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Abstract: Due to the recent COVID-19 outbreak, makeshift (MS) hospitals have become an important
feature in healthcare systems worldwide. Healthcare personnel (HCP) need to be able to navigate
quickly, effectively, and safely to help patients, while still maintaining their own well-being. In this
study, a pathfinding algorithm to help HCP navigate through a hospital safely and effectively is
developed and verified. Tests are run using a discretized 2D grid as a representation of an MS hospital
plan, and total distance traveled and total exposure to disease are measured. The influence of the size
of the 2D grid units, the shape of these units, and degrees of freedom in the potential movement of
the HCP are investigated. The algorithms developed are designed to be used in MS hospitals where
airborne illness is prevalent and could greatly reduce the risk of illness in HCP. In this study, it was
found that the quantum-based algorithm would generate paths that accrued 50–66% less total disease
quantum than the shortest path algorithm with also about a 33–50% increase in total distance traveled.
It was also found that the mixed path algorithm-generated paths accrued 33–50% less quantum, but
only increased total distance traveled by 10–20%.

Keywords: field hospitals; pathfinding AI; air-borne diseases; COVID-19; front-line workers

1. Introduction

The COVID-19 pandemic brought many challenges to healthcare systems worldwide
and caused over 4 million deaths, which are rising still [1]. Many hospitals were overrun,
and makeshift (MS) hospitals started popping up wherever they were needed, but they
did not have the same ventilation and protection as a normal hospital would. These MS
hospitals were only regulated to have exhaust air volume of 150 m3 per hour per person,
whereas the guideline for infection control by the WHO is 288 m3 per hour per person [2].
On top of this, after the outbreak started, not much was known about COVID-19, which
resulted in a lack of proper protection for healthcare workers. During the initial stages of
the pandemic, in Wuhan, China, the infection rate among healthcare workers was anywhere
from 3.5% to 29% throughout various hospitals [3]. This infection rate is extremely high and
eventually would drop as PPE regulations were put into place and healthcare workers were
supplied with proper protection and training. However, healthcare workers were still one
of the highest risk groups in the pandemic. The most reported reasons for this were the lack
of PPE, followed by work overload and lack of proper hygiene or inadequate usage of PPE.
By April 2020, 10.7% of total cases in Italy were healthcare workers, and almost 14% of total
cases in Spain were healthcare workers [4]. At one point in the United States, healthcare
workers made up as much as 19% of total patients admitted for COVID-19 [5]. Of course,
after PPE regulations were fully fleshed out and all workers were supplied with the correct
protection, the rate of infection for healthcare workers dropped, but many still faced mental
health struggles. One study surveyed over 8800 hospital workers in Chongqing and found
that 30.7% had symptoms of depression, 20.7% had symptoms of anxiety, and 6.5% thought
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about self-harm and/or suicide [6]. Another study surveyed over 5000 workers in Spain
during the first wave of the outbreak, May to July 2020, and found that 8.4% experienced
suicidal thoughts and/or behaviors. The biggest factors given were the lack of workers,
supervision, coordination, or communication while at work and financial stress [7].

Most countries used MS hospitals to combat the spread of COVID-19, especially at the
start of the outbreak. In China, Fangcang hospitals were deployed. These ‘hospitals’ were
basically just large public venues temporarily converted into healthcare facilities [8]. These
facilities provided care to people with mild to moderate symptoms and isolated them from
their communities but did not contain many if any intensive care capabilities and, instead,
were built to help established hospitals contain the overflow of patients. These hospitals
were extremely effective at accomplishing what they were designed to do, and according
to one study, if the Fangcang hospitals opened only one day later, there would have been
about a 14,581% increase in total cases, a 27,903% increase in deaths, and would have lasted
over 100 days longer [9]. By May 2020 in the United States, over 660 million USD was
spent renovating convention halls, university buildings, and abandoned warehouses into
general care overflow hospitals [10]. Most of these MS hospitals were never used due
to poor planning, but one had 1000 total patients over the course of a few weeks. Some
countries focused on providing more intensive care rooms. In France, an MS hospital was
constructed with 30 ICU beds to provide extra care alongside the Émile-Muller hospital
in Mulhouse [11]. This was the first of its kind and was fully equipped with all needed
critical care equipment. It was connected to the Émile-Muller hospital’s computer system
for access to medical records and for cases of patient transfer. It also was divided into three
separate zones, each requiring varying levels of PPE to ensure proper precautions were
taken throughout the MS hospital. It was open from 24 March 2020 to 17 April 2020, and
held 46 critical care patients over this time.

Disease outbreaks, like any other disaster, can happen at any time, and if healthcare
systems are unprepared to handle it, they can quickly turn into a global crisis. Many
hospitals were not adequately prepared for COVID-19, which is why it was able to spread
so quickly and put so much strain on global healthcare systems. A study carried out in
Nigeria found that only 15% of the hospitals they surveyed would have been adequately
prepared for COVID-19 [12]. Another study found that hospitals on average in the United
States only had around 0.8 beds per 1000 people on a normal day, meaning there were
very few beds for COVID-19 patients [13]. After many countries realized they were not
prepared to handle the oncoming global epidemic, they started to find ways to estimate the
number of COVID-19 cases using various types of modeling so that they could improve
their healthcare systems and be ready for the new influx of sick patients. Common models
used in the current research field include SIR and SEIR models, which are able to closely
predict the number of cases of an infectious disease over a period of time. These models can
be used to allow governments to predict if, or when, a disease will surpass a threshold of
infected people in which action must be taken to stop further spread of the disease [14]. One
study implemented a stochastic forecast model to predict the number of COVID-19 cases
in both the first and second waves in Sri Lanka. This model was found to have potential
benefits over the others in closely predicting how many people will become infected over
a period of time [15]. Other researchers used data mining to study environmental and
meteorological variables and determine their correlation with the number of COVID-19
cases in three cities in Brazil. The model they developed was successful in predicting
the number of cases and deaths in the cities they studied [16]. There was plenty of work
carried out on predicting the number of cases. However, we were unable to find studies
that focused on helping HCP stay safe while maneuvering hospitals.

Pathfinding algorithms have been around for several decades. Dijkstra’s algorithm
was conceived in the late 1950s [17]. However, new implementations are still being found
for them. Common applications of these algorithms include video games [18] and GPS [19].
In more recent years, pathfinding has expanded into the fields of robotics [20] as well as
emergency response services [21]. Dijkstra’s algorithm finds the shortest path between



Healthcare 2022, 10, 344 3 of 25

two nodes on a graph by searching all the surrounding nodes, with the ones closest to the
start being prioritized. This approach is highly inefficient as the further away the target
is, the longer the search is going to take, and for implementations where the calculations
need to be performed extremely quickly, Dijkstra’s algorithm is not usually the best choice
for pathfinding. This is where the A* algorithm improves greatly. A* was developed in
1968 and uses a heuristic function to speed up the searching process [22]. Both of these
algorithms will generate the shortest paths. However, A* will never run slower than
Dijkstra’s due to its informed method of searching. This makes the A* algorithm very
common in implementations for video games, which require the pathfinding to occur in
real-time, or very close, in order to create an enjoyable experience for the player [23].

Healthcare workers are the backbone of the healthcare system and need to be kept as
safe as possible if an outbreak were to occur so that they can effectively help other patients
without furthering the spread of the disease. Currently, hospitals are working on making
things safer for HCP, but very few studies, if any, have been published on helping HCP
navigate MS hospitals safely. When dealing with an airborne illness, staying distanced
from infective people is incredibly important, especially in areas where personal protective
equipment (PPE) is in low supply. This study focuses on keeping workers away from
infective patients as much as possible while they are moving through the hospital, which is
an area that we could not find much, if any, research being conducted.

This study aims to provide a pathfinding algorithm that would make the workplace
safer for healthcare workers, specifically in MS hospitals, and would better prepare health-
care systems for an airborne epidemic or pandemic if one were to happen again. The
goal of this study is to reduce the risk of infection in healthcare workers in MS hospitals
dealing with airborne diseases. The objective of this study is to implement a pathfinding
algorithm into a mock MS hospital to find the safest, fastest, and most effective paths for
the healthcare workers to traverse from one position to another and limit the amount of
disease quantum they accrue. The shortest path between two points in a hospital is not
always the safest and the safest path may not be viable as it could be too long or tortuous.
An algorithm that produces a path with lower infection exposure to the HCP without
unreasonably increasing the traversable length of the path is the important contribution of
this work.

2. Overview

This study begins with a validation and explanation of a commonly used pathfinding
algorithm, as well as a demonstration of how it works in the Methodology section. This
algorithm is then applied to work in a hypothetical makeshift hospital in the Shortest Path
Algorithm for MS Hospitals section. The layout of this hospital is discussed, followed by
the rules of the tests and how they are conducted. A base test consisting of a shortest path
algorithm and the hypothetical hospital is discussed.

The effects of the grid refinement are then tested, meaning the increasing or decreasing
of units on the grid while maintaining the same overall grid size. The degrees of freedom
(DoF), the number of units the algorithm can move to from the current unit, of the algo-
rithm’s movement is then discussed, followed by testing of its impact on the algorithm’s
function. A lower DoF is tested on the algorithm. This is then used in a test on total
occupancy percentages in a hospital. Various occupancy percentages and hospital sizes
are used.

After this, the safest and mixed path algorithms are introduced in the Safest and Mixed
Paths section. These tests use a dummy airborne infection model to simulate COVID-19
exposure to workers. The ‘safest’ path algorithm follows only quantum exposure and aims
to avoid the most exposure possible with no regard to how far the worker must travel,
whereas the mixed path algorithm aims to balance both the distance traveled while still
minimizing infection exposure. These two algorithms are used in the same tests as before
and the results are compared to those from the shortest path algorithm. To finish this study,
the variables used in the infection exposure calculation were modified to view their effect
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on the algorithm’s function in the Investigation of Infection Exposure Calculations section.
A flowchart of the paper and its primary sections is shown below in Figure 1.

Figure 1. Overall flowchart of the paper.

3. Methodology

All the tests conducted in this study used a 2D grid similar to a graph as a platform
for the pathfinding AI to work. The origin (0, 0) was in the bottom left of the grid. Moving
right increased the x-value and moving up increased the y-value. The grid units used
had various shapes and sizes for each individual point on the grid, but the first tests used
squares as a base unit. To begin with, each unit could only be open or closed. Open units
could be traversed by the algorithm and closed units could not. The starting and ending
units had to be open for the algorithm to function properly.

3.1. Shortest Path Algorithm and Demonstration

The shortest path algorithm used in this study is a typical algorithm used in pathfind-
ing known as A*, which considers both the distance needed to travel to reach the target and
the distance traveled from the starting point when calculating the path [22]. The q-based
and mixed path pathfinding algorithms used later in this study use this as a basis but adapt
it to fit the needs of a hospital and airborne infection exposure, rather than creating a new
algorithm from scratch. It is used to navigate the HCP through a hypothetical MS hospital
and has three parameters (F, G, and H), which are used to find the shortest possible path
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between any two positions in the generated grid. G is the calculated Euclidean distance
between the center of the starting position and the current position, which is given as

G =

√
(xi − xc)

2 + (yi − yc)
2 (1)

where (xi, yi) are the coordinates of the center of the initial position and (xc, yc) are the
coordinates of the center of the current position. On the other hand, H is the Euclidean
distance between the center of the current location to the center of target position and is
given as

H =

√
(xc − xt)

2 + (yc − yt)
2 (2)

where (xt, yt) are the coordinates of the center of the target position. The parameter F is
given as

F = G + H (3)

The F value is the primary value used in calculating the shortest possible path and is
used as the value to determine which units to check while searching. The algorithm starts
by searching the units surrounding the starting position, calculating their respective F, G,
and H values, and selecting the position with the smallest F value. If two F values are the
same, the position with the smaller G value will be selected.

In Figure 2, the blue square is the starting position, and the red square is the target
position. The black squares are not traversable, so the F, G, and H values are not calculated.
The yellow square was selected as the “best” position to traverse as it had the lowest F
value when compared to all the feasible squares. When a position is checked and selected,
the position previously checked by the algorithm is stored as a pointer. This is used when
the path is generated later and allows the program to just trace backward through each
square following the pointer variable and store the square’s position. The positions around
the yellow squares are then checked and, once again, the lowest F value is selected. This
process is repeated until the target position is found and selected. Once the target is selected,
the algorithm traces through the pointers of each position until the starting position is
found and then returns the path that was just generated. A flow chart of this process is
provided in Figure 3.

Figure 2. Demonstration of pathfinding algorithm with F, G, and H values labeled at (a) the starting
position, and (b) the first step (blue square—starting position, black square—untraversable; red
square—target square; and yellow square—path).
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Figure 3. Flowchart describing the shortest path A* algorithm.

3.2. Shortest Path Algorithm Validation

The path generation algorithm used in this study was tested on its ability to find
the shortest possible path in a 2D grid between any two units. This was tested using a
100′ × 100′ plan made up of a grid of 100 units, each 10′ × 10′. On this grid, the starting
unit was selected, and the center of it had the coordinates (0, 5). The target position was
randomly selected anywhere on the grid except for directly on top of the starting position.
After this, a set number of squares were set to close, which made them untraversable. These
closed squares were randomly selected on the grid anywhere except on top of the starting
and target squares. This setup was tested with 10% and 20% total squares blocked.

The results, shown in Figure 4a,b below, demonstrate the algorithm’s ability to create
the shortest possible path from the starting point to the target point. Both the 10% and
20% blocked square tests were run 15 times and every time the shortest possible path was
taken. The path was verified as the shortest possible manually each time by measuring
the distance that the algorithm’s path took and then checking it with the distance of paths
that were close in distance or potentially shorter. The only complication was when the
target or starting square was completely surrounded by blocked squares, but this happened
only once and demonstrates a problem with the test rather than the algorithm itself. These
results show that this algorithm can reliably be used within the bounds of this study as the
shortest possible path algorithm.
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Figure 4. (a) Validation of pathfinding algorithm with 10% total area blocked, and (b) 20% total area
blocked (blue square—starting position; black square—untraversable; red square—target square; and
yellow square—path).

4. Shortest Path Algorithm for MS Hospitals

For this study, a hypothetical MS hospital with 200′ × 200′ plan dimensions was
chosen, and its plan was modeled using a 2D grid. The MS hospital is assumed to have
16 total wards where patients can be housed with entrances in the northwest. We assumed
the patient occupancy rates to be between 25% and 50% at any given time. The control
room (CR) where the HCP and hospital supplies are housed is located in the central west
of the hospital and will be the starting point for the HCP. These rules were incorporated
into the layout used by the algorithm in order to simulate how effective the shortest path
algorithm was in a realistic setting.

The code selects 4–8 different patient wards of the MS hospital specified above and
simulates three HCP agents seeking out these patients and assisting them by traveling the
shortest distance possible. The number of three HCP was chosen for this study because it
would give the MS hospital between a 1:1.33 and 1:2.66 nurse-to-patient ratio depending
on how many patients are present, which is as close as it can get to the benchmark of a 1:2
nurse-to-patient ratio that is aimed for in Intensive Care Unit rooms [24]. All three HCP
start in the same control room at the same time, and each is given a target patient that they
must help.

The movement of the HCP is governed by a set of 5 rules: (1) they are not allowed to
traverse through the control room, as in moving through it while searching for or moving
towards a patient; (2) they cannot travel through patient rooms or empty wards; (3) they
can only enter patient rooms from the top northwest corner; (4) they cannot be in the same
position on the grid as another HCP at the same point in time; and (5) their first step must
always be a unit that connects to the southwest corner of the CR.

To begin, patients are assigned to the HCP based on how close the patient is to the CR
in Euclidean distance. The first HCP (green) is given the closest patient, the second HCP
(pink) is given the second closest, and the third HCP (yellow) is given the third closest
patient. Once a patient has been assisted, they will no longer be a possible selection for any
of the HCP. After an HCP has completed their trip, they are then assigned the next closest
patient to their current position until there are no more patients. The order is always the
same, so if there are 4 total patients, the green HCP would always be the one to help the
farthest patient, regardless of the distance to the others. This process is repeated until there
are no more patients who need assistance, at which point the HCP returns to the CR.

Figure 5 is an example of what is generated when the code is run. The dark red blocks
of squares are empty wards, the blue block of squares is the control room, and the bright
red blocks of squares are the patient rooms. Each square represents a 10′ × 10′ area. The
preferred walking speed of most people is around 1.42 m/s (4.66 ft/s) [25]. This was
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rounded to 5 ft/s when used in this study to account for the frantic and high-paced work
environment the HCP are in. This means that each square takes the HCP about 2 s to travel
through. Once the HCP reach the first ward, they take 5 min to help the patient before
seeking out their next target. This amount of time was arbitrarily chosen; however, as long
as the time for each patient is the same, this amount of time could be any number and it
would not affect the outcome. Each color represents a different HCP and the path they
took to reach each patient they were assigned. The numbers on these colors represent the
time that each HCP would have been in that square in seconds. For example, if the square
has the number “20”, then that means that HCP would have been at that position in the
hospital 20 s after leaving the CR. The numbers that represent time are only shown to allow
us to see the exact direction the HCP would have traveled. The time was only used to make
sure that two HCP were not in the same position at the same time, and was not used for
any actual calculations. The numbers on the bright red patient blocks of squares represent
which HCP helped that patient. These basic tests yielded useful results, but it was felt
that these tests needed to be expanded on, and different elements of them needed to be
investigated further.

Figure 5. Example of a hypothetical MS hospital being used as a grid for traversal by the shortest
path pathfinding algorithm. (20 unit × 20 unit grid size, 5 infective patients, 3 HCP, time in seconds
in the grid).

4.1. Effect of Grid Refinement

The dimensions of the individual squares in the grid were altered to find the influence
they had on the total distance traveled by each HCP. Three new grids were generated,
two of them with a finer mesh and one of them with a coarser mesh. The coarser grid’s
dimensions were 10 units × 10 units, each unit being 20′ × 20′, and the finer grid’s
dimensions were 40 units × 40 units, each unit being 5′ × 5′. The third new grid had
dimensions of 80 units × 80 units, where each unit represented 2.5′ × 2.5′. The layout and
positioning of the patient rooms and the CR were kept the same throughout all grids. This
was carried out so that the tests would be comparable. If the grids are vastly different, then
the results do not give us useful information for this study, so the grids must be kept with
the same relative layout as they are sized up or down. An example of one test is shown on
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each grid in Figure 6a–d. Three separate tests were run on each of these grids and the total
distance traveled by all three agents was recorded. Each test had different active patient
rooms, but between different grids, these stayed the same. The results of these tests are
shown in Figure 7.

Figure 6. Paths taken by HCP when (a) 80 units× 80 units, (b) 40 units× 40 units, (c) 20 units× 20 units,
and (d) 10 units × 10 units grids are used (3 HCP, 3 infective patients, 200′ × 200′).

Figure 7. Distance traveled (ft) vs. number of grid units for a square-based grid.

These results display that creating a finer mesh will decrease the total distance traveled
by the paths generated. The distance decreases as more units are added because the
algorithm has more options to generate each path. Following this trend, it can be assumed
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that refining the mesh further would continue to lower the total distance traveled. However,
the more refined the grid becomes, the smaller the difference between these distances would
be. The smallest size of the units was left at 2.5′ × 2.5′ for one main reason. Following the
trend of reducing or increasing the size of the units by dividing both dimensions by 2, the
next step, 1.25′ × 1.25′, would not be able to contain an adult human, so there would be no
point in using that while generating paths for humans to follow.

After adjusting the size of the units in the grid/mesh, the shape of these units was
adjusted to see the effect that more/fewer degrees of freedom (permissible directions of
motion) while moving would have. Currently, the discretization units used were in the
shape of squares and allowed for eight degrees of freedom: one for each of the cardinal
directions, and then one for each diagonal between.

4.2. Degrees of Freedom

Degrees of freedom (DoF), when used in this study, refers to the number of possible
directions that the algorithm can take from each position, assuming all surrounding posi-
tions are open. The higher this number is, the more potential moves that the algorithm can
make. For example, 10 degrees of freedom would mean that the algorithm could search
and move in 10 different positions from its current position.

4.3. Change in Discretization Unit Shape but with Same DoF

First, uniform circles were introduced as the fundamental discretization unit instead
of squares. This test, like the ones prior, still used a classical A* algorithm that was adapted
for use in the mock MS hospital. This did not change the outcome of how the path was
generated because there was still eight degrees of freedom to move in. The only change
from before was the visual design of the grid units and nothing else. An example of how
this looked is shown in Figure 8 using the same test displayed in Figure 6c, and it can be
seen that the paths taken by the algorithm are the exact same. Each HCP is in the same
position at the same time for every position in every path for both tests. The results for the
circle-based grid are shown in Figure 9.

Figure 8. Example of a test run using circles as the fundamental discretization unit (3 HCP, 3 infective
patients, 200′ × 200′ hospital layout, 20 units × 20 units).
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Figure 9. Distance traveled (ft) vs. number of grid units for a circle-based grid.

4.4. Influence of Lower DoF

The second test carried out on the influence of DoF in this study used hexagons as the
fundamental discretization unit rather than circles or squares. The hexagons used had a
short diagonal of ten feet, and an apothem of five feet. The apothem is the distance from a
flat side of the hexagon to the midpoint, and the short diagonal is the distance between two
flat sides. This change in the fundamental discretization unit changes how the algorithm
functions. It now uses three separate variables from before.

The E value represents the estimated distance from the current hexagon to the target
hexagon. It is calculated using a modified Manhattan distance formula where only the
highest difference of values is used, which is given as

E = Max(|yt − yc|, |xt − xc|)× l∗ (4)

where (xt, yt) are the coordinates of the target hexagon, (xc, yc) are the coordinates of the
current hexagon, and Max(∗) returns the maximum value and |∗| returns the absolute
value of the input. The value is then multiplied by l∗ = 10′, which is the characteristic
length in feet.

The T value was a representation of how far the algorithm has traveled to reach the
current hexagon. No matter which direction the agent would move from each hexagon,
the distance would always be l∗ = 10′ more than before. T was used while searching in
the algorithm, so the value was not removed completely, although its value is infrequently
used. The calculation of the T value is given as

Tn = Tc + l∗ (5)

where Tn is the value of T for the new position being checked, and Tc is the value of T for
the current position.

The C value performs the same function as the F value used previously, except using
the T and E variables. Its calculation is given as

C = T + E (6)

The change in the discretization unit effectively limited the DoF that the algorithm was
given to calculate the path between points. Uniform circles and squares both have eight
DoF that were potentially traversable from each point. However, hexagons only have six.
An example of the algorithm traversing through this hexagonal grid is shown in Figure 10.
This is the same test patient layout used in both Figures 6c and 8.
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Figure 10. Example of algorithm working through a hexagonal grid, same color coding as in prior
tests and examples (3 HCP, 3 infective patients, 200′ × 200′ hospital layout, 20 units × 20 units).

To further test the effects of grid refinement, three other grid unit sizes were used
along with the one shown in Figure 10, and they follow the same size changes that were
used before being 10 × 10, 40 × 40, and 80 × 80 grids. These grids used hexagons with a
short diagonal of 20′, 5′, and 2.5′, respectively. As the unit size changed, the value added
to the G value mirrored the change to keep accurate track of distance traveled. The total
grid size was still maintained at 200′ × 200′; only the unit size was changed. The CR and
patient rooms were also held to the same relative size. These grids used the same three
tests that the other grid refinement tests used, and the total distance traveled by each agent
was calculated. The results are shown in Figure 11.

Figure 11. Distance traveled (ft) vs. number of grid units for a hexagon-based grid.

4.5. Further Restricted Movement

To continue the trend of restricting DoF even further and to further test the results
found in the previous section, the next tests used a square-based grid again. However, the
DoF would be restricted to only four this time instead of eight. The algorithm would only
be able to search and move in the four cardinal directions. Once again, this affects how
the algorithm functions and the variables that must be calculated. The T value from the
previous section is reused here, but two more variables are introduced.
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The J value once again represents the estimated distance from the current square to
the target square, and it was calculated using the Manhattan distance formula given as

J = (|yt − yc|+ |xt − xc|)× l∗ (7)

This formula uses the same values as the hexagonal E value calculation, and the only
major difference is instead of finding the max value between the two, it adds them together.

The M value functions the same as the F and C values, just with different variables,
and is given as

M = J + T (8)

An example of one of these tests being run is shown below in Figure 12 and uses the
same layout as Figures 6c, 8 and 10. The results of these tests are shown in Figure 13.

Figure 12. Example of algorithm working through a grid using four degrees of freedom for movement
(3 HCP, 3 infective patients, 200′ × 200′ hospital layout, 20 units × 20 units).

Figure 13. Distance traveled (ft) vs. number of grid units for a square-based grid with restricted movement.

Figure 14 is a summary of all of the tests up to this point including the unit shape,
grid size, and total distance traveled. The results shown suggest that when the algorithm
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has less DoF in generating a path, the paths that are generated will have a greater total
distance. Two factors that affect it are the number of total units on the grid and the number
of directions that the algorithm can check from each discretization unit. The fewer total
units or the fewer directions of potential movement, the more total distance each agent
must travel. A further decrease in the degrees of freedom or the total number of grid
units would most likely result in a larger total distance, and an increase in either of these
variables would likely result in a smaller total distance.

Figure 14. Comparison of the total distance traveled in feet vs. the shape of the fundamental
discretization unit used for grid sizes between 10 units × 10 units and 80 units × 80 units using the
data gathered from the prior tests.

4.6. Combined Effect of DoF and Occupancy Percentages

In order to further test the effect of DoF using various occupancy percentages, the
next tests tested various numbers of wards and occupancy percentages on a modified grid
layout. This layout is shown in Figure 15a–c.

The occupied wards were randomly selected for each test. Each unit shape, which had
differing DoF, was tested with 20, 40, and 60 total wards, and for each of these numbers of
wards, 20%, 30%, 40%, 50%, and 60% occupancy were tested five separate times. For each
of these tests, the total distance traveled by all three agents was measured and the results
are displayed in Figure 16.

It should be noted that the circle and square results are nearly the same at all occupancy
rates, which is to be expected because they both have the same DoF in the algorithm’s
navigation. The hexagonal grid, however, only allows for six DoF instead of eight, and
the consequences of this can be seen in the results. The increase in distance traveled was
between 5% and 10% at all occupancy percentages when comparing the hexagon grid
tests to the square and circle grid tests. The occupancy rates made no difference between
different unit shapes, as through all unit shapes, the increase in distance stayed the same
between occupancy percentages.
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Figure 15. (a) 20 wards on a square-based grid (42 units× 10 units); (b) 40 wards on a square-based grid
(42 units × 18 units); (c) 60 wards on a square-based grid (42 units × 26 units); each unit is 10′ × 10′.

Figure 16. Total mean distance traveled in feet versus DoF for different occupancy percentages.
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5. Safest and Mixed Paths

After running numerous tests on the validity of the algorithm used in this study and
some of the controllable variables that may affect it, a dummy airborne infection model was
introduced into the proposed framework. Several airborne infection models are available in
the literature [26–29]. However, in this study, we employed a proxy exponential model to
simulate an airborne infection model to simulate aggressive airborne diseases. This model
was not created in this study but was, instead, applied to the tests conducted as a way to
evaluate the amount of infection accrued by the HCP, also known as infection quantum
or simply quantum. The quantum was the variable used in the algorithm to generate the
‘safest’ path through the MS hospital grid. The quantum was calculated for each step on a
path using the equation given as:

q = βe(
−d2

2σ2 ) (9)

where β and σ are 50 and 3, respectively, and d is the distance between the susceptible
person and the infective person in feet. Figure 17a provides an example of quantum being
calculated at a given point. Figure 17b gives a heat map of quantum accrued for each
position on a grid.

Three tests were ran using the layouts shown in Figures 18 and 19c,d. For each grid,
the position of the CR and wards remained the same. The only change made was the
number and position of the infective patient rooms. For each test, three separate paths were
generated for each agent using different criteria in each algorithm: one based purely on
quantum, one based purely on distance, and the third being a mix of the two. All three
modified algorithms used the same calculations for the F and quantum values (q). An
example of each of these three paths is shown in Figure 18.

The three paths generated are (1) the shortest possible path using the A* algorithm,
also referred to as the F-based path, (2) the ‘safest’ possible path, also referred to as the
q-based path, and (3) a combination of a short path and a safe path, also referred to as
the mixed path. The F-based path is carried out using the same algorithm as all prior
tests. Since this algorithm does not track the quantum generated, it will produce paths
with more total quantum generated than the other two algorithms. However, it will also
produce shorter paths than the other two algorithms. The path generated by this algorithm
is demonstrated in Figure 18a.

The q-based algorithm is carried out entirely using the quantum value. It selects
only the positions with the smallest quantum values and ignores the distance completely.
This algorithm usually generates the path with the least amount of quantum generation,
the safest path. However, it can be highly inconsistent as the lack in the tracking of
distance results in very long paths such that the total quantum accrued can be less than
the paths generated by the mixed path algorithm. The path generated by this algorithm is
demonstrated in Figure 18b.

The mixed path algorithm is carried out by tracking both the distance and quantum
at each position, hence the name ‘mixed’. First, all the positions with a smaller F to the
current position are selected. Then, the quantum value of these positions is measured and
the position with the smallest q is selected. This process assures that the algorithm is always
moving towards the target position, while still making sure to accrue as little infection
quantum as possible. This addresses the problem the q-based path algorithm faces. The
path generated by this algorithm is demonstrated in Figure 18c.

Each path shown in Figure 18 has differences in its generation. This was one of the
three tests ran. The results from Figure 18 are displayed as “Test One” in Figure 19a,b. For
each test and each path in each test, the quantum generated by each agent was measured at
each step and summed, and the total distance traveled by each agent was summed. The
results for all the tests are shown in Figure 19a,b. The layouts of the other two tests are
shown in Figure 19c,d.
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Figure 17. (a) Example of quantum being calculated for a given position on a grid. (Blue—potential
point; red—infective patients; 3 infective patients, 8 units × 8 units grid) (b) Heatmap of quantum
generated around 5 infective wards of a hospital (20 units × 20 units grid).

From the graphs in Figure 19a,b, the quantum-based algorithm generates safer paths
than the other two algorithms, but also generates significantly longer paths than the mixed
path algorithm, and even more so when compared to the F-based algorithm. The q-based
algorithm reduces quantum accrued by around 50–66% compared to the F-based algorithm,
but the paths are also about 33–50% longer. When compared to the combination algo-
rithm, the F-based algorithm generates paths with between 33% and 50% more quantum
but only reduces the distance traveled by about 10–20%. Both the quantum-based and
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F-based algorithms generate paths with extreme distance and quantum values, respectively,
but the combination algorithm consistently generates a quick path with relatively small
quantum values.

Figure 20 shows a graph of total quantum generated and distance traveled through
five tests for each of the three algorithms. Each algorithm is denoted by a separate color:
the q-based is in blue, the F-based is in green, and the mixed path is in red. Each test is
denoted by a number above the points; for example, all three of the points labeled “1” use
the same layout of infective patients. All three tests use 3 HCP and the same overall grid
size. It is clear to see that the q-based and mixed path algorithms are much more efficient
at reducing quantum accrued by the HCP. However, the F-based algorithm still produces
much shorter paths at the cost of doubling the quantum accrued in most tests.

Figure 18. Example of (a) shortest possible path, (b) safest possible path, and (c) mixed path
(7 infective patients, 20 units × 20 units, 3 HCP).

In a “real world” scenario where algorithms such as these could be implemented, the
HCP cannot afford to double their risk of infection (F-based algorithm) or travel a few
hundred extra feet (quantum-based algorithm) every time they try to help patients. The
combination algorithm would be the best option, despite it not creating the shortest or
safest overall paths, due to its ability to mitigate both variables consistently.
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Figure 19. (a) Display of quantum generated for each test, (b) display of distance traveled for each
test; (c) test two layout, (d) test three layout.

Figure 20. Graph of q-based (blue), F-based (green), and mixed path (red) algorithms’ results
through five tests. Y-axis is total distance traveled by all three HCP in feet, and the X-axis is total
quantum generated by all three HCP. Test number is denoted by the numbers above each point.
(20 units × 20 units, 3 HCP).

6. Investigation of Infection Exposure Calculations

The equation used to calculate quantum generated in the prior tests used β and σ
as 50 and 3, respectively, and this generation of quantum can be seen in Figure 17b. To
prove this study is not reliant on these numbers as is, the same layout used in Figure 19c
was ran using the following (β, σ) sets: (25, 1.5), (75, 4.5), (150, 6), and (200, 7.5). Both the
q-based and mixed path algorithms were tested using these sets of variables. The results
for the mixed path algorithm are shown in Figure 21a,b and Figure 22a–c, and the q-based
algorithm results are shown in Figure 23a,b and Figure 24a–c.
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Figure 21. Example of a test run with the mixed path algorithm on a grid layout using different values
for β and σ, (a) β = 50, σ = 3, and (b) β = 75 (3 HCP, 5 infective patients, 200′ × 200′ hospital layout).

Figure 22. Example of a test run with the mixed path algorithm on a grid layout using different
values for β and σ, (a) β = 200, σ = 7.5, (b) β = 25, σ = 1.5, (c) β = 150, σ = 6 (3 HCP, 5 infective patients,
200′ × 200′).
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Figure 23. Example of a test run with the q-based algorithm on a grid layout using different values for β

and σ, (a) β = 50, σ = 3, and (b) β = 75, σ = 4.5 (3 HCP, 5 infective patients, 200′ × 200′ hospital layout).

Figure 24. Example of a test run with the q-based algorithm on a grid layout using different values
for β and σ, (a) β = 200, σ = 7.5, (b) β = 25, σ = 1.5, (c) β = 150, σ = 6 (3 HCP, 5 infective patients,
200′ × 200′ hospital layout).

Looking at the grids in Figures 21 and 22, there were only slight changes in distance
between each of these algorithms, ranging from 1012′ to 1020′. The q values are different,
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but since the path generation is almost the same, it would not matter. It can be noted that
there are slight differences between each of the graphs, but it would not be significant
enough to impact the core function of the algorithm.

The grids in Figures 23 and 24 use the same layout as the ones in Figures 21 and 22.
The only difference between the tests is the type of algorithm, either the q-based or mixed
path algorithm, respectively. All of the grids in Figures 23 and 24 are similar with a few
minor changes each, excluding Figure 24b, in which the green path cuts straight across
to the ward rather than looping around like in the others. Other than (b), the distances
from the other four grids are all within 1322′ to 1356′. The distance from (b) is 1204′ and
is an outlier from the rest of the data set. If this algorithm were to be implemented or
expanded on, it would need to be noted that the values used in the calculation of the
quantum generated might affect the outcome of the algorithm, as seen here.

7. Discussion

The work conducted in this study has some limitations that must be considered while
examining the results. First, for new airborne diseases such as COVID-19, there is no full
understanding of how to simulate its transmission. As more is learned about the disease,
the results in this study could be expanded. Second, the equation used to calculate quantum
generated is not specifically tailored to any specific disease including COVID-19, and is a
generic estimation based on other airborne illnesses. Changing or modifying this equation
could yield vastly different results than the ones found in this study. Third, the tests ran
in this study are based on the idea that the agents can only have a set number of DoF,
which works well when working with robots, but humans do not think in a set number of
directions. Humans can move in any number of directions with different stride lengths and
speeds. Changing either of these variables would directly affect the amount of quantum
generated, which would affect the risk of the HCP contracting the disease. Finally, the
number of agents used in this study would not be indicative of how many there are in a
real MS hospital. The size of the MS hospital used in this study would only be a small
fraction of the size of real MS hospitals and has only a tiny amount of HCP compared to
real MS hospitals. Greatly increasing the size of the grid or the number of agents could
affect the results found in this study.

The algorithms used in this study would be able to be implemented within real
hospitals using a system at a workstation or desk on each floor of a hospital, assuming
there is more than one. A floor layout of the hospital floor would need to be hashed up into
a grid to be used. Workers could then hold phones, pagers, or any device with a screen and
an ability to connect to the system. Something like augmented reality glasses, Google Glass
for example, would also be usable, which could overlay the routes the workers needed
to take as well as plenty of other important information about the patient. From there,
workers would be able to see patients that need assistance, and the algorithm would be
able to use their current position, as well as the position of other workers and infective
patients, within the hospital floor to generate them a safe path to their desired destination.
The algorithm can function in real time, and as soon as a patient would require assistance,
a path can be generated for any available worker from their current position. It would
function similar to a GPS, only on a much smaller scale and only when patients would
require assistance would it generate paths.

The most common implementations of pathfinding algorithms, in GPS, video games,
etc., use distance as the primary variable in the algorithm, which means they really only
look for the shortest path(s). The algorithms used for the mixed and quantum-based paths
in this study demonstrate pathfinding algorithms that either do not use distance or use
multiple variables in determining the path. These algorithms that do not aim to create only
the shortest path have many possible implementations. Navigation through a store is one
example. Using a mock store layout and an expansion on the algorithms used in this study,
there could be an algorithm developed that would create a path through a given grocery
store that would help the user collect all the items they wanted. This is an example where
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there would need to be more than just the distance considered to assure that the user did
not have to do lots of backtracking or cross the same areas more than once. This could
then be expanded to also incorporate the infection reduction that was covered in this study.
This algorithm could get the shoppers where they need to go both efficiently and safely by
following one-way aisles and other COVID-19 spread-reducing measures implemented
in superstores.

8. Conclusions

The important conclusions of this study are:

1. It was found in this study that an A* pathfinding algorithm can be used to generate
the shortest path between two points on a grid of uniform squares, circles, and
hexagons. The effect that the size of the fundamental discretization units had on the
total distance traveled by all the agents was measured, and it was found that the
smaller the units were, the less total distance the agents needed to travel to finish
their paths. Conversely, when the unit size was increased, the total distance increased.
The reasoning behind this is that when there are more units to choose from, slight
optimizations are able to be made, such as cutting a corner shorter than usual. This
was consistent across all shapes used as the fundamental discretization unit in this
study.

2. The DoF of the algorithm was also tested and the effect it had on the total distance
traveled was tracked. This was carried out by reducing the DoF and changing the
shape of the fundamental discretization unit. Uniform circles, squares, and hexagons
were all used. Uniform circles and squares both had eight DoF, hexagons had six,
and squares were used again, but restricted to only travel in four directions instead
of eight, meaning they had four DoF. The uniform circles and squares had the same
results in all tests, which is expected since the DoF was maintained. The hexagons had
a longer total distance than the uniform circles and squares, and the restricted square
tests yielded even longer distances. These results are to be expected since the fewer
options the algorithm has for each position, the longer the total distance traveled will
need to be. The DoF was not increased from the 8 that were used to start because
anything more than 8 is hard to produce on a graph due to the lack of uniform shapes
that would allow it. Had the DoF been increased, it would be expected that the total
distance traveled would be decreased.

3. Next, the DoF was tested again on different MS hospital sizes and occupancy per-
centages. Mock MS hospital layouts with 20, 40, and 60 total wards were all tested
with occupancy percentages between 20% and 60%. The wards that contained pa-
tients were randomly selected for each test. Squares, circles, and hexagons were the
fundamental discretization units used for these tests. Even with the different layouts
and occupancy percentages, the results aligned with the prior DoF tests. The less
DoF, the longer the paths generated were. The increase in total wards and occupancy
percentages did not alter the expected results.

4. The next tests involved two separate algorithms that would aim to reduce the chance
of infection rather than just find the shortest path. The q-based algorithm created the
safest overall paths without consideration for the distance at all. Compared to the
F-based, shortest path algorithm, it generated paths that were around 33–50% longer
in the total distance. However, these paths also only generated about 33–50% as much
infectious quantum, meaning that they were much safer, but took much more distance
to travel.

5. The mixed path algorithm took consideration of both distance and quantum generated
in order to mitigate both variables as much as possible. When compared to the F-based
algorithm, the mixed path algorithm-generated paths were only about 10–20% longer
but generated about 50–66% as much quantum. These paths are neither the safest
nor fastest. However, they would be the most useful due to their lack of quantum
generalization while still creating a path that is not hundreds of feet long.
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6. The mixed path algorithm and q-based algorithm both provide distinct advantages
over the A* pathfinding algorithm when used in a hospital setting. Although the A*
algorithm provides the shortest path of the three, both of the other two algorithms
keep the HCP much safer, up to 50% less exposure to infection quantum. Both the
q-based and mixed path algorithms could be introduced into hospitals to help keep
HCP safer from airborne illness while still getting them to their destination effectively.

7. The methods used in this study have several limitations, such as the relatively recent
emergence of COVID-19, the quantum equation being based on a generic airborne
illness rather than COVID-19 specifically, and the mock MS hospital used being much
smaller than a real MS hospital. However, these limitations could be overcome using
the algorithms introduced in this study or an expansion of them. As COVID-19 is
studied more, the equations used to estimate its spread of exposure will become more
well-defined and accurate, and the mock MS hospital could be expanded upon to
better represent a real-world MS hospital.
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