripes develop in the peripheral
region of the drop surface during the spreading stage of P3

(Fig. 1b) and P4 (Fig. 3). They do not occur during previous
pulsations (compare with Fig. 1a). Although they remain
confined within the drop during P3, they become much more
prominent during P4 (Fig. 3), developing over the surface of the
expanding film that now exhibits regularly-spaced radial wrinkles.
As will be shown below, these corrugations have a key role in the
generation of the highly ordered pattern that sets in while the film
recoils during P4 and following pulsations.

Very shortly after the rim breaks up, a new ring of droplets
forms at the leading edge of the film left behind it (Fig. 4). These
droplets have a much smaller size than those previously emitted
by the advancing rim. During the first three pulsations, the two
rings coexist for some time before the tiny droplets that form the
inner ring disappear through dissolution and evaporation.

By that time, the film has started to recede. It then becomes
hardly visible during P1, P2, and P3, when it merely appears as a
fuzzy shadow; its leading edge deforms while shrinking and fades
away. The dewetting pattern observed during P4 differs
dramatically, owing to the presence of the radial wrinkles. Similar
to what happens during previous pulsations, a second ring of
droplets forms at the leading edge just after the advancing rim has
broken up. However, the size of the corresponding droplets is
now non-uniform, bigger droplets being emitted at positions
corresponding to wrinkle tips. Although the tiny droplets
generated in between two wrinkles quickly dissolve, the bigger
ones emitted at wrinkle tips survive for a much longer time. Then
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Fig. 2 Film and central reservoir radius variations vs. time. RD (green curve)
and RF (blue curve) during pulsations P1–P4; dotted line: guide-to-the-eye
between experimental points
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Fig. 3 Expanding stage of pulsation P4. a at time t; b at time t+ 28.3ms; c at time t+ 56.6 ms. Scale bar= 1 mm

b
a

 

Fig. 4 Two rings of droplets coexist for some time just before the film
recoils during pulsation P3. The inner ring, with droplets ~35 µm in diameter,
occurs shortly after the expanding rim broke up. a General view; b
magnification of the framed area; scale bars = 1 mm
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two series of droplets, one on each side of a wrinkle tip, are
generated. At that point, the leading edge of the recoiling film
exhibits a zigzagging shape made of tips and troughs connected
by strings of droplets. As the troughs go on recoiling, these strings
keep on lengthening. Droplets generated on each side of a tip
continuously slide toward it, where they merge (Fig. 5a,b).

Droplets are emitted from the tips in a very ordered way
(Fig. 5b and Supplementary Movie 2). When three to four of
them have merged at a tip, the resulting daughter drop (about 90
µm in diameter) is ejected outward. While tips recoil, troughs
widen more and more. At some point, two consecutive troughs
merge at the back of a wrinkle, isolating the corresponding tip
and strings of droplets from the reservoir drop. Then, when the
next pulsation takes place, a new rim forms in the neighborhood
of the central reservoir, whereas ‘islands’ encircled by tiny
droplets and extended outward by a long spike of bigger droplets
subsist further away before disappearing (Fig. 6).

Spreading dynamics. The spreading coefficient, S∞= γwater/air−
(γoil/air+ γoil/water), built on the three interfacial tensions involved
in the system, drives its initial behavior24. Here (see Methods),

the respective values of the equilibrium surface tensions lead to a
positive S∞, in agreement with the observed initial expansion.
Figure 7a, b show how the film radius, RF(t), evolves during the
expanding stage of pulsations P1 and P4, respectively (the beha-
vior is similar to that of P4 during P2 and P3). During P1, the
spreading dynamics is essentially characterized by a single
exponent, n ≈ 1.10. In contrast, two distinct stages are observed
during subsequent pulsations. The spreading is significantly faster
during the first of them, with for P4 an exponent close to 1.20,
then decreasing to 0.82 during the second half of the expansion.

The latter exponent is close to the classical theoretical
prediction n= 3/4 corresponding to the surface-tension-driven
spreading of a thin film in the case where the net driving force is
balanced by the viscous force that develops in the boundary layer
of the supporting fluid25–27. The larger exponent noticed during
P1 stems from the reorganization of the CTAB distribution at the
water surface just after the drop has been released. This
reorganization takes place because the minimum area per
adsorbed molecule is 80 Å2 at the DCM/water interface, whereas
it is only 53 Å2 at the air/water interface28. Hence, when the drop
is released, CTAB molecules initially present on the part of the
water surface that comes in contact with the drop are swept away,
as sketched in Fig. 8. They accumulate provisionally ahead of the
edge of the spreading film, until they are redistributed uniformly
at the water surface.

This sudden accumulation of CTAB molecules makes the local
value of the water/air surface tension fall temporarily below the
equilibrium value corresponding to the nominal CTAB concen-
tration of 0.5 mmol l−1. Because of this, the spreading coefficient
also falls from its equilibrium value, S∞, to a smaller initial value,
S(t= 0)= S∞− ΔS with ΔS > 0. Relaxation of S(t) toward S∞ is
dominated by desorption within the aqueous phase (surface
diffusion corresponding to a much longer characteristic time and
convective motions in water being weak). As shown in the
Methods section, desorption makes the spreading coefficient relax
exponentially toward its equilibrium value at a rate determined by
the effective desorption coefficient, keff. With a bulk concentra-
tion of 0.5 mmol l−1, keff stands in the range 0.5–1 s−1 for
CTAB29, so that the exponential relaxation is quasi-linear
throughout P1 with S(t) ≈ S∞ – ΔS+ (keffΔS)t. Balancing the net
surface tension force with the viscous resisting force then implies
that the evolution of the film radius obeys (see Methods).

RF tð Þ / ðρwμwÞ�1=4fðS1 � ΔSÞ1=2t3=4 þ ðkeffΔSÞ1=2t5=4g ð1Þ

where ρw and µw stand for the water density and viscosity,

a
b

Fig. 5 Dewetting flower pattern observed during film retraction of pulsation P4. a General view; b magnification of the framed area; scale bars= 1 mm

Fig. 6 Islands formed during the late dewetting stage of P4. These islands
coexist with the advancing rim formed at the beginning of P5; scale bar =
1 mm
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respectively. In agreement with the observed exponent n= 1.1,
the ‘super-spreading’ law in equation (1) indicates that the film
spreads faster than predicted by the classical t3/4 law (recovered
when ΔS → 0) during P1. The exact exponent of the corresponding
law stands in the range 3/4–5/4 and is determined by keff and by
the (unknown) relative initial drop of the spreading coefficient,
ΔS/S∞. During the recoil stage of subsequent pulsations, another
physico-chemical reorganization process (to be described later)
takes place within the aqueous phase. Its outcome is that, starting
from the negative value characterizing the recoil stage, the
spreading coefficient gradually recovers its positive equilibrium
value, S∞. Spreading starts as soon as S(t) reverses to a positive
value, which corresponds to ΔS= S∞ in equation (1). For this
reason, only the last term in equation (1) is expected to exist in
that case, making the spreading exponent close to 5/4. This is
what the behaviour observed in Fig. 7b for P4 confirms: n is then
closer to the theoretical prediction n= 5/4 than during P1
(Fig. 7a), whereas, during the second stage when S(t) gets close
to its equilibrium value S∞, it approaches the theoretical value
n= 3/4 expected for a constant spreading coefficient.

Evaporation and rim formation. The advancing rim at the
leading edge of the film looks similar to the Marangoni ridge
observed when a film surface is covered with a surfactant22,30–32

or when a thin volatile film evaporates at the surface of a deep
fluid layer33. The present system falls in the second category,
DCM evaporation being responsible for the rim formation.
Indeed, we performed complementary experiments with a DCM
drop of same volume (5.6 µl) without CTAB inside and observed
a similar rim, which allows us to rule out the role of the surfac-
tant. Focusing on evaporation, we determined the averaged eva-
poration rate per surface unit, Qev, by depositing DCM drops of
various volumes and recording the evolution of the total mass of
liquid enclosed in containers with various air/DCM contact areas.
This procedure (see Methods), revealed that this mass decreases
linearly over most of the drop life time at a surface rate Qev ≈ 2 ×
10−4 mgmm−2 s−1, corresponding to a surface heat flux J0 ≈ 70
Wm−2. These findings may be used to obtain some insight into
the dynamical properties of the system, provided that the tem-
perature and velocity distributions within the film are known.
Approximate solutions were derived for both of them (see
Methods). This derivation shows that a negative radial tempera-
ture gradient increasing linearly with the distance to the drop
takes place within the film. This gradient results in a linear
increase of the oil/air surface tension from the edge of the drop to
that of the film, which generates an outward Marangoni flow in
the latter. With the surface temperature distribution at hand, we
determined the velocity field corresponding to this flow (see
Methods). Beyond the leading edge of the macroscopic spreading
film considered up to now, a precursor DCM film stands at the
water surface. Evaporation also takes place at the surface of that
film, the area of which is much larger than that of the macro-
scopic spreading film (see Methods). However, convective
motions are weak in the aqueous phase, so that this film is almost
stagnant and cools progressively to supply the energy consumed
by evaporation. In contrast, within the macroscopic spreading
film, energy is supplied by the drop and transported outward by
the spreading flow. At the contact line, the non-zero shear stress
corresponding to the surface tension gradient at the surface of the
spreading film has to match with the shear-free condition pre-
vailing at the air/precursor film surface. This abrupt change is
accommodated by the rim, the large curvature of which locally
induces a radial velocity correction that cancels the Marangoni
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Fig. 8 Sketch of the early evolution of the CTAB distribution resulting from
the deposition of the drop. a The surface concentration of CTAB at the air/
water interface is initially uniform; b the minimum area per adsorbed
molecule being larger at the oil/water interface, CTAB is swept away and
accumulates provisionally ahead of the film, forcing the surface tension
γwater/air to decrease abruptly around the contact line
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contribution34. This condition determines the rim thickness
which may be measured from top views such as those of Fig. 1. As
shown in the Methods section, combining this thickness with the
above condition provides an indirect manner of estimating the
thickness of the spreading film at the inner edge of the rim.
Considering the first of the three spreading stages displayed in
Fig. 1a, b, this approach yields values of the local film thickness
close to 3 µm and 1 µm for P1 and P4, respectively.

Rim break-up. The topological transition by which the rim turns
into a ring of droplets during the expansion stage of each pul-
sation is reminiscent of the Rayleigh–Plateau capillary instability
experienced by cylindrical liquid threads and jets. In the usual
case of a stationary cylindrical thread with a constant undisturbed
radius a, the linear stability theory35 predicts that, provided the
influence of viscous effects within the thread and those of inertia
and viscosity in the surrounding fluid are negligible, the most
amplified wavelength, λs, is such that λs ≈ 9.01a. However, in the
situation considered here, the capillary instability acts on a rim
that expands continuously, which implies a local stretching of the
fluid. Hence, the above prediction does not apply directly. In
particular, the most amplified wavelength, λ, is not constant but
instead increases over time. This may be observed by eye in
Fig. 1a by comparing the wavelengths of the varicosities that are
well visible at the first two rim positions.

In the Methods section, we show that the evolution of the
disturbances that grow at the rim surface comprises two distinct
stages. During the first of them, several mechanisms act to select
the disturbance that eventually becomes most amplified. Once
this disturbance has emerged, its characteristics evolve in such a
way that the number of wavelengths along the rim stays constant,
as requested by the 2π periodicity of the circular geometry.
During that second stage, λ(t) grows proportionally to RF(t). The
first rim position displayed in Fig. 1a corresponds to the end of
the first stage, making it the proper configuration to be compared
with the relevant theory36, 37. This comparison, which involves
the characteristic times associated with capillary, viscous, and
stretching effects, plus the origin of time at which the rim gets its
final volume, yields the results summarized in the Supplementary
Table 1. A remarkable agreement between the predicted and
measured values of λ/a is found, providing a strong argument to
interpret the rim break-up as resulting from the Rayleigh–Plateau
mechanism in the presence of weak but non-negligible stretching
and viscous effects.

Spreading–recoil and recoil–spreading transition mechanisms.
Up to this point, one may expect the final state of the system to
correspond to complete wetting. However, in surfactant-
containing systems, the initial expanding phase may sometimes
be followed by retraction13,14,15, because the deposited drop
modifies its own neighbourhood, which in turn changes one or
possibly two of the surface tensions involved in the system,
making the initially positive S switch to a negative value. As γoil/air
is not expected to vary significantly in the present case (besides its
slight radial increase due to the negative radial temperature gra-
dient), a negative S can be reached only if γwater/air decreases or/
and γoil/water increases. Indeed, DCM spread on the water surface
by droplets resulting from the rim break-up significantly
decreases γwater/air (see Supplementary Fig. 1). Moreover, the
DCM/water interfacial area increasing by a factor of typically six
during the spreading stage, the CTAB interfacial concentration
decreases by the same amount, leading to an increase of
γoil/water

28. These two cooperative effects represent the main
driving causes of the recoil process.

For such a sequence to repeat and give rise to successive
pulsations, recovery processes are compulsory to bring the system
back to its initial state. Film recoil restores the initial value of
γoil/water, owing to the reduction of the corresponding interfacial
area. DCM evaporation at the surface of the recoiling film
contributes to make γwater/air re-increase. Last, the present ternary
system is known to be prone to form an oil-in-water micro-
emulsion in which surfactant-surrounded buds of oil detach from
the interface28. This process ease the transfer of DCM into the
aqueous phase, also contributing to restore the initial value of
γwater/air

38.
Hence, after each surface contamination by the CTAB-

containing DCM film, these three mechanisms altogether allow
the system to gradually meet conditions making a new pulsation
able to start. Although qualitative, this description provides the
overall explanation for the observed pulsating behaviour which,
compared to the scarce examples present in the literature19,39,40,
appears to be unique, given the amplitude, regularity, and
symmetry of the repeated pulsations.

Recoil during the first three pulsations. In each pulsation, after
the advancing rim has broken up, S(t) decreases before turning
negative. During this transient, the temperature distribution
within the film is still close to that reached at the end of the
spreading stage, so that a negative radial temperature gradient
still exists at its surface. Hence, an outward Marangoni flow
subsists and must still match at the new leading edge with the
shear-free condition prevailing at the surface of the aqueous
phase. This matching requires the formation of a new rim.
However, the radius of that rim is much less than that of the
primary one, as most of the DCM supplied by the reservoir drop
during the spreading stage has gone with the droplets emitted by
the primary rim. As the smaller the rim radius the shorter the
break-up time, this new rim breaks up within an extremely short
time, making it virtually invisible as such. In contrast, as shown in
Fig. 4, its consequences are well visible in the form of the inner
ring of droplets resulting from its break-up. Based on the size of
these droplets and on known characteristics of the
Rayleigh–Plateau instability, an estimate of the rim break-up time
may be obtained. It predicts that break-up takes place within 0.4
and 0.1 ms during P1 and P3, respectively, which confirms the
above assumption (see Methods).

During these first three pulsations, the two rings coexist for
some time before the tiny droplets emitted by the second of them
dissolve in the aqueous phase. The process just described could in
principle repeat itself. However, the film, which has started
recoiling in the meantime, is becoming very thin after the second
ring has been emitted. Moreover, the recoil flow acts to lower the
radial temperature gradient established during the spreading
period, weakening the Marangoni effect. This is why no new
discernible rim actually forms during the recoil stage.

Wrinkles formation. The radial stripes observed at the edge of
the drop during the expanding phase of P3 and P4 are reminiscent
of the longitudinal rolls that develop in thin thermocapillarity
driven films41,42. However, during P3, these stripes do not seem to
have any impact on the film, the surface of which stays smooth.
In contrast, prominent wrinkles stand at the surface of the
expanding film during P4. Nevertheless, their connection with the
stripes present on the peripheral part of the drop surface is
unclear, as the number of the latter is typically twice as large as
that of the wrinkles. These wrinkles look similar to those observed
at the surface of evaporating films climbing on an inclined
plane43,44. In the latter reference, it was shown that the
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underlying evaporative instability is driven by the competition
between the Marangoni stress and the restoring gravity effect.
However, besides the consequences induced by the two different
geometries (circular vs. planar), two main differences exist
between the present configuration and the one considered in that
reference. First, the film motion is driven by the antagonistic
effects of thermocapillarity and gravity in the latter, whereas it is
almost controlled by spreading in our system, the Marangoni flow
only providing a small correction. Second, the evaporation flux
results from compositional gradients rather than temperature
gradients in ref. 44, as in most experiments carried out with
miscible fluid setups. Thermal diffusivity being typically two
orders of magnitude larger than molecular diffusivity in liquid
systems, this difference has a deep impact on the conditions
under which wrinkles may develop.

In the Methods section, we adapt the approach developed in
ref. 44 to present conditions. The corresponding linear stability
analysis shows that wrinkles can grow as soon as the film
thickness at the edge of the drop stands below a critical value,
hc, which we predict to be ~5–6 µm. This is slightly more than
the film thickness estimated for P1 (≈3 µm), so that wrinkles
could in principle be present during that pulsation. However,
the stability analysis also predicts that the most amplified
wavenumber (hence the approximate number of wrinkles, NW)
that can be accommodated along the drop perimeter, varies as
(hc/hl – 1)1/2, where hl stands for the undisturbed film
thickness at the edge of the drop. Thus, NW slowly increases
with hc/hl and the predicted wavelength during P1 is still larger
than the drop perimeter, in line with the absence of wrinkles in
Fig. 1a. Predictions suggest that NW stands between 1 and 2
during P3. With such large wavelengths, the deflections of the
surface are too small to be discernible on top views such as that
of Fig. 1b, so that it may well be that one or two wrinkles are
present but simply cannot be detected on the images. Last, the
film being much thinner during P4 (hl ≈ 0.2 µm), the stability
analysis then predicts NW= 7, which corresponds to an angle
close to 50° per wavelength. Although significant, this number
of wrinkles is three to four times less than what is seen in
Fig. 5, where ~ 25 of them can be identified. There may be
numerous explanations to this underestimate, given the
various assumptions involved in the model, especially in the
estimate of the film thickness, and the significant uncertainty
on the experimental value of the local evaporation flux. The
observed pattern may also simply be out of reach of linear
theory, as the height of the wrinkles displayed in Fig. 5 is
presumably of the same order if not larger than the
undisturbed film thickness. Despite the quantitative difference
in NW during P4, the above comparison supports the overall
scenario that wrinkles result from a purely thermally driven
evaporative instability, which, compared with its more
common solutal counterpart43,44, requires much thinner films
to set in. The predicted critical film thickness and increasing
number of wrinkles as the film thins down are consistent with
the behaviors observed during the successive pulsations.

Discussion
Wrinkles have a crucial role throughout the recoil stage of P4.
The beginning of the sequence is similar to that observed
during previous pulsations, with the generation of a second,
much thinner rim almost immediately disintegrating in an
inner ring of droplets. The presence of the wrinkles first
manifests itself in the non-uniform size of these droplets. As
the recoil starts, their effects become more spectacular with the
occurrence of the zig–zag pattern observed at the edge of the

receding film (Fig. 5). Indeed, although evaporation takes place
everywhere at the film surface at an approximately uniform
rate, the thinner the film the shorter its takes to evaporate it
completely, which makes the dewetting front propagate faster
in between wrinkles. Then, each side of a wrinkle, from the tip
to the trough, becomes a new contact line between the DCM
film and the aqueous phase. Clearly, this contact line is almost
perpendicular to the recoil motion in the tip region. Moreover,
inspection of the cellular flow within a wrinkle (equations
(11)–(13) in the Methods section) indicates that, at the DCM/
air surface, this flow structure brings DCM laterally from
wrinkle crests to that contact line. Thus, in addition to its
dominant inward radial component, the velocity field within a
wrinkle also comprises a circumferential component almost
perpendicular to the wrinkle’s sides. Hence, DCM now moves
with a velocity having a component perpendicular to the
contact line all along the wrinkle periphery. Once again, a rim
must set in to accommodate this situation and, being very thin,
it becomes almost immediately unstable and degenerates into
droplets. Bigger droplets being emitted at the tip due to the
merging and coalescence process already described, their out-
ward motion drags smaller droplets generated along each side
of the wrinkle toward its tip. This process shortens and thins
the wrinkle, so that a new contact line emerges, forcing a new
rim to occur. The process repeats itself as far as the tempera-
ture distribution sustains a significant Marangoni flow within
the wrinkles.

The individual physical and chemical mechanisms dissected in
the previous section draw a consistent picture of the phenomena
that combine in the present system to produce its complex and
highly organized behavior culminating in the flower-like pattern
displayed in Fig. 5. We were able to establish most of them,
qualitatively or sometimes quantitatively, through the dedicated
experiments and models described in the Methods section.
However, some of these mechanisms still have to be more firmly
established, especially those involving the wrinkles during the
recoil stage. This requires a specific study, presumably with the
help of numerical simulations of the fully coupled equations
governing mass, momentum, and energy conservation. Although
the role of CTAB appears instrumental in helping the system to
come back to its initial state after each pulsation, the fascinating
highly ordered pattern revealed by present experiments results
mostly from DCM evaporation, which, combined with surface-
tension-driven spreading, generates a Marangoni flow that gives
rise to the formation of a prominent rim and later to the
occurrence of wrinkles through a purely thermo-hydrodynamical
instability mechanism.

Methods
Reagents and physico-chemical properties. All chemical reagents used are of
analytical grade: CTAB (Aldrich, ≥ 99%) and DCM (Aldrich, High Pressure Liquid
Chromatography grade). Water is ultra-pure (resistivity > 17MΩ cm). All experi-
ments are carried out at room temperature. The CTAB concentration is 0.5mmol l−1,
both in the aqueous phase and in the drop.

The density of DCM (1.33 g ml−1) is larger than that of water. The solubility of
water in DCM is 2 g l−1 at 25 °C. The solubility of DCM in pure water is 13 g l−1,
which corresponds to a volume of 250 μl in 25 ml. The solubility of CTAB in water
is 15 g l−1 (41 mmol l−1). The boiling point of DCM is 39.6 °C.

Determination of equilibrium values of interfacial tensions with the pendant
drop technique provides γwater/air= 47 mNm−1 in a 0.5mmol l−1-CTAB aqueous
solution, γoil/air= 28mNm−1 at the DCM/air interface, and γoil/water= 2.5 mNm−1

at partition equilibrium (0.5 mmol l−1 CTAB in the aqueous phase).
The spreading coefficient is then S= 47− (28+ 2.5)= 16.5 mNm−1 > 0. This

value is certainly overestimated, as the existence of the precursor film of DCM that
extends ahead of the rim at the water surface tends to decrease γwater/air. Moreover,
due to DCM dissolution and film expansion, the effective value of γoil/water under
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present non-equilibrium conditions is expected to be higher than the above
equilibrium value. However, in any case, S keeps a positive value.

Processing techniques. Visualization is obtained using an optical Schlieren set-up.
Images are recorded with a high-speed PCO Dimax camera at full resolution
(2,016 × 2,016 pixels) with an acquisition rate of 1,279.35 fps and a field of view of
22 mm × 22mm. Image processing is performed using the ImageJ open source
software.

Measurements and reproducibility. The CTAB solution (25 ml) is poured into a
cylindrical container (diameter 70 mm). Then a single drop of DCM is carefully
deposited onto the surface of the solution using a gastight syringe. The drop
volume is 5.6 ± 0.1 μl. We performed 19 experiments under similar conditions; 14
of them exhibited more than 4 pulsations. The pattern observed during the first
four pulsations (P1–P4) led to the highly ordered dewetting structure described
above (during P4) 18 times out of 19; this structure qualitatively survived during
the following pulsations if any.

Determination of the evaporation rate. DCM evaporation was measured by
placing the system on a precision balance. We performed three sets of experiments
in three cylindrical containers with different sizes (diameters= 7, 4.5, and 3 cm) in
order to vary the free surface area. The mass loss during the drop evolution was
determined in each container for drops of increasing volume (3–26.5 μl) with 0.5
mmol l−1 CTAB in each. Results obtained in the 7 cm container are plotted in
Fig. 9. During these experiments, each drop exhibited pulsations or at least an
unstable regime within which it emitted randomly smaller droplets from its leading
edge. Starting as soon as the drop was deposited in the 7 cm container, the
instability occurred after an induction period in smaller containers (except for the
smallest drops). Nevertheless, the overall evolution of the mass loss is similar in all
cases, exhibiting a quasi-linear decrease throughout the drop life time (the drop
disappears at the instant of time indicated by an arrow in Fig. 9). The fact that the
evaporation rate does not depend upon time is an indication that the main source
of evaporation is not the drop surface itself (the area of which decreases in time)
but essentially the DCM film surrounding it.

Plotting the evaporation rate (defined as the slope of the linear part of each
curve in Fig. 9) as a function of the initial drop volume for the three different
containers (Fig. 10a) reveals that this rate first exhibits a linear increase, then a
constant value. The smaller the container, the lower the drop volume for which the
plateau is reached. Hence, the maximum evaporation rate is determined by the free
surface area, which becomes the size of the evaporating surface when the film that
surrounds the drop (made of the macroscopic film over which the paper focuses
but also of the precursor film) has invaded the entire container surface. Maximum
evaporation rates plotted vs. the free surface area of the three containers (Fig. 10b)
reveal a linear variation, providing the estimate of the evaporation flux, Qev= 2 ×
10−4 mg mm−2 s−1. It may be noticed from Fig. 10a that the evaporation rate for a
5.6 μl drop in a 7 cm Petri dish is ~ 0.4 mg s−1. With the above value of Qev, this
implies that the free surface area involved in the evaporation process corresponds
to a disk with a 25 mm radius. This is much larger than the 7–8 mm radius reached
by the spreading film during each pulsation (see Fig. 2), underlining the major
contribution of the precursor film in the overall evaporation rate.

Derivation of the initial spreading law. After the drop is released at the water
surface, the spreading coefficient S(t) has to relax toward S∞ for reasons discussed
in the text. The relaxation process is dominated by desorption within the aqueous
phase, so that the CTAB concentration at the water surface, Γ(t), obeys the
approximate evolution

dΓ=dt ¼ kaCðΓ1 � ΓÞ � kdΓ; ð2Þ

where ka and kd are the adsorption and desorption coefficients, respectively, C is
the CTAB concentration in the bulk, and Γ∞ is the surface concentration at critical
micellar concentration (CMC). The solution of equation (2) is

Γ tð Þ ¼ Γeq þ ðΓ 0ð Þ � ΓeqÞexp �keff tð Þ; ð3Þ

where Γeq= Γ∞/(1+ kd/kaC) is the surface concentration at equilibrium and keff=
kd+ kaC is the effective desorption coefficient. With C much lower than the CMC,
the surface tension at the oil–air interface varies linearly with Γ. Hence, the
spreading coefficient undergoes the same exponential relaxation as Γ toward its
equilibrium value, i.e., S(t)= S∞ – ΔS exp(– kefft), which for times t≪ keff–1, may be
approximated as

S tð Þ � S1 � ΔSþ ðkeffΔSÞt: ð4Þ

Now, let Rt= dR/dt be the instantaneous velocity of the leading edge of the film
(throughout this section, R(t) stands for the film radius RF(t) defined in Fig. 1a).
For the sake of simplicity, we provisionally assume that the film thickness, h, is
uniform and does not change over time, i.e., the drop ‘feeds’ the film in such a way
that dh/dt is negligibly small. Then the radial velocity U within the film at a radial
position r reduces to U(r,t)= R(t)Rt(t)/r. The spreading is driven by the line force
2πR(t)S(t) acting at the leading edge. This force is counteracted by the viscous
resistance of water, the depth of which is large compared with h. The
corresponding shear stress at a radial position r scales as µwU(r, t)/δ(r, t), where δ is
the local thickness of the boundary layer that grows over time below the film and
µw is the water viscosity. The resisting force acting on the film is thus

2πμwR tð ÞRt tð Þ
R RðtÞ
0 δ�1 r; tð Þdr. Defining the average boundary layer thickness

〈δ〉(t) as R tð Þ= δh i tð Þ ¼ R RðtÞ
0 δ�1 r; tð Þdr, the total resisting force is found to scale as

2πµwR2(t)Rt(t)〈δ〉–1(t), so that the force balance implies d(R2)/dt∼ µw–1S(t)〈δ〉(t).
Since the average boundary layer thickness grows as 〈δ〉(t) ∝ (µwt/ρw)1/2 (ρw is the
water density), one has

d R2
� �

=dt � ρwμw
� ��1=2

S tð Þt1=2 ð5Þ

If the spreading coefficient is constant, equation (5) immediately yields the classical
R(t)∝ t3/4 law. Instead, if it varies linearly upon time, inserting (4) in (5) and
integrating yields the ‘super-spreading’ prediction (1).

Velocity and temperature fields within the spreading film. We consider the
drop as an infinite reservoir, localized at r= 0, which provides a constant flowrate
Q to the film and keeps a constant temperature, TD. We now let the film thickness
vary over time but, for simplicity, still assume that it is radially uniform. The mass
of fluid contained within the film is then πR2(t)h(t) and we assume that its var-
iations are only due to the incoming flowrate Q, i.e., d(πR2h)/dt=Q. In particular,
we neglect the evaporation velocity, considering that it is much smaller than the
rate of change of the film thickness, ht= dh/dt. Assuming R(t) ∝ tn, the constant
flow rate assumption implies h(t)∝ t1–2n. Hence, Rht/hRt= (1− 2n)/n, so that
Q= πhRRt/n. The velocity field corresponding to the base flow within the film is
then

uðr; z; tÞ ¼ RRt

2nr
er þ 1� 2n

n
Rt

R
zez � r

2
er

� �
ð6Þ

where er and ez denote the unit vectors in the radial and vertical directions,
respectively. Thus, the flow field is made of a source corresponding to DCM
injection at the drop surface plus a linear strain resulting from the decrease of the
film thickness.

In the energy balance, diffusion is negligible in the radial direction, as the aspect
ratio h/R is very small. For the same reason, convective transport by the vertical
velocity htz/h is much smaller than its radial counterpart. It will also be proved a
posteriori that the time rate-of-change term is small. We may also neglect heat
exchanges at the oil/water interface, considering that temperature gradients are
essentially driven by evaporation. Last, following the conclusions of our
measurements, we assume that DCM evaporates at a rate that is proportional to the
area of the oil/air interface. The local evaporation flux, J, may vary with r and t but
has a prescribed surface average, J0 (corresponding to that determined

experimentally), so that 2π
R RðtÞ
0 Jðr; tÞrdr ¼ πR2 tð ÞJ0.

With these assumptions, the evolution of the temperature within the film is
driven by the approximate heat equation U(r,t)∂rT= λo∂zzT, with boundary

conditions ∂zT= 0 at z= 0 and �2πko
R RðtÞ
0 r∂zTðt; r; z ¼ hÞdr ¼ πR2 tð ÞJ0, where
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Fig. 9 Mass loss during the evaporation of DCM drops with 0.5 mmol l−1

CTAB in a 7 cm Petri dish. Initial drop volumes from bottom to top are 6, 9,
16.6, and 26.5 µl, respectively. Arrows indicate the time at which the drop
disappears. The dotted line is used to determine the evaporation rate
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ko and λo= ko/ρoCpo denote the oil thermal conductivity and diffusivity,
respectively, Cpo being the heat capacity at constant pressure.

Provided that time variations of T are small (see below) and neglecting the
temperature variation due to the evaporation flux at the drop edge (which amounts
to considering that J0h2/koRRt≪ TD), the temperature distribution within the film
is found to be

Tðr; z; tÞ ¼ TD � 2n
2nþ 1

J0
kohRRt

λor
2 þ RRt 1þ 2n� 1

2n
ðr=RÞ2 � 1
� �� �

z2
� 	

ð7Þ

The linear radial increase of ∂rT predicted by (7) is related to the circular
symmetry of the present system, which is responsible for the 1/r variation of the
source term in (6). With such a variation, supplying a uniform surface-averaged
evaporation flux requires ∂rT to increase linearly from the edge of the drop to
the film periphery. With R(t) ∝ tn and h(t) ∝ t1–2n, it is readily seen that the
neglected terms in the energy balance behave as t−2n, whereas those that were
kept behave as t2n–1. Hence, the approximations leading to (7) are legitimate
provided that n > 1/4, which is always satisfied in present experiments.
Obviously, (7) breaks down when the constant flow rate condition dQ/dt=
d2(R2h)/dt2= 0 is no longer satisfied, which happens when the transition from
spreading to recoil takes place.

Structure of the Marangoni flow. Assuming that the oil/air surface tension γoil/air,
now abbreviated to γoa, decreases linearly with temperature as γoa Tð Þ ¼ γoa TDð Þ �
α T � TDð Þ ðα> 0Þ; (7) implies ∂rγoa= Kr, with K= 4αnJ0{(2n+ 1)ρoCpohRRt}–1.
The Marangoni stress associated with this surface tension gradient induces a
correction to the base flow. Imposing that the vertical velocity component, wM, of
this correction vanishes at both z= 0 and z= h, and that the horizontal compo-
nent, uM, vanishes at z= 0 (which sounds reasonable since the viscosity of the
water is ~2.5 larger than that of DCM), the velocity distribution in the Marangoni-
induced flow obeys

uM ¼ K
μo

rz;wM ¼ K
μo

h� zð Þz ð8Þ

The horizontal component, uM, remains weak up to the rim compared with the
radial component of the primary velocity determined in (6) as far as the char-

acteristic Marangoni velocity, VM ¼ 2 nαJ0 2nþ 1ð ÞρoμoCpo

 ��1

n o1=2
, is much

smaller than Rt.

Rim structure and estimate of the film thickness. In the spreading film,
according to (6) and (8), the height-averaged velocity resulting from the
combined effects of the spreading and the Marangoni effect is RRt/2nr+
{[(2n – 1)/2n]Rt/R+ Kh/2µo}r. The film thickness h(t) considered up to now
does not vary with r. Hence, it may be viewed as the average of the actual film
thickness over the entire area covered by the film. If for some reason the local
film thickness, hloc(r, t), exhibits some variation with r, hydrostatic and capillary
effects induce a radial pressure gradient, which in turn results in a correction to
the above height-averaged velocity. The local pressure within the film is p(z,

hloc)= ρog(hloc – z)+ γoaκ(hloc), κ denoting the interface mean curvature,
which, for a slowly varying hloc, may be approximated as κ ≈ – ∂rrhloc. The radial
component, uc, of the complementary flow induced by this local pressure
gradient is then uc(r, z, t)= µo–1 ∂r{ρoghloc – γoa∂rrhloc)}z(z/2 – hloc), where it
has been assumed that uc = 0 at z= 0 and ∂zuc= 0 at z= h. This yields a depth-
averaged velocity correction

<uc> ¼ ∂rðγoa∂rrhloc � ρoghlocÞh2loc=3μo ð9Þ

This contribution is responsible for the existence of the rim, which is the
narrow region within which the Marangoni flow adjusts to the flow ahead of the
film, where a shear-free condition holds at the free surface34. For the matching
to be possible within a rim with characteristic radius a, at least one of the
contributions in (9) must be of the same order as the height-averaged
Marangoni-induced velocity, < uM > ≈ Krhloc/2µo. This allows in principle for
three possibilities, depending on which of the capillary (γoa∂rrrhloc), Marangoni
(∂rγoa∂rrhloc), or gravity (ρog∂rhloc) term dominates. However, the dominant
contribution is usually provided by the first of these, as it involves the derivative
of highest order. Thus, balancing < uM > with the capillary term γoah2loc∂rrrhloc/
3µo implies a3 ≈ 2γoah2loc/(3Kr), i.e., (a/hloc)3 ≈ γoa/(3µo<uM>) which, on using
(8), yields

hloc
a

� 6n
2nþ 1

αJ0
γoaρoCpoRt

� �1=3

ð10Þ

With this estimate at hand, it may be checked that the two neglected
contributions in (9) are both < 1% of that of capillarity. As Rt ∝ tn–1 and
a ∝ t−n/2, (10) implies that hloc varies as t(2 – 5n)/6 close to the rim. This is
significantly less than the t1 – 2n variation found for h (for n= 5/4 and 3/4, the
exponents are − 17/24 and − 7/24, instead of − 3/2 and − 1/2, respectively).
This difference is readily understood by considering that the local film thickness
behaves as hloc(r,t) ∝ rptq in the vicinity of the rim. If so, the surface average of
hloc is proportional to Rp(t)tq, i.e., to tpn+ q, which implies 1 – 2n= pn+ q.
Assuming q= (2 – 5n)/6 as predicted by (10) then yields p= (4 – 7n)/6n, i.e.,
p=− 19/30 and − 5/18 for n= 5/4 and 3/4, respectively. This result shows that
the film thins down as one moves radially outward, and this thinning is
governed by evaporation, at least close to the rim.

Having determined experimentally the evaporation heat flux, J0 ≈ 70Wm−2,
and knowing the value of the physical parameters involved in (10) (α= 1.3 × 10−4

Nm−1 K−1, Cpo= 1.19 × 103 J kg−1 K−1, ρo= 1.33 × 103 kg m−3, and γoa= 2.8 ×
10−2 Nm−1), the above prediction may be used to get an estimate of the film
thickness close to the rim at a specific stage of the spreading. For instance, in
Fig. 1a, the first stage where the rim is closest to the drop corresponds to R ≈ 3.75
mm, Rt ≈ 50 mm s−1, and a ≈ 0.125 mm. As n ≈ 1.1 at this stage, (10) yields hloc ≈
2.7 µm. Similarly, during P3, the first stage displayed in Fig. 1b corresponds to l ≈
45 µm with R ≈ 5.5 mm and Rt ≈ 30 mm s–1, which yields hloc ≈ 1.1 µm.

The Rayleigh–Plateau mechanism of rim break-up. The two snapshots displayed
in Supplementary Fig. 2, shifted by a time interval t2 – t1 ≈ 14.9 ms, both refer to a
stage of pulsation P1 where most of the circumferential variations displayed by the
rim thickness are sufficiently small for the linear stability theory to apply
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approximately (Supplementary Fig. 2a corresponds to the rim position closest to
the drop in Fig. 1a). Considering well-defined varicosities with a moderate
amplitude in these two images (see the caption of Supplementary Fig. 2 for more
details on how we determined the corresponding wavelength Λ) yields Λ(t2)/Λ(t1)
= 1.245. Experimentally, we do not have access to the rim radius, a, defined such
that the area of the rim cross section equals πa2(t) and the rim volume equals 2π2R
(t)a2(t). As the actual shape of the rim cross-section may not be exactly circular,
owing to the oil-to-water density contrast and to capillary effects, it is important to
check whether or not the rim thickness 2l determined from top views behaves
similarly to the rim diameter 2a. This may be assessed by examining the variation
of the quantity Rl2 between Supplementary Fig. 2a and b: the ratios R(t2)/R(t1) and
l(t2)/l(t1) of the film radii and rim thicknesses are ~1.244 and 0.887, respectively, so
that R(t2)l2(t2)/R(t1)l2(t1) ≈ 0.98. Strict conservation of the rim volume implies R(t2)
a2(t2)/R(t1)a2(t1)= 1. Hence, up to image accuracy, l and a behave similarly and it
may safely be assumed that l ≈ a, which allows us to conclude that Λ/a is close to Λ/
l and has increased from 7.4 to 10.4 in between the two panels.

It must then be determined whether this increase stems from the intrinsic
mechanisms that select the most unstable mode in the case of a stretched thread, or
if this most unstable mode has already been selected by time t= t1, in which case
the above variation of Λ/l from t= t1 to t= t2 merely results from the conservation
of the number of wavelengths along the circular rim, due to its 2π periodicity.
Assuming that the rim expands as R(t) ∝ tn, conservation of the number of
wavelengths implies that the dominant wavelength evolves as Λ(t) ∝ tn. The above
values of R(t2)/R(t1) and Λ(t2)/Λ(t1) are very close, confirming that Λ(t) ∝ R(t)
during that stage of the rim evolution. Hence, the variation of Λ(t)/l(t) observed
between the two instants of time displayed in Supplementary Fig. 2 proves that the
most unstable mode that eventually leads to rim break-up has already been selected
by time t= t1.

Although many images were taken at times t < t1, we chose the snapshot
corresponding to t= t1, because it is the first in which disturbances with a well-
defined wavelength clearly emerge along the entire rim perimeter. For this
reason, we consider that the selection process from which the most amplified
disturbance emerges is just completed by t= t1. Hence, comparison with
theoretical predictions must be conducted at that specific instant of time. To
achieve this comparison, several additional parameters have to be known. First
of all, it is necessary to determine the proper origin of time, which is the instant
at which the rim volume becomes constant (in the earlier stages, the rim
thickens by extracting fluid from the film, so that its volume increases). We
plotted the evolution of the quantity R(t)l2(t) using images recorded for t < t1
and determined that the rim volume reaches a plateau when R0= R(t= t0) ≈
3.45 mm. From that origin until t= t1, the film radius evolves as R(t)= R0(t/t0)n

with n ≈ 1.1, so that the ratio R(t1)/R0 yields (t1 – t0)/t0 ≈ 0.075. Next, the
characteristic times involved in the rim evolution have to be determined. The
capillary and viscous time scales evaluated at t= t0 are Tγ= (ρol3(t0)/γoa)1/2 ≈
3.2 × 10−4 s and Tµ= ρol2(t0)/µo ≈ 5.35 × 10–2 s, respectively. The rate at which
the rim is stretched may be estimated by considering the variation of Λ/l
between two successive images and making use of the evolution law Λ(t)/l(t) ∝
(t/t0)3n/2. With this procedure, the characteristic stretching time is found to be
Ts= t0 ≈ 4.95 × 10−2 s. Hence at t= t0,Tγ/Tµ0 ≈ 6 × 10−3 and Tγ/Ts ≈ 6.5 × 10−3,
both of which are ≪ 1. This indicates that, at a given t < t1, the instantaneous
growth rate, ω(λ, t), of a disturbance with wavelength λ(t) is essentially driven by
capillary effects, with only a weak influence of stretching and viscous effects, which
act over much longer time scales. In other terms, ω(λ,t) is the solution of the
classical Rayleigh dispersion equation35. It is noteworthy that µw/µo being ~2.4, the
viscosity of the aqueous phase does not affect significantly ω(λ(t),t) either.

The theory closest to present experimental conditions was developed first in the
inviscid limit36 Tµo/Ts→0, then in the presence of finite viscous effects37. This
theory only considers the case where the stretching rate is constant, i.e., n= 1.
However, as n ≈ 1.1 throughout the P1 pulsation, this restriction is not severe. In
contrast, any influence of the surrounding medium is neglected in that theory,
which does not fit well with present conditions where the rim is half-immersed in
another more viscous liquid. For arbitrary values of Tγ/Ts and (t− t0)/t0, the theory
provides the value of the most amplified wavelength, Λ(t), which is the one that
maximizes the cumulated growth rate

R t
t0
ω λðt0Þ; t0ð Þdt0. In the inviscid case, it

predicts that in the limit Tγ/Ts→0, which is relevant here, the most amplified mode
increases over time, starting from Rayleigh’s classical prediction Λ/l= 9.01 at t= t0
and reaching the value Λ/l= 9.94 at t= t1. However, viscous effects due to the
stretching process modify the normal viscous stress at the thread or rim surface
and their influence is destabilizing at short time37. For this reason, at a given time
such that (t− t0)/t0≲ 1, these effects reduce the wavelength exhibiting the
maximum cumulated growth rate. In particular, for Tµo/Ts= 1, the initial Λ/l is
found to be reduced to 6.65. In present experiments, Tµo/Ts ≈ 1.08, which is close to
unity and makes comparison with theoretical predictions obtained with Tµo/Ts= 1
relevant. Supplementary Table 1 summarizes this comparison. It shows that the
theory predicts Λ/l= 7.53 at t= t1, which is remarkably close to the experimental
observation Λ/l= 7.4. The 2% difference is probably fortuitous given the
approximations involved in the experimental estimates and the extra influences not
taken into account in the theory, especially the viscous effects due to the aqueous
phase and the possible role of evaporation. However, the agreement is clearly more
than qualitative and entirely supports the view that the mechanism driving the
growth of circumferential disturbances along the rim is the Rayleigh–Plateau

instability, which here acts on a continuously stretched rim in the presence of weak
but non-negligible viscous effects.

Evaporative instability in the circumferential direction. Wrinkles start growing
at the edge of the drop. Similar to what happens with the Rayleigh–Plateau
instability at the rim surface, we consider that the 2π periodicity imposed by the
circular geometry has no significant influence on their growth. In contrast, once the
most amplified wavelength is selected, its variation with the radial position simply
stems from the fact that the number of wrinkles must stay constant whatever r. For
this reason, the following stability analysis is carried out at r= 0, where we examine
the possibility for periodic disturbances to develop at the film surface in the
spanwise direction, y, representing the circumferential direction in the real system.
We consider a disturbance with wavenumber ky and growth rate s, and assume that
the free surface at r= 0 takes the form h0(y,t)= hl+ η(y,t), with hl= hloc(r= 0,t)
and η(y,t)= η0exp(ikyy)est (i2=− 1). We adopt the long-wave approximation,
kyh0≪ 1, and restrict the analysis to the small-amplitude limit, η0/h0≪ 1. Similar
to the reasoning that led to (9), hydrostatic, capillary, and Marangoni effects
induced by the disturbance result in pressure and surface tension gradients in the y
direction. Thus, the profile of the disturbance-induced spanwise velocity compo-
nent, vη, is

vη y; z; tð Þ ¼ μ�1
o f∂yðρogη� γoa∂yyηÞz z=2� h0ð Þ þ τðηÞzg ð11Þ

From continuity, the vertical velocity component, wη, associated with vη is found to
be

wη y; z; tð Þ ¼ �μ�1
o f∂yyðρogη� γoa∂yyηÞz2 z=3� h0ð Þ=2þ ∂yτðηÞz2=2g ð12Þ

The disturbance (vη, wη) takes the form of a periodic cellular flow in the (y,z)
vertical plane. The shear stress at the free surface, τ(η)= ∂yγoa, results from
variations of the surface temperature ∂yT(r= 0,z= h0(y,t),t) due to
spanwise variations ∂yη of the film thickness. From (7) taken at r= 0, we find

τðηÞ ¼ 2
2nþ 1

α
J0
ko

∂yη ð13Þ

Injecting (13) into (11) and (12) indicates that, provided the last term in the latter
two equations dominates, wη is positive when η is maximum, i.e., an upwelling
motion takes place below the crests of the film and the circumferential component
vη brings fluid away from them at the free surface. Mass conservation across the
film requires that ∂tηþ ∂y

R h0ðy;tÞ
0 vη y; z; tð Þdz ¼ 0. Making use of (11) and (13) into

this mass balance yields the evolution equation for the film height

∂tηþ ∂y ∂yðγoa∂yyη� ρogηÞ
h30
3μo

þ 1
2nþ 1

α
J0h20
μoko

∂yη

� 	
¼ 0 ð14Þ

The existence of possible non-trivial solutions is assessed by considering the
linearized form of (14), namely

∂tηþ ∂y γoa∂yyyη� ρog∂yη
� � h3l

3μo
þ 1
2nþ 1

α
J0h2l
μoko

∂yη

� 	
¼ 0 ð15Þ

which may be recast in the generic form

∂tηþ A∂yyηþ B∂yyyyη ¼ 0 ð16Þ

with A ¼ 1
2nþ 1

α
J0h2l
μoko

� ρog
h3l
3μo

;B ¼ γoa
h3l
3μo

ð17Þ

Setting η(y,t)= η0exp(ikyy)est, (16) predicts the growth rate of the disturbance to be

s ¼ Ak2y � Bk4y ð18Þ

As B > 0, disturbances may grow only if A > 0, in which case wavenumbers in the
range 0 ≤ ky ≤ (A/B)1/2 are amplified. For A to be positive at the edge of the drop,
one needs αJ0/ko > (2n+ 1)ρoghl/3, i.e., the local undisturbed film thickness hlhas to
be less than a critical value, hc= 3αJ0{(2n+ 1)ρogko}-1. With ko= 0.14Wm−1 K-1

and J0 ≈ 70Wm−2, this yields hc ≈ 4.3 µm and hc ≈ 6 µm for n= 5/4 and 3/4,
respectively.

In films thinner than this critical value, (18) implies that the most amplified
wavenumber is kmax= (A/2B)1/2, so that at the drop edge, the number of wrinkles,
NW= kmaxRD, that emerge should be close to

W � RD
ρ0g
2γoa

� �1=2 hc
hl

� 1

� �1=2

; ð19Þ

i.e., W � 1:3 hc
hl
� 1

� �1=2
with RD ≈ 2.7 mm. Using (10), we previously obtained an

estimate of hloc valid close to r= R. Assuming that the self-similar evolution hloc(r,
t) ∝ rptq applies throughout the entire range of radial positions with the previously
determined exponents p and q, we may estimate hl as hl(t)= (RD/R(t))phloc(R(t)).
Making use of this procedure at the stage corresponding to the rim with smallest
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radius in Fig. 1a, b, one finds hl ≈ 3.4 µm and 1.7 µm for pulsations P1 and P3,
respectively. Both values are lower than hc and (19) predicts W ≈ 0.9 and W ≈ 1.6,
respectively. Turning to P4, by the time wrinkles are first detected, the rim
thickness is about 20 µm, so that relying on (10) and on the above procedure
linking hl and hloc(R), one finds hl ≈ 0.2 µm, for which (19) predicts W ≈ 7.

Estimate of the inner rim lifetime. We argue that the second rim that forms just
before the recoil starts is not directly observed, owing to its very short lifetime. To
prove this, it must first be reminded that nonlinear stability theory predicts45 and
experiments confirm46 that an inviscid cylindrical jet with radius a submitted to a
1% amplitude initial disturbance (which sounds a reasonable magnitude here) with
wavelength λ corresponding to the most amplified linear mode (i.e., λ/a ≈ 9.01)
breaks up within a time TBU ≈ 15 Tγ, where Tγ is the capillary time (here Tγ=
(ρoa3/γoa)1/2). Based on the size of the droplets that form the inner ring and
considering that their volume equals πλa2, an estimate of a may be obtained by
assuming λ/a ≈ 9, in agreement with Rayleigh’s prediction35. These drops having
diameters of ~ 100 and 35 µm, this reasoning suggests that a is about 25 and 10 µm
for pulsations P1 and P3, respectively. Thus, the rim break-up time for these two
pulsations may respectively be estimated to 0.4 and 0.1 ms.

Data availability. All data are available from the corresponding author upon
reasonable request.
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