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sectioned for histological analysis.

a noise trauma model.

Otoprotection, Noise-induced hearing loss

Background: Selective glucocorticoid receptor modulators (SEGRMs) comprise a novel class of drugs promising
both reduced side effects and similar pharmacological potency relative to glucocorticoids, which presently serve as
the only clinical treatment for many otologic disorders. In the first otologic SEGRM experiment in an animal model
of noise trauma, we compare the effects of Compound A (a SEGRM) and dexamethasone (potent glucocorticoid).

Methods: Forty adult guinea pigs received experimental treatment once daily for ten days. The animals were
divided into four cohorts based on the treatment received: Compound A (1 mg/kg or 3 mg/kg), dexamethasone

(1 mg/kg) as gold standard, or water as negative control. After five applications, animals were exposed to
broadband noise (8-16 kHz) at 115 dB for three hours. Hearing thresholds were determined by recording auditory
brainstem responses to clicks and noise bursts (1-32 kHz) and were assessed a week prior to and immediately after
exposure, as well as on days 1, 3, 7, 14, 21, and 28. Cochleae were prepared as whole-mounts or embedded and

Results: Relative to the control treatments, Compound A failed to preserve auditory thresholds post-noise exposure

with statistical significance. Histological analyses confirm the physiological result.
Conclusion: The present findings suggest that Compound A does not have substantial otoprotective capacities in

Keywords: Selective glucocorticoid receptor modulators, SEGRMs, Compound A, Dexamethasone, Guinea pigs,

Background

Glucocorticoids currently serve as the only clinically avail-
able treatment for a variety of otologic disorders. However,
they often produce severe side effects including diabetes,
short-term blood glucose level dysregulation, osteoporosis,
and stunted growth [1-4]. To minimize these risks, it is
now common for steroids to be applied locally (e.g., intra-
tympanically) for therapy, but there is still a clinical need
for more effective and specific compounds and a better
understanding of how glucocorticoids exert their otopro-
tective effects [5, 6].
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Two processes have been identified as particularly sig-
nificant in glucocorticoid activity: transrepression and
transactivation. Transrepression of proinflammatory
transcription factors (e.g., NF-KB) is triggered when
cytosolic glucocorticoid receptors (GRs) bind the active
agent and the ligand-receptor complex translocates to
the nucleus [7]. Transactivation summarizes the
dimerization of GRs and the subsequent binding to spe-
cific DNA sequences (the glucocorticoid response elem-
ent or GRE), which primarily causes the side effects
associated with glucocorticoid use. Selective glucocortic-
oid receptor modulators (SEGRMs — until recently uni-
formly referred to as SEGRAs/-agonists) were developed
to counter inflammation by interfering with the tran-
scription factor pathway (receptor monomers) without
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influencing the GRE, thus decreasing the likelihood of
adverse events (although this hypothesis has become
controversial in recent years) [8].

Extensive in vitro and in vivo research has demonstrated
that the first commercially available SEGRM, Compound
A (CpdA), favors transrepression over transactivation [8].
CpdA’s anti-inflammatory effects have been demonstrated
in arthritis, asthma, and inflammatory bowel and neuroin-
flammatory disease models, with several studies showing
reduced side-effect profiles [9-16]. However, CpdA’s effi-
cacy has not yet been tested in the ear. On the contrary,
many research groups have applied synthetic glucocorti-
coids (e.g., methylprednisolone or dexamethasone) to the
ear in both animal and human models to assess their
effects on temporary threshold shifts (TTS: <24 h) and/or
permanent threshold shifts (PTS: 2—3 weeks later), albeit
with varying degrees of success [17-20].

In the first, to the best of our knowledge, study testing
a SEGRM in otology, our group demonstrated that intra-
tympanic CpdA delivery resulted in hearing loss in a
guinea pig model, whereas systemic application did not
produce threshold shifts, suggesting a stabilizing effect
of plasma protein binding [21, 22].

The current trial was designed to determine whether
CpdA could serve as a systemic alternative with a poten-
tially more favorable side-effect profile, ie., an agent
triggering fewer of the above-mentioned complications.

Methods

All animal procedures were approved by the local
Institutional Animal Care and Use Committee and the
Austrian Federal Ministry for Science and Research
(BMWF-66.009/0165-11/3b/2013). Rodent care and hand-
ling were in accord with the Federation of European
Laboratory Animal Science Associations’ guidelines.

40 adult pigmented guinea pigs were divided into 4 co-
horts of 10 animals each, controlling for gender (M =5;
F=5 in each cohort) and weight (all animals =300 g in
weight, no statistically significant difference between co-
horts). Rodents received an intraperitoneal injection of
one of four experimental treatments once daily for ten
consecutive days: CpdA (1 mg/kg); CpdA (3 mg/kg);
dexamethasone (1 mg/kg) as gold standard; or the ap-
propriate amount of water (negative control) (see Fig. 1a
for experimental timeline). Safe dosage was determined
and described in the aforementioned study (after review-
ing other trials that included a systemic application of
the drug) [15, 22, 23].

Compound A preparation

Compound A, or 2-(4-acetoxyphenyl)-2-chloro-N-me-
thyl-ethyl-ammonium chloride (Enzo Life Sciences,
Lausen, Switzerland; chemical structure illustrated in
Fig. 1b), was diluted in water for injection. Aliquots

Page 2 of 9

were frozen at -80 °C and thawed immediately before
administration.

Anesthesia

General anesthesia for auditory brainstem response
(ABR) recordings and noise exposure was induced with
medetomidine (0.3 mg/kg), midazolam (1 mg/kg), fen-
tanyl (0.03 mg/kg), and ketamine (10 mg/kg). A half-
dose booster injection was administered 1.5 h into noise
exposure. Body temperature was maintained at 38 °C
using a heating pad. Anesthesia was partially antagonized
with atipamezole (1 mg/kg) towards the end of each
procedure.

Acoustic trauma

After five injections of the experimental treatment (to
achieve sufficient drug level throughout both ears),
guinea pigs were positioned on a rotating plate in a
mac-2 soundproof chamber (Industrial Acoustics Com-
pany, Winchester, UK) and were exposed to 8-16 kHz
octave-band noise at 115 dB for three hours. Sound was
presented through a PH 8 Piezo tweeter horn (Conrad
Electronic, Hirschau, Germany) positioned 5 cm from
the animals’ pinnae and was amplified using an AMP75
wideband amplifier (custom-made by Thomas Wulf,
Goethe University of Frankfurt, Frankfurt am Main,
Germany). Noise calibration to target sound pressure
level was performed before exposure sessions.

Auditory brainstem responses

ABR thresholds were measured in the soundproof cham-
ber described above, equipped with a DT-48 speaker
(Beyerdynamic, Heilbronn, Germany) and a K2 micro-
phone (Sennheiser, Wedemark-Wennebostel, Germany).
The ear not receiving acoustic stimulation was plugged
with Ohropax classic (Ohropax, Wehrheim, Germany)
and a custom-made setup (Otoconsult, Frankfurt am
Main, Germany) enabled auditory potential assessment
[22]. Auditory stimuli included clicks and tone bursts
(3 ms duration, 1 ms rise/fall, frequency 1-32 kHz, one
step per octave). To obtain click thresholds, sound pres-
sure was increased in 2 dB-steps, whereas 5 dB-steps
were used for tone bursts (<100 dB). Click- and tone
burst-elicited signals were detected with a sample acqui-
sition rate of 50 kHz, amplified (80 dB), band-pass
filtered (10 Hz—10 kHz range), and averaged across 512
clicks and 256 tone bursts, respectively. Stimulus-evoked
potentials were recorded a week prior to (pre-expo,
baseline) and immediately after exposure (post-expo), as
well as on days 1, 3, 7, 14, 21, and 28. Hearing thresholds
were then independently analyzed by two investigators
(LD.L. & C.Z.) and were averaged between investigators
and across ears. No response was rated as “maximum
tested level +5 dB”.
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Fig. 1 a Experimental timeline. Abbreviations: d = day/s, ABR = auditory brainstem reponse, h = hours, dB = decibels. b Chemical structure of Compound A

Histology

Animals were transcardially perfused with 4 % parafor-
maldehyde after audiometry on day 28. Cochleae were
subsequently excised and fixed for at least 48 h and were
randomly distributed across two groups for either organ
of Corti whole-mount assessment or histological evalu-
ation, respectively.

For histological evaluation, samples were first rinsed with
distilled water and decalcified in 8 % ethylenediaminetetra-
acetic acid (Sigma-Aldrich, Vienna, Austria), and then
embedded in paraffin for sectioning. Five 4 pum-thick sec-
tions were cut every 100 pm to the mid-modiolar plane;
the rest of the cochlea was serially sectioned to include
structures such as the round window membrane. Cochlear
sections were then stained with hematoxylin-eosin and
evaluated under a light microscope. A treatment-blinded
histopathologist (H.S.) evaluated the tympanic membrane,
wall of tympanic bulla and mucosal lining, round window
membrane, and ossicles for exposure-induced changes. In
addition, the spiral ligament, stria vascularis, and spiral
ganglion neurons (SGNs) were assessed for nuclear hyper-
condensation of fibrocytes and pigmentation, intactness,
and density in each of the 7 sections (across 3.5 half-
turns) of Rosenthal’s canal (RC), respectively, in three
mid-modiolar sections separated by 25 um. Nucleated
SGN profiles in each of the 7 sections of the RC (mea-
sured in mm?) were counted using Ellipse3D software
(ViDiTo, Kosice, Slovakia). SGN density is reported as
the average density across the three mid-modiolar sec-
tions. Due to the respective sectioning plane, the fourth
middle and apical turns (see Wrzeszcz et al., for nomen-
clature) could not always be analyzed separately and were
therefore excluded from the statistical analysis [24].

Organ of Corti whole-mounts were prepared by
removing the otic capsule and then staining the tissue
with Phalloidin-Tetramethylrhodamine B isothiocyanate
(0.3 mg/ml PBS, Sigma-Aldrich, Vienna, Austria) and

Hoechst 33342 trihydrochloride trihydrate (0.05 mg/ml
PBS, Life Technologies, Carlsbad, CA, USA) for 30 min
at room temperature. The cochlear turns were individu-
ally embedded in Fluorsave (Calbiochem, Darmstadt,
Germany) and were observed by the blinded investigator
(E.E.) under a confocal microscope to quantify the per-
centage of intact hair cells (HCs) in three randomly
selected 200 pm-sections of each turn [25].

Statistics

Data were analyzed using R 3.1.1 (R Foundation for Statis-
tical Computing, Vienna, Austria) and are presented as
mean values. Error bars reflect standard error of the mean.
Two-way analyses of variance (ANOVAs) were performed,
applying Tukey’s HSD correction for multiple compari-
sons. For histological data, contingency analyses were per-
formed with the Freeman-Halton extension of the Fisher
exact probability test [26]. P-values less than 0.05 were
considered statistically significant.

Results

Compound A does not prevent threshold shift after noise
exposure

Click threshold shifts were not significantly different
across groups — thresholds ranged from -18.2 dB + 5.3 dB
(CpdA 3 mg/kg; AVG +SD) to -19.8 dB + 3.5 dB (CpdA
1 mg/kg) immediately after exposure to -9.0 dB+5.3 dB
(CpdA 3 mg/kg) and -11.5 dB+5.4 dB (CpdA 1 mg/kg)
at day 28 (see Fig. 2).

Pure-tone threshold shifts were more prominent. As
anticipated, noise exposure was immediately followed by
threshold shifts specific to high frequencies (Fig. 3, 8-32
kHz, “post”), but thresholds at lower frequencies
remained relatively stable (Fig. 3, 1-4 kHz, “post”, max-
imum shift of 10.4 dB+5.9 dB in the control group at
4 kHz). ANOVAs comparing thresholds between groups
and across time revealed no significant differences in
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Fig. 2 Click-ABR thresholds. Results of guinea pigs up to 4 weeks after
noise exposure treated with the systemic application of water for
injection (control, square), CpdA 1 mg/kg (diamond), CpdA 3 mg/
kg (triangle), and dexamethasone 1 mg/kg (x). Error bars represent
standard error of the mean. Abbreviations: pre = preexposure,
post = postexposure, d = day, dB = decibels

thresholds between animals that had received the negative
control versus either of the CpdA dosages. Surprisingly,
although the dexamethasone group did show better hear-
ing thresholds than the other treatment groups at some
frequencies immediately post-noise exposure (e.g., Fig 3,
16 kHz, “post”), the trend was not statistically significant.
Spontaneous recovery (indicative of TTS) was observed in
all groups to a certain extent, but damage persisted
through day 28 (indicative of PTS).

Noise exposure causes minimal hair cell loss in all groups
Outer and inner HCs analyzed from basal, second, and
third turn and apical cochlear sections showed only
slight HC loss without statistical significance across
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treatment groups (Table 1; Fig. 4), which supports the
finding that hearing thresholds shifted minimally.

Spiral ganglion neuron counts show no group differences
Spiral ganglion neuron integrity was also quantified
(number of SGNs per mm? per section of RC) but ana-
lyses revealed no statistically significant differences
between the treatment groups (Control: M = 1250 + 160;
CpdA 1 mg/kg: M=1360+76; CpdA 3 mg/kg: M=
1250 + 130; Dexamethasone: M =1270+90). Sub-
analyses were performed, but did not reveal any
frequency-specific between-group differences.

Histological evaluation confirms ABR results

Middle ear assessment revealed small areas of tissue
response to noise exposure (osteoneogenesis, fibrosis,
and metaplasia of the bulla’s epithelial lining) in several
animals, but these changes could not be linked to a spe-
cific treatment.

Stria vascularis detachment, spiral ligament pigmentation,
and fibrocytes type III showing nuclear hypercondensation
were assessed in detail. Qualitative evaluation of the stria
vascularis revealed intermediate and marginal cell detach-
ment from the basal cell layer in 40 % of controls, 20 % of
CpdA 1 mg/kg and 86 % of CpdA 3 mg/kg animals; how-
ever, none of the animals in the dexamethasone group
showed detached stria vascularis (Table 2, Fig. 5, Fisher’s
exact test: p = 0.02).

The dexamethasone group was also the only group to
show no evidence of spiral ligament pigmentation (Con-
trol: 60 % contained pigment; CpdA 1 mg/kg: 40 %;
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Fig. 3 Pure-tone thresholds. Results of guinea pigs up to 4 weeks after noise exposure treated with the systemic application of water for injection
(control, square), CpdA 1 mg/kg (diamond), CodA 3 mg/kg (triangle), and dexamethasone 1 mg/kg (x). Error bars represent standard error of the
mean. Abbreviations: pre = preexposure, post = postexposure, d = day, dB = decibels
J
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Table 1 Inner and outer hair cell counts (% + standard deviation)
Control CpdA 1 mg/kg CpdA 3 mg/kg Dex 1 mg/kg
Inner Hair Cells
Basal turn 100+ 0.0 99.8+04 99.8+04 994+ 09
Second turn 989+25 100+0.0 98917 92+14
Third turn 99.7+0.7 99.8 £04 99.7 £0.7 100+ 0.0
Apex 100£00 994+10 100+00 989+15
Outer Hair Cells
Basal turn 994 £0.8 994 £09 985+ 1.8 989+1.2
Second turn 982+23 985+20 985+18 980+32
Third tumn 964+43 93.5+55 973+22 956+35
Apex 936+53 94854 983 £ 2.1 940+ 49

CpdA 3 mg/kg: 86 %; Dexamethasone: 0 %) (Table 2,
Fig. 5, Fisher’s exact test: p = 0.04).

Lastly, the number of fibrocytes type III showing nu-
clear hypercondensation varied between experimental
groups. Few pyknotic nuclei of fibrocytes type III were
detected in the second and third middle turns of control
and dexamethasone-exposed cochleae (40 and 50 %, re-
spectively); however, 80 % of CpdA 1 mg/kg animals and
71 % of CpdA 3 mg/kg exhibited condensed cell nuclei
in these areas. Several also began to show signs of hyper-
condensation in the first middle turn (20 % in the 1 mg/

kg and 29 % in the 3 mg/kg cohort) (Table 2, Fig. 5,
Fisher’s exact test: p = 0.51 and 0.44, respectively).

Discussion

Here we present the first evaluation of SEGRMs as an
alternative to glucocorticoids for preserving hearing after
noise trauma. Although not directly examining molecu-
lar pathways, the present experiments might provide
insight regarding the mechanism of action of the latter
class of drugs, which, despite their wide clinical applica-
tion, remain poorly understood.

DIC (Nomarski)

Outer Hair Cells

Fig. 4 Confocal imaging in a control animal (water for injection) four weeks after noise exposure. Outer hair cell loss in the basal region marked
with arrowheads. Abbreviations: Hoechst = Hoechst 33342 trihydrochloride trihydrate, DIC = Differential Interference Contrast, IHC/OHC = Inner/
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Table 2 Histological evaluation of inner ears (%, *p < 0.05)
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Control CpdA 1 mg/kg CpdA 3 mg/kg Dex 1 mg/kg
Strial detachment 3" turn* 2/5 (40 %) 1/5 (20 %) 6/7 (86 %) 0/4 (0 %)
Pigmented spiral ligament* 3/5 (60 %) 2/5 (40 %) 6/7 (86 %) 0/4 (0 %)

Pyknotic fibrocytes type Il

2/5 (40 %)
0/5 (0 %)

Apical 2" turn and above
Basal 2" turn and above

4/5 (80 %)
1/5 (20 %)

5/7 (71 %)
2/7 (29 %)

2/4 (50 %)
0/5 (0 %)

In our study, CpdA (a SEGRM) was compared with
dexamethasone (positive control) and water (negative
control) in its ability to preserve hearing after noise
overexposure. Results indicate that neither dosage of
CpdA (1 mg/kg vs. 3 mg/kg) provided physiological or
anatomical protection that was significantly different
from that offered by the negative control (water). How-
ever, CpdA and dexamethasone differed significantly in
their abilities to preserve cochlear anatomy after noise
exposure; specifically, while a detached stria vascularis
was observed in CpdA-treated animals, the stria

remained intact in dexamethasone-treated animals. It is
well-known that acoustic overstimulation can trigger
stria detachment and although the exact mechanisms
driving this are unclear, studies investigating animal
models of age-related hearing loss have proposed apop-
totic cell accumulation in the stria’s basal layer as an ex-
planation [27, 28]. Since strial degeneration plays an
important role in age-related hearing loss in animals
and humans, it is possible that long-term ABR thresh-
old shifts would have been observed after our follow-up
period of 4 weeks [29-32].

Stria vascularis

Spiral ligament

Fig. 5 Representative sections of the cochleae of animals in different experimental groups. CodA 3 mg/kg (a, ¢, e), control (b, d) or dexamethasone as
the current gold standard (f). The histopathology of the stria vascularis (a, b) and spiral ligament (c-f) is depicted. a Detachment of the stria vascularis
was noted in a high proportion of animals treated with CpdA. Asterisks (*) mark the gap between marginal/intermediate cells and basal cells of the
stria vascularis (sv) bordering the spiral ligament (sl). b The stria vascularis of the majority of control and dexamethasone-treated animals did not show
any signs of detachment. ¢, d Accumulation of pigment in the spiral ligament (arrows pointing to pigment granules) was seen in relatively more
CpdA-treated animals (c), compared to control or dexamethasone-treated animals (d). e, f Nuclei of fibrocytes type Il in the spiral ligament show a
high degree of condensation (e, arrow heads), while appearing largely unaffected in control or dexamethasone-treated animals (f). Scale bars = 50 um
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In addition to assessing the effects of treatment type
on stria vascularis integrity, this study also investigated
the state of fibrocytes in the different turns of the coch-
lea. These cells exist in many forms in the inner ear and
were originally classified into four types according to
location, orientation, immunostaining, and presence of
transport-related enzymes (a fifth type was added several
years later) [33, 34]. Fibrocytes type III are circumferen-
tially located adjacent to the bone in the inferior region
of the spiral ligament and, along with the spindle-shaped
type IV fibrocytes (located lateral to the basilar mem-
brane), serve to protect the cochlea against mechanical
constraints induced by acoustic stimuli [33, 35]. Cell
condensation and pyknotic nuclei are early signs of
apoptosis and have been described in fibrocytes of the
spiral ligament after noise overexposure in a mouse
model [36]. Fibrocyte degeneration in the spiral ligament
has been recognized as a major aspect of age-related
cochlear degeneration. This pathology precedes HC and/
or SGN loss, and potentially could have led to hearing
loss after the end of our follow-up period [37, 38].

Contrary to what was expected, dexamethasone’s pro-
tective effect was minimal at best; in addition, HC loss
across study groups was low. There are several possible
explanations for these findings.

Wang et al. used a nearly identical experimental para-
digm for their study analyzing the influence of dexa-
methasone on cochlear Hesl expression [39]. After
intraperitoneal drug injection for 5 consecutive days,
guinea pigs were exposed to 8-16 kHz octave-band
noise at 115 dB for three hours, which resulted in a
threshold shift of approximately 30-35 dB (control) or
10-15 dB (dexamethasone) in the frequency range of
2-8 kHz after 24 h (higher frequencies were not
assessed). They reported over 30 % of HCs missing in
the basal turn in controls, while dexamethasone-treated
animals showed 5 % HC loss in the same region. How-
ever, it has been suggested that pigmented guinea pigs
(as used in our study) are less susceptible to noise than al-
bino (used in the Wang et al. paper), possibly due to differ-
ent distributions of glutathione S-transferase and
glutathione peroxidase in the stria vascularis in these
rodents [40-42]. Although other results (predominantly in
mice) have led to controversial discussions about the
extent of noise protection resulting from pigmentation, it
has been established that pigment plays an important role
in hearing not only in rodents but also in humans [43—45].

In light of this theory, the histological results are par-
ticularly interesting: the lack of spiral ligament pigmenta-
tion in the dexamethasone group could potentially have
made these animals more susceptible to noise trauma.

Another factor contributing to the inconsistency
between our results and those reported in the Wang et
al. study is that the anesthetic dexmedetomidine (S-
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enantiomer of medetomidine - used in our study) has
been found to be protective against noise-induced hear-
ing loss [46, 47]. Overall, Wang et al’s results were
strong in comparison to findings from several other tri-
als, which demonstrated only a moderate protective
effect (i.e., slightly more pronounced than the present
results) of glucocorticoids after noise exposure in guinea
pigs [48, 49].

It is unclear whether using a more stable SEGRM than
CpdA in a noise trauma model would lead to similar
results, because CpdA is known to generate the alkylat-
ing pro-apoptotic metabolite N-methyl-2-(4-acetoxyphe-
nyl)-aziridine in buffered solutions and — as our study
group previously demonstrated — causes hearing loss
when applied intratympanically [11, 22]. Based on the
present histological data, which suggest increased dam-
age in animals treated with the higher dosage of CpdA
(Table 2), it is likely that other pharmacological candi-
dates are more clinically promising regarding their abil-
ities to exert otoprotective effects.

These experiments are the first tests of a novel class of
drugs in the search for alternatives to glucocorticoids in
otology. While the current trial’s results were negative
(expected due to CpdA’s lability and narrow therapeutic
range), the conclusions suggest an important role for
glucocorticoid receptor dimerization and will hopefully
help other researchers to expand the otological arma-
mentarium [8, 11].

Since the GR’s ligand-binding domain is similar to that
of the mineralocorticoid receptor (MR; 58 % identities,
76 % positives), both dexamethasone and CpdA can bind
to it (albeit the latter with lower affinity) [50, 51]. Given
the growing body of literature demonstrating major
functions of the MR in the inner ear, the MR pathway
may be relevant to the results of our study (suggesting
that GR dimerization and/or MR activation might play a
more important role than transrepression in biological
processes in the inner ear) [52—-54].

Conclusion

While the SEGRM CpdA did not reveal substantial pro-
tective capacities when tested in a model of noise-
induced hearing loss in guinea pigs, analysis of more
candidates of this class of drugs — potentially with a
more stable molecular structure — is warranted to deter-
mine whether transactivation (possibly together with
MR effects) is more important than transrepression in
the function of glucocorticoids in the inner ear. In
addition to these mechanistic insights that will provide
guidance for future directions of otoprotective drug dis-
covery, such studies could represent the starting point
for the eventual clinical application of glucocorticoid an-
alogs with a more favorable side effect profile for inner
ear therapy.
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