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Abstract: Advanced glycation end products (AGEs) are produced through the binding of glycated
protein or lipid with sugar, and they are known to be involved in the pathogenesis of both
age-dependent and independent neurological complications. Among dicarbonyl compounds,
methylglyoxal (MGO), which is produced from glucose breakdown, is a key precursor of AGE
formation and neurotoxicity. Several studies have shown the toxic effects of bovine serum albumin
(BSA)-AGE (prepared with glucose, sucrose or fructose) both in in vitro and in vivo. In fact,
MGO-derived AGEs (MGO-AGEs) are highly toxic to neurons and other cells of the central nervous
system. Therefore, we aimed to investigate the role of MGO-AGEs in microglial activation, a key
inflammatory event, or secondary brain damage in neuroinflammatory diseases. Interestingly,
we found that sulforaphane (SFN) as a potential candidate to downregulate neuroinflammation
induced by MGO-AGEs in BV2 microglial cells. SFN not only inhibited the formation of MGO-AGEs,
but it did not show breaking activity on the MGO-mediated AGEs cross-links with protein, indicating
that SFN could potentially trap MGO or inhibit toxic AGE damage. In addition, SFN significantly
attenuated the production of neuroinflammatory mediators induced by MGO-AGEs in BV2 microglial
cells. SFN also lowered the expression levels of AGE receptor (RAGE) in microglial cells, suggesting
that SFN could downregulate MGO-AGE-mediated neurotoxicity at the receptor activation level.
Altogether, our current study revealed that SFN might show neuropharmacological potential for
downregulating MGO-AGEs-mediated neuronal complications thorough attenuating AGE formation
and neuroinflammatory responses induced by MGO-AGEs in vitro.
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1. Introduction

Advanced glycation end products (AGEs) or glycotoxins are products of the Maillard
reaction between reducing sugars and amino acid residues in several proteins and nucleic acids,
through glycation, autoxidation, or lipoxidation [1,2]. AGEs can either be produced endogenously or
are present in processed foods, which undergo a browning reaction (for instance, the barbequing of
red meat produces excessive AGEs, making it a major source of exogenous AGEs) [1]. Exogenous and
endogenous AGEs are well-known mediators of several human ailments, including cardiovascular,
hepatic, renal, and neurological complications. In particular, diabetes can lead to the formation of
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endogenous AGEs in the body [3]. Hyperglycemia-mediated autoxidation normally results from the
production of major AGE precursors, namely, methylglyoxal (MGO) and glyoxal (GO) [4]. The high
reactivities of MGO and GO quicken their reaction with amino acids (specifically arginine, lysine,
and cysteine), resulting in the formation of AGEs [5]. AGEs derived from these precursors are
responsible for several organ toxicities [6]. MGO and GO accumulation and subsequent AGE formation
is inhibited by the glyoxalase (GLO I and II) system, which induces the breakdown of MGO and GO to
D-lactate and glycolic acid, respectively [7]. Despite various reports on MGO- and GO-AGE-mediated
toxicity in different organs, their roles in cells of the central nervous system are yet to be reported.

Accumulating evidence has revealed that AGEs are associated with aging-related disorders, such as
neurological complications, skin photoaging, psoriasis, metabolic disorders, diabetes, and vascular
complications [8–13]. Previous studies mainly focused on the harmful roles of AGE in diabetes, as it is
associated with abnormal glucose metabolism and AGE accumulation. In fact, diabetes-associated
AGEs can have direct neurodegenerative roles, as diabetes can also result in different neurological
complications. The major mechanisms through which diabetes may influence neuroinflammation
include glucose toxicity, AGE formation, AGE receptor (RAGE) activation, cerebrovascular injury,
and vascular inflammation [14]. AGE–RAGE interactions in brain cells (specifically microglia) and
infiltrating macrophages lead to their activation towards the inflammatory phenotype, resulting
in excessive production of proinflammatory mediators, a major cause of neuroinflammation and
neurodegeneration [15]. Complications mediated by such AGE may be controlled by either inhibiting
AGE formation, promoting AGE breakdown, or preventing AGE–RAGE interactions.

In this study, we propose sulforaphane (SFN), a representative Nuclear factor erythroid
2-related factor 2 (Nrf-2)-activating phytochemical [16], as a potential candidate against inflammatory
cascades induced by MGO-derived AGE. SFN, a natural isothiocyanate, is mostly present in
cruciferous vegetables as a glucoraphanin conversion product. It is known to have antioxidant,
anti-inflammatory, anti-apoptotic, cytoprotective, and anti-diabetic effects [17,18]. The aqueous extract of
glucoraphanin-rich broccoli sprouts inhibits AGE formation and AGE-induced inflammatory reactions
in endothelial cells and rat aorta [19,20]. Furthermore, SFN-mediated inhibition of AGE–RAGE
interaction is known to be responsible for pericyte protection against AGE-induced toxicity [21].
However, its role against MGO-AGEs-mediated neurotoxicity in neuronal cells or the nervous
system is yet to be revealed. In previous studies, we reported the ability of SFN-enriched broccoli
and SFN alone to significantly downregulate lipopolysaccharide (LPS)-mediated inflammatory
cascades [22,23]. These independent previous studies indicated that sulforaphane is effective in
inhibiting the MGO-AGEs-mediated neuroinflammatory reaction. In this study, we investigated whether
SFN can be a potential candidate for ameliorating microglial activation mediated by MGO-AGEs and
the corresponding neuroinflammatory events.

2. Materials and Methods

2.1. Materials

Fetal bovine serum, penicillin–streptomycin (PS), Dulbecco’s modified Eagle’s medium,
and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) powder were purchased from
Invitrogen (Carlsbad, CA, USA). LPS, MGO, and SFN were procured from Sigma Aldrich (St. Louis,
MO, USA). Competitive enzyme-linked immunosorbent assay (ELISA) kits of tumor necrosis factor α
(TNF-α) and Interleukin 6 (IL-6) were purchased from R&D Systems (Minneapolis, MN, USA). Primary
antibodies for cyclooxygenase2 (COX-2), β-actin, and Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) were purchased from Santa Cruz Biotechnology (Dallas, TX, USA), whereas inducible nitric
oxide synthase (iNOS) was ordered from Abcam (Cambridge, UK). Other primary antibodies such
as α-tubulin, p-IκB, Nuclear factor κB (NF-κB), p38, c-Jun N terminal kinase (JNK), Extracellular
signal-regulated kinase (ERK), Glycogen synthase kinase 3 beta (GSK3β), pJNK, pp38, pERK,
pGSK3β, NLR Family Pyrin Domain Containing 3 (NLRP3), and IκB were purchased from Cell
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Signaling Technology (Beverly, MA, USA). Protein lysis buffer (Pro-Prep) was obtained from iNtRON
Biotechnology (Seongnam-si, Gyeonggi-do, Korea).

2.2. Preparation of AGEs

MGO-modified BSA-AGEs (MGO-AGEs) were prepared by incubating 5 mg/mL BSA and 10 mM
MGO in the presence of 0.02% sodium azide (pH 7.4) at 37 ◦C for 8 weeks, as described previously [24].
Formation of AGEs was characterized or quantified by two different methods: measurement of
fluorescent intensity and by performing ELISA. Small molecular weight (7 kDa) cut-off membranes
were used to dialyze the AGEs for better filtration and prevention of errors with particulate matter.
The filtered solution was evaporated/freeze-dried, and the fine powders of AGE were obtained.
AGE formation was analyzed and characterized by two methods. The first method was by measuring
the fluorescence intensity at 355/460 nm wavelength for excitation/emission in a VICTOR X3 microplate
reader (Perkin Elmer, Waltham, MA, USA). The second method was through measuring the AGE-BSA
competitive ELISA according to the kit protocol.

2.3. AGEs Competitive ELISA Assay

AGEs characterization was performed by using AGEs competitive ELISA assay. We followed
the protocol of OxiSelect Advanced Glycation End Product (AGE) competitive ELISA kit from Cells
biolabs (Cat No: STA-817, San Diego, CA, USA) with slight modification. AGE level in cells following
MGO-AGEs and with or without SFN treatment was also measured by using this technique. BV2 cells
(1.5 × 106 cells per well) were seeded onto a six-well plate and pretreated with SFN, and then stimulated
with MGO-AGE for 30 min. After 24 h incubation, the cells were lysed with PRO-PREPTM protein
extraction solution for 24 h, and cell lysates were centrifuged at 12,000× g for 20 min at 4 ◦C. To evaluate
the effect of SFN on AGEs levels, an AGEs competitive ELISA kit assay was performed in accordance
with the manufacturer’s protocol.

2.4. AGEs Formation Inhibition Assay

To determine the direct effect of SFN on AGEs formation, we performed an assay as described by
Kiho et al. [25] with minor changes. BSA (5 mg/mL) was homogenized with 10 mM MGO or GO in
phosphate-buffered saline (PBS) (pH 7.4), followed by the addition of SFN (400 µM). Sodium azide
(0.02%) was then added, and the mixture was incubated at 37 ◦C for 7 days. Thus, altered AGE level was
determined to assess the effects of SFN on the inhibition of AGEs formation. Aminoguanidine (AGD;
1 mM) was used as a positive control. The amount of AGEs formed was evaluated by measuring the
fluorescence intensity at 355/460 nm (excitation/emission) using a VICTOR X3 plate reader (Perkin Elmer,
Waltham, MA, USA).

2.5. AGE Breakdown Activity Assay

The 2,4,6-trinitrobenzene sulfonic acid (TNBSA) assay was performed to verify the effect of SFN
on AGE breakdown, as described previously [26] with minor changes. Briefly, 1 mL of MGO-BSA was
homogenized with either SFN or the positive control (AGD; 1 mM) and incubated for 24 h. At the
following day, TNBSA (0.1 %) and NaHCO3 (4 %) were added, and the mixture was incubated at 37 ◦C
for 2 h. The reaction was stopped by adding 10% SDS and 1 N HCl. AGEs breakdown products were
analyzed by measuring the absorbance at 540 nm using microplate reader (Molecular Devices, San Jose,
CA, USA).

2.6. Nitrite Production and Cell Viability Assays

BV2 microglial cells, originally developed at the University of Perugia (Perugia, Italy) by
Dr. V. Bocchini were kindly provided by Dr. E. Choi from Korea University, Seoul, South Korea.
BV2 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) and stored in a humidifier
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incubator maintaining 37 ◦C and 5% CO2. BV2 cells (4 × 104 cells per well) were seeded onto a
96-well plate and incubated overnight. Cells were treated with either vehicle (control) or different
doses of SFN (dissolved in DMSO with a final concentration of 0.05%) 30 min prior to MGO-AGEs
stimulation and incubated for an additional 24 h. Nitrite production was measured by Griess reagent
assay, as described previously [27]. Conditioned medium from treated cells was mixed with an equal
volume of Griess reagent in a new 96-well plate for the measurement of nitrite production, as described
previously [28,29]. Cells were then processed for cell viability assay, as determined previously [29,30].
Briefly, cells were incubated with 0.5 mg/mL MTT solution for approximately 1 h in the dark. Once the
live cell stain turned blue, we removed the MTT solution and the cells were then exposed to dimethyl
sulfoxide (DMSO), which dissolved the purple formazan color (representative of live cells). This color
change was quantified by measuring the absorbance at 570 nm using a microplate reader (Molecular
Devices, San Jose, CA, USA).

2.7. LDH Production Assay

To determine the cytotoxicity of the AGEs, we performed lactate dehydrogenase (LDH) assay.
LDH assay kit was obtained from Invitrogen. LDH production was determined as described
previously [31]. Briefly, BV2 cells were treated with different concentrations of MGO-AGE and
were incubated for 24 h. Conditioned medium (50 µL) from the treated cells were collected and mixed
with equal amounts of LDH mixture (LDH substrate and buffer). This resulted in a color change into
a brown-red color because of the conversion of lactate to pyruvate in the presence of LDH enzyme,
which was evaluated my measuring the absorbance at 450 nm. This experiment was performed exactly
as described by LDH assay kit protocol from Thermo Fisher Scientific/Invitrogen (catalogue no. C20300,
Waltham, MA, USA).

2.8. ROS Production Assay

Intracellular oxidative stress induced by the treatment of MGO-AGEs was measured by evaluating
the increased level of reactive oxygen species (ROS) production by performing 2′,7′-dichlorofluroscein
diacetate (DCF-DA) staining in the BV2 microglial cells. Cells were pretreated with SFN 30 min
prior to MGO-AGEs stimulation and incubated for 1 h. DCF-DA staining/ROS production assay
were performed as described previously [32] with slight modifications. Briefly, treated BV2 cells
were washed with PBS and incubated with 10 µM of 2′,7′-dichlorofluroscein diacetate (DCF-DA) for
20 min and incubated in a light protected covering in an incubator maintaining 37 ◦C and 5% CO2.
After completion of staining time, cells were washed with PBS and fluorescent cells were counted by
using flow cytometer.

2.9. NF-κB Assay (Nuclear and Cytosolic Extraction)

BV2 cells were treated with SFN and then stimulated with MGO-AGEs for 1 h. The cytosolic and
nuclear fraction was separated using a Nuclear/Cytosolic Extraction Kit (Active Motif, Carlsbad, CA,
USA) following the manufacturer’s instructions. IκB and pIκB cytosolic fraction proteins and NF-κB
nuclear fraction proteins were then processed for Western blot analysis.

2.10. Western Blot Analysis

Protein expression was analyzed by Western blotting analysis, as described previously [33].
BV2 cells (1.5 × 106 cells per well) were seeded onto a six-well plate and pretreated with SFN
in the presence or absence of AGEs and incubated for different time points. Cells were washed
with phosphate-buffered saline (PBS) and lysed using Pro-Prep lysis buffer. To evaluate the
phosphorylated forms of mitogen-activated protein kinase (MAPKs) (pERK, pp38, pJNK) and pGSK3β,
we supplemented Pro-Prep lysis buffer with a phosphatase inhibitor-like cocktail. Cell lysates were
separated, and the protein content was estimated using Bradford’s assay. Protein samples (30 µg) were
separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred to
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nitrocellulose membranes, and incubated overnight with primary antibodies for p-IκB, NF-κB, p38,
JNK, ERK, GSK3β, pJNK, pp38, pERK, pGSK3β, NLRP3, IκB (all 1:1000; Cell Signaling), and α-tubulin.
The membranes were then washed and incubated with respective secondary antibodies. Protein bands
were visualized using Enhanced chemiluminescence (ECL) reagent (Amersham Pharmacia Biotech,
Little Chalfont, UK). The protein band intensity was quantified by the Image Master 2D Elite software
(version 3.1; Amersham Pharmacia Biotech, Little Chalfont, UK).

2.11. ELISA

BV2 cells were treated either with AGEs only or SFN pretreatment 30 min prior to AGEs treatment,
and then incubated for 24 h. Conditioned medium from the treated cells was collected and processed
for ELISA to determine the secreted levels of proinflammatory cytokines (TNF-α and IL-6) according
to the manufacturer’s protocol (R&D Systems, Minneapolis, MN, USA).

2.12. Statistical Analysis

Results are expressed as mean ± standard error of the mean (SEM). One-way analysis of variance
followed by Tukey post-hoc test was used to measure statistical significance with GraphPad Prism 5
(La Jolla, CA, USA). p < 0.05 was considered statistically significant.

3. Results

3.1. SFN Pretreatment Lowered MGO-AGEs Formation and Attenuated the Production of Neuroinflammatory
Mediators Induced by MGO-AGE in BV2 Microglial Cells

MGO was used to prepare AGEs through incubation with BSA for 8 weeks. This led to increased
AGE production, as evidenced by a significant increase in fluorescence intensity at early time
points. A marked increase in AGE formation after up to 6 weeks of incubation was followed by
plateau/saturation from the eighth week (Figure 1A). As SFN was proposed as a potential candidate
against MGO-AGEs, we investigated the role of SFN in MGO-AGEs formation and breakdown.
Incubation of MGO-AGEs with SFN (100 and 400 µM) and AGD (1 mM), a positive control, significantly
lowered MGO-AGEs formation (Figure 1B). However, SFN was not effective in inducing AGE
breakdown, as evidenced by free amine production (Figure 1C). Only AGD showed the ability to
significantly induce MGO-AGEs breakdown (Figure 1C). These data clearly indicated that SFN was
mainly responsible for the prevention of MGO-AGEs formation rather than breakdown. Amount of
AGE in the prepared MGO-AGEs powder was also characterized by using AGE-competitive ELISA.
A total of 1 mg/mL of MGO-AGEs was enough to produce a significant amount of AGEs in the
cell lysate measured by ELISA assay (Figure 1D). However, SFN was unable to alter formation and
breakdown of GO-AGEs (Figure S1A–C).

In addition, we examined the role of MGO-AGEs in microglial activation. MGO-AGEs, at 0.25,
0.5, and 1 mg/mL, dramatically induced nitrite production and cytotoxicity in BV2 microglial cells
(Figure 1E,F). Supportively, MGO-AGEs significantly increased the LDH production in BV2 cells at
the concentrations of 0.5 and 1 mg/mL (Figure 1G), suggesting its toxicity to microglial cells possibly
through its activation or inflammation. MGO-AGEs-induced nitrite production was significantly
attenuated upon SFN treatment (Figure 1H) without cell toxicity (Figure 1I), suggesting that SFN could
antagonize MGO-AGEs-induced oxidative stress in activated microglia, which was also observed
with GO-AGEs (Figure S1D–G). We also performed an AGEs-competitive ELISA to determine the
level of intracellular AGE in in BV2 cells following SFN and MGO-AGE treatment. A dramatically
high amount of intracellular AGEs was observed in the MGO-AGEs (1 mg/mL)-treated cell lysate,
however, SFN treatment, especially 10 and 20 µM, significantly lowered the level of AGE inside the
cells (Figure 1J).
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production (E), cell viability (F), and lactate dehydrogenase (LDH) production (G). BV2 cells were 
pretreated with SFN at 30 min prior to MGO-AGEs (1 mg/mL) stimulation and incubated for 24 h to 
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competitive ELISA assay (J). * p < 0.05, ** p < 0.01, *** p < 0.001 indicates significant differences 
compared with AGE alone, whereas # p < 0.05, ## p < 0.01 and ### p < 0.001 indicate significant 
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Figure 1. Sulforaphane (SFN) pretreatment reduced the methylglyoxal (MGO)-advanced glycation end
product (AGE)-mediated inflammatory cascades in microglial cells. BSA was incubated with MGO
(1, 5, 10, and 20 mM) for 8 weeks and formation of MGO-AGEs was determined in a concentration-
and time-dependent manner (A). SFN was incubated with AGE to determine its effects on AGE
formation and breakdown (B,C). AGE level was measured by using AGE-competitive ELISA assay (D).
BV2 cells were treated with various concentrations of MGO-AGEs to determine nitrite production (E),
cell viability (F), and lactate dehydrogenase (LDH) production (G). BV2 cells were pretreated with
SFN at 30 min prior to MGO-AGEs (1 mg/mL) stimulation and incubated for 24 h to determine
effects of SFN on nitrite production (H), cell viability (I), and AGEs level by AGE-competitive ELISA
assay (J). * p < 0.05, ** p < 0.01, *** p < 0.001 indicates significant differences compared with AGE alone,
whereas # p < 0.05 and ### p < 0.001 indicate significant differences compared with an untreated
control group.

3.2. SFN Pretreatment Lowered Reactive Oxygen Species (ROS) Production Induced by MGO-AGEs in
Microglial Cells

In addition to increasing nitrite production, MGO-AGEs treatment also significantly increased ROS
production in microglial cells. However, this significant increase in ROS production was dramatically
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reversed upon SFN treatment (Figure 2A,B), suggesting that SFN can attenuate MGO-AGEs-mediated
ROS production in BV2 microglial cells.
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Figure 2. SFN pretreatment reduced MGO-AGEs-induced reactive oxygen species (ROS) production
in microglial cells. BV2 cells were pretreated with SFN following MGO-AGEs (1 mg/mL) treatment.
ROS production in the MGO-AGEs group and MGO-AGEs + SFN co-treatment groups was evaluated
using flow cytometry and compared with that in the control group (A,B). *** p < 0.001 indicates significant
differences compared with AGEs alone, whereas ### p < 0.001 indicates significant differences compared
with an untreated control group.

3.3. SFN Pretreatment Attenuated the Expression of Neuroinflammatory Proteins and MAPK
Effector Signaling

After confirming the inhibitory role of SFN in nitrite production, we determined the effects of
SFN on iNOS and COX-2 protein expression in MGO-AGEs-activated microglia. SFN pretreatment
dramatically attenuated the expression of the inflammatory protein iNOS and COX-2 expression at
6 h after MGO-AGEs stimulation (Figure 3A). Activated microglia-mediated NLRP3 is considered to
be the major inflammasome responsible for the detrimental roles of the inflammatory microglial
phenotype; hence, this effect was also evaluated following SFN pretreatment and MGO-AGE
activation. However, at this time point, SFN treatment did not inhibit NLRP3 expression (Figure 3A).
Nevertheless, at 24 h after MGO-AGEs stimulation, SFN significantly inhibited NLRP3 expression in
MGO-AGEs-activated microglia, along with iNOS and COX-2 (Figure 3B), suggesting that SFN could
attenuate the inflammatory responses of activated microglia. In addition, SFN pretreatment decreased
GSK3β activation and p38 phosphorylation, but the alteration of ERK and JNK phosphorylation was
not significant (Figure 3C). These effects of SFN were also observed with GO-AGEs (Figure S1L–O).

Receptor of AGE (RAGE) is the major receptor responsible for proinflammatory responses of
AGE [34]. Therefore, we also determined whether SFN-mediated anti-inflammatory responses in
AGE-activated microglia were related with attenuated RAGE expression. Indeed, SFN treatment
decreased the expression of RAGE (Figure 3D) at 24 h after AGEs stimulation, suggesting that SFN
could inhibit the AGE–RAGE axis, which may be responsible for attenuating AGE–RAGE interaction,
leading to the decreased downstream inflammatory cascades in activated microglia.
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Figure 3. SFN pretreatment reduced the protein expression of inflammatory mediators in
MGO-AGEs-stimulated microglial cells. BV2 cells were pretreated with SFN followed by MGO-AGEs
(1 mg/mL) treatment. Protein expression and densitometric analysis results of iNOS, COX-2, and NLRP3
at 6 and 24 h after MGO-AGEs treatment (A,B). Protein expression and densitometric analysis results of
MAPKs and GSK3β (C) at 30 min after MGO-AGEs treatment, and expression of AGE receptor (RAGE)
was determined at 24 h after MGO-AGEs treatment (D). * p < 0.05, ** p < 0.01, and *** p < 0.001 indicate
significant differences compared with AGE alone, whereas # p < 0.05, ## p < 0.01, and ### p < 0.001
indicate significant differences compared with an untreated control group.

3.4. SFN Pretreatment Reduced NF-κB Translocation and Proinflammatory Cytokine Production in
MGO-AGEs-Activated Microglial Cells

We further evaluated the effect of SFN on MGO-AGEs-mediated NF-κB activation/translocation
1 h [35] after MGO-AGEs treatment. MGO-AGEs-driven NF-κB translocation to the nucleus was
inhibited by SFN pretreatment (Figure 4A), which was further supported by increased cytosolic
NF-κB expression. Moreover, reduced IκB degradation, as evidenced by reduced IκB phosphorylation,
was observed in the SFN-treated group. Moreover, MGO-AGEs-mediated IκB degradation (by its
phosphorylation) leads to NF-κB translocation to the nucleus; this sequence of events was reversed
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by SFN treatment. Inhibition of these NF-κB transcriptional pathways subsequently inhibits the
production of proinflammatory cytokines. In this study, MGO-AGEs exposure significantly increased
the production of proinflammatory cytokines, TNF-α, and IL-6 (Figure 4B,C), which was decreased
upon SFN treatment (Figure 4D,E). SFN also attenuated the production of proinflammatory cytokines
in GO-AGEs-primed BV2 cells (Figure S1H–K). Altogether, our results suggested that SFN possessed a
strong potency to lower the AGE-mediated inflammatory responses in activated microglia.
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Figure 4. SFN pretreatment reduced MGO-AGEs-mediated NF-κB translocation and proinflammatory
cytokine secretion in microglial cells. BV2 cells were pretreated with SFN followed by MGO-AGEs
(1 mg/mL) treatment (1 h for NF-κB and 24 h for proinflammatory cytokines). Cytosolic (c) and
nuclear (n) protein expression and densitometric analysis results of NF-κB, IκB, and pIκB (A).
Secreted levels of TNF-α and IL-6 in BV2 cells following treatment with different concentrations
of MGO-AGEs (B,C). Secreted levels of TNF-α and IL-6 in BV2 cells pretreated with SFN and treated
with MGO-AGEs (D,E). ** p < 0.01 and *** p < 0.001 indicate significant differences compared with
AGE alone, whereas # p < 0.05, ## p < 0.01, and ### p < 0.001 indicate significant differences compared
with an untreated control group.

4. Discussion

AGE are reported to be major pathological factors in several human ailments, and, lately,
research has focused on the resolution of AGE-mediated complications [36]. Accumulation of AGEs
precursors has been reported in diabetic complications, and therefore AGEs accumulation may be
the cause of diabetic toxicities, including neurotoxicity, as characterized by neuropathy and other
neuronal complications such as Alzheimer’s disease, multiple sclerosis (MS), Parkinson’s disease,
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and stroke [37,38]. Moreover, increased MGO levels may actively participate in AGE formation.
However, previous studies investigating AGE responsible for toxicity mostly focused on BSA-AGEs
prepared with sucrose or fructose and rarely on MGO-AGEs [39]. High levels of glucose-based AGE
are present in processed foods, including MGO-AGEs, which are the major breakdown products
of glucose and are responsible for AGE formation. Hence, appropriately addressing the effects of
MGO-AGEs can help raise awareness regarding protection against possible exposure to or toxicity of
endogenous or dietary AGE [40]. MGO-mediated AGE formed in glycolysis-driven cells are reported to
be actively involved in MS lesions [13]. Nevertheless, the exact role of MGO-AGEs and the inflammatory
cascades caused by MGO-AGEs, specifically in neuroinflammation, remain unknown. On the one hand,
AGE were previously reported to play proinflammatory roles; inflammation is a major cause of central
nervous system (CNS) disorders [41]. On the other hand, RAGE activation through the AGE–RAGE
interaction can cause damage to the blood–brain barrier (BBB), increasing the permeability of the BBB
to toxic substances, which can result in neuroinflammation and neurodegeneration [42]. However,
MGO-mediated toxicity and neuroinflammation-like conditions have not been reported experimentally.
In this study, we explored the toxicities of MGO-AGEs and proposed SFN as a protective agent
against the corresponding MGO-AGEs-mediated inflammatory complications via regulation of the
inflammatory microglial phenotype [43]. AGEs and LPS can activate RAGE and toll like receptor
4 (TLR4) receptors, respectively, to exert their inflammatory effects through downstream signaling.
The activation of RAGE and TLR4 in microglia or macrophage share common inflammatory pathways,
indicating their role in neuroinflammation [27,34,44–46]. SFN showed a strong potency to inhibit
microglial activation to the inflammatory phenotype and to increase the levels of anti-inflammatory
phenotypic markers in LPS-activated microglia [22,23]. We therefore believed that SFN exerted
similar pharmacological effects in MGO-AGEs-stimulated microglial cells to that in LPS-stimulated
microglial cells.

Given that AGE-mediated RAGE activation is a well-known pathway for macrophage/microglia
activation to its inflammatory phenotype [15] and most of the RAGE activators can lead to the numerous
downstream signaling pathways related to production of inflammatory in microglia [47,48], we focused
on the role of MGO-AGEs and their ability to alter inflammatory microglial biomarkers [49,50].
We observed that MGO-AGEs treatment sharply increased NO and proinflammatory cytokine
production, resulting in significant cytotoxicity to microglial cells. Similarly, increased expression of
iNOS, COX-2, NLRP3, MAPKs, nuclear NF-κB, and RAGE in microglial cells was observed following
MGO-AGEs treatment. These results were supported by an independent previous study by Chen et al.,
who observed that AGE can mediate the RAGE/Rho/ Rho-associated protein kinase (ROCK) pathway,
thereby upregulating microglial biomarkers such as iNOS, COX-2, and NLRP3 by upregulating NF-κB
translocation [15]. Free NF-κB can be translocated to the nucleus, resulting in increased transcription of
inflammatory mediators [51,52]. This could be a possible reason for IκB degradation due to increased
pIκB and upregulated nuclear NF-κB, which ultimately increased the production of inflammatory
cytokines and other mediators after MGO-AGEs treatment. SFN significantly lowered these cascades,
indicating that SFN is a strong candidate against AGEs-mediated toxicity. In addition, previous
studies clearly reported the cross-talk between Nrf-2 and NF-κB, as Nrf-2 negatively regulates the
NF-κB-mediated proinflammatory cascades [53]. It is evident that SFN, being the strong regulator of
Nrf-2 activation, results in the inhibition of NF-κB signaling.

The significant increase in MGO-AGE-induced microglial RAGE expression was attenuated by SFN,
suggesting SFN-mediated RAGE inhibition as the primary step for lowering AGE–RAGE-mediated
downstream inflammatory events. This result supported previous findings that SFN inhibited
AGE–RAGE expression and downregulated the inflammatory cascades in pericytes and endothelial
cells [20,21]. Apart from those of MGO-AGEs, SFN treatment dramatically decreased the levels of
inflammatory mediators, which were increased by GO-AGEs. These results suggested the high
potency of SFN to lower neuroinflammation induced by various types of AGEs. MGO-AGEs
were recently implicated in the pathogenesis of MS [13]. Our present results supported that the
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additional involvement of MGO-AGEs-mediated neuroinflammatory cascades may be a major cause
of neurological complications such as MS. These results revealed a target physiological pathway
that can be controlled by SFN to lower inflammatory cascades in activated microglia; however, the
mechanism underlying the reduction in MGO-AGEs formation remains unclear. The glyoxalase system
is the key to detoxify MGO-AGEs toxicity; hence, increased glyoxalase I/II and glutathione may help
decrease AGE-mediated toxicity [7]. SFN decreased MGO-AGEs formation as well as its interaction
with RAGE, and inhibited AGE-induced oxidative stress/inflammation by decreasing ROS production
in microglia, possibly via the redox biological activation of the cellular antioxidant system, Nrf-2/

Heme oxygenase-1 (HO-1), as previously described [23,54,55]. Despite identifying SFN as an appealing
phytochemical that can counter AGE-mediated neuroinflammation, we have a few limitations to report.
In this study, we prepared AGEs on our own in the laboratory. Preparation of AGEs using MGO, GO,
or sucrose/fructose is relatively easy but the amount of AGEs formed and the complex it contains
might vary between the batches, which might result in an alteration in the amount of desired AGEs or
its extent of toxicity or biological effects. Next, we cannot assert whether the concentration of AGEs
we used in this study is pathologically relevant or not. More research on the appropriate method for
the preparation and characterizations of AGEs are needed in order to be able to explore their role in
human health and disease in terms of future independent studies. In addition, in terms of the role
of MGO-AGEs on other CNS cell types following in vivo experiments, it is tempting to explore their
exact role in the pathophysiological system, which possibly may help in terms of the prevention or
treatment of neuroinflammatory disorders.

5. Conclusions

In this study, MGO, a highly reactive glycolytic product, was shown to actively participate in
AGE formation. It clearly increased the oxidative stress and inflammatory cascades through microglial
activation towards the inflammatory phenotype, leading to neuroinflammation and subsequent
neurodegeneration. Interestingly, the neuroinflammatory cascades induced by MGO-AGEs were
ameliorated by SFN treatment through downregulation of oxidative stress and inflammatory pathway
activation, reduction in AGE–RAGE interaction, and reduction in AGE formation. Therefore, SFN may
be a strong candidate against neuroinflammation induced by MGO-AGEs or neurodegenerative
diseases caused by chronic glycative stress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/9/792/s1,
Figure S1: SFN treatment modulated GO-AGE-mediated inflammatory events in microglial cells.
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