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Abstract

Response inhibition is an essential control function necessary to adapt one’s behavior. This key 

cognitive capacity is assumed to be dependent on the prefrontal cortex and basal ganglia. It is 

unresolved whether varying inhibitory demands engage different control mechanisms or whether a 

single motor inhibitory mechanism is involved in any situation. We addressed this question by 

comparing electrophysiological activity in conditions that require stopping a response to 

conditions that require switching to an alternate response. Analyses of electrophysiological data 

obtained from stop-signal tasks are complicated by overlapping stimulus-related activity that is 

distributed over frontal and parietal cortical recording sites. Here, we applied Laplacian 

transformation and independent component analysis (ICA) to overcome these difficulties. 

Participants were faster in switching compared to stopping a response, but we did not observe 

differences in neural activity between these conditions. Both stop- and change-trials Laplacian 

transformed ERPs revealed a comparable bilateral parieto-occipital negativity around 180 ms and 

a frontocentral negativity around 220 ms. ICA results suggested an inhibition-related frontocentral 

component which was characterized by a negativity around 200 ms with a likely source in anterior 

cingulate cortex. The data provide support for the importance of posterior mediofrontal areas in 

inhibitory response control and are consistent with a common neural pathway underlying stopping 

and changing a motor response. The methodological approach proved useful to distinguish frontal 

and parietal sources despite similar timing and the ICA approach allowed assessment of single-

trial data with respect to behavioral data.
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1. Introduction

Controlling behavior and cognition to avoid undesirable responses is essential for goal-

directed behavior. Response inhibition, i.e. aborting planned behavior, is one such control 

function and is assumed to rely on prefrontal cortex and basal ganglia (Chambers et al., 

2009; Simmonds et al., 2008). Everyday life, however, often requires a more selective type 

of inhibition that aborts one motor action but not another or that allows switching to another 

response. It is unresolved whether a single inhibitory mechanism is recruited for any 

situation calling for motor inhibition or whether varying inhibitory demands engage 

different neural mechanisms and brain structures (Aron et al., 2014; Boecker et al., 2012). In 

the present study, we addressed this question by comparing electrophysiological activity in 

conditions that require stopping a response to conditions that require switching to an 

alternate response.

Response inhibition has traditionally been studied using the Stop Signal Paradigm (SSP). 

The SSP involves a primary choice reaction time task, in which an occasional stop-signal is 

presented shortly after the go stimulus, signaling to inhibit the already prepared response 

(Logan and Cowan, 1984). Behavior in the SSP can be explained by the influential horse 

race model that assumes two stochastically independent processes racing against each other, 

the stop process and the go process. The winner of the race determines whether the response 

is inhibited or not (Logan et al., 1984). The model allows estimating the latency of the stop 

process, tagged the Stop Signal Reaction Time (SSRT), as a behavioral index of inhibitory 

control.

The Change Signal Paradigm (CSP) is a variation of the SSP, in which change-signal trials, 

also comprising two stimuli presented in rapid succession, are presented. In this case, 

however, the second stimulus indicates to not only inhibit the response to the first stimulus, 

but to switch to another response (Logan and Burkell, 1986; Verbruggen et al., 2008). 

Behavioral data in this paradigm can best be explained with a serial model in which change-

trials require stopping first before instantiating the alternative go-process (Verbruggen et al., 

2008). Comparisons of the change-signal reaction time (CSRT) with the SSRT has yielded 

inconclusive results with most studies reporting slower CSRTs, but others reporting no 

difference or a faster CSRT (reviewed in Boecker et al., 2012). These studies differed also in 

whether change- and stop-trials were presented in the same or alternate blocks and whether 

change-trials required switching to a new response or to a response that was part of the task-

set of the primary go-task.

Regarding the underlying neural networks, an influential model relates inhibitory control to 

a cortico-basal ganglia-thalamocortical circuit (Aron et al., 2007). According to this view, 

the prefrontal cortex, particularly the right inferior frontal gyrus (rIFG), suppresses the 

thalamocortical output through the subthalamic nucleus (STN) (Aron and Poldrack, 2006). 

Inhibition via this hyperdirect pathway is proposed to be nonselective and globally 

suppresses basal ganglia output (Nambu et al., 2002). More integrative accounts of 

inhibitory control argue that signals of uncertainty, response conflict or difficulty (including 

stop- or change-signals) drive posterior frontal midline structures such as pre-SMA and 

anterior cingulate cortex (ACC) which then activate STN and globally inhibit motor 
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responses until response selection is resolved (Wiecki and Frank, 2013). In this framework, 

the function of the IFG is to monitor the environment for task-relevant stimuli that indicate 

that a response has to be initiated or withheld.

Different suggestions have been made as to how inhibiting a response is different from or 

similar to switching to another response. Band and van Boxtel (1999) propose that CSP and 

SSP are performed by the same mechanism, which is refined in the change condition in 

order to execute a secondary response. Evidence from functional imaging supports this 

view, indicating that the same structures are active during stop-all and stop-change tasks 

(Boecker et al., 2011; Coxon et al., 2009; Kenner et al., 2010), with the main difference 

being stronger activation in the pre-SMA during change-trials, supposedly reflecting the 

conflict resolution needed in the change-signal task. In contrast, data from a patient with a 

unilateral pre-SMA lesion provided support for two different mechanisms as the patient was 

impaired in switching from contra- to ipsilesional responses but did not differ from healthy 

controls in her SSRT (Nachev et al., 2007).

Data from an EEG-study also pointed to different mechanisms employed when stopping or 

changing a motor response. Using an Eriksen Flanker Task featuring embedded stop- and 

change-signal trials, Krämer et al. (2011) observed differences between stop- and change-

trials both on the behavioral and electrophysiological level. Specifically, the change-signal 

reaction time (CSRT) was faster than the SSRT, and stop-compared to change-trials elicited 

an enhanced stop-N2 and showed a reduced mu power decrease. The stop-N2 is a fronto-

central negativity peaking around 200 – 250 ms after stimulus onset. It is reliably observed 

in SST or Go/Nogo-studies and is suggested to emanate from ACC or pre-SMA (reviewed 

in Huster et al., 2012). There is ongoing debate about what exact function the stop-N2 

reflects. As the stop-N2 is observed in conditions requiring response inhibition and with a 

latency that is in the range of the SSRT, it has been suggested to reflect prefrontal inhibition 

of downstream motor regions. This is supported by studies reporting an enhanced N2 

associated with lower false alarm rates (Falkenstein et al., 1999; Schmajuk et al., 2006) and 

with faster SSRTs (Ramautar et al., 2006; van Boxtel et al., 2001). Other reports relate this 

component to conflict monitoring (Azizian et al., 2006; Broere et al., 2009; Donkers and van 

Boxtel, 2004; Nieuwenhuis et al., 2003; Pfefferbaum et al., 1985). These studies, all 

employing the Go/Nogo paradigm, argue that the N2 reflects monitoring functions of ACC 

or pre-SMA which are sensitive to the response conflict between giving a motor response or 

not. However, this interpretation typically assumes compatibility between SST and Go/

Nogo-tasks, although recent studies stress the differences between stopping an already 

prepared response as in the SST and restraining motor output as in the Go/Nogo-task 

(Krämer et al., 2013; Swick et al., 2011).

An enhanced stop-N2 in stop-compared to change-trials can therefore be interpreted as 

differences in inhibitory control or, within the conflict monitoring account, as differences in 

response conflict. The latter seems surprising as the above-mentioned fMRI study on the 

change-signal paradigm argued that enhanced conflict resolution in change-trials caused 

increased pre-SMA activity. How can the discrepancies between these findings be resolved? 

Krämer et al. (2011) used a modified Eriksen Flanker task with strong stimulus-response 

association (arrows pointing right and left), and stop- and change-trials were presented in the 
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same blocks. One might argue that change-trials were similar to incongruent go-trials, i.e. 

trials in which the direction of the flanking arrows was incongruent to the central arrow’s 

direction. This would result in an overall higher probability of change-events compared to 

stop-trials and possibly alter neurophysiological processes. Finally, EEG- and fMRI differ 

substantially in their spatio-temporal resolution and in underlying mechanisms of the 

measured signal making results only partially comparable. Nevertheless, a reduced N2 in 

change-trials seem difficult to reconcile with increased pre-SMA activity.

The present study aimed to address some of these differences to provide a better 

understanding of the mechanisms enabling us to stop or switch a motor response. To 

accomplish this, we applied a combined stop- and change-signal task with arbitrary 

stimulus-response associations and equal probabilities of stimuli. We recorded EEG with 64 

electrodes and used Laplace transformation of the event-related potentials (ERPs) to 

improve spatial resolution (Babiloni et al., 1995) and more accurately define frontal and 

parietal contributions. Laplacian transformation, in addition to its advantage of being 

reference-free, has been proven useful to improve localization of both sensory and response- 

or feedback-related processes (Tenke and Kayser, 2012). Previously studied effects include 

auditory and visual N1, N2, error-related negativity and P3 (Babiloni et al., 2004; Cavanagh 

et al., 2009; Kayser et al., 2009; Kayser et al., 2010). Laplacian transformation was also 

used in a recent paper by our group on stop-signal data in frontal lesion patients. As 

explained above, stop-signals typically elicit a broad, centrally maximal N2 around 200 to 

250 ms after the stop-signal. Laplacian transformed stop-signal data revealed two distinct 

effects in the same time-range, a negativity with a parieto-occipital maximum around 180 

ms and a negativity with a frontocentral maximum peaking around 220 ms (Krämer et al., 

2013). In this study, visual stop-signals were presented lateralized and the parieto-occipital 

negativity was found to be maximal contralateral to the stimulus presentation consistent with 

activity in extrastriate visual areas. Importantly, the parieto-occipital effect was found to be 

reduced in frontal lesion patients whereas patients showed an increased frontal negativity 

over the intact hemisphere (Krämer et al., 2013). Although Laplacian transformation is 

hence clearly useful to study condition- and group-differences, there are other challenges of 

stop-signal EEG data that it might not be able to resolve, namely the strong overlap between 

go- and stop-ERPs. Go- and stop-signals are typically presented in rapid and jittered 

succession of only a few hundred milliseconds which results in stop-ERPs being influenced 

by the preceding stimulus (Krämer et al., 2011). Methods to correct for this overlap such as 

ADJAR or similar (Krämer et al., 2011; Woldorff, 1993) will compensate for this to some 

extent but not fully and are moreover based on the assumption of purely additive effects.

Here, we present an alternative approach to standard ERP analyses of stop-signal data by 

performing independent component analysis (ICA) of the surface potentials. ICA is a 

method of mathematical blind source separation which decomposes the EEG signal from a 

number of electrodes into the same number of statistically maximally independent time-

courses (Makeig et al., 2004; Onton et al., 2006). The output of an ICA is a matrix with the 

independent components’ time-courses and a weights matrix which reflects the independent 

components’ spatial distribution across electrodes (Onton et al., 2006). ICA has been proven 

useful to study the contributions of the error-related negativity (ERN) to the feedback-

related negativity (Gentsch et al., 2009) and the correct-related negativity (Roger et al., 
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2010), to relate the single-trial ERN to fMRI data (Debener, 2005) and to study connectivity 

in the SSP (Huster et al., 2014). It has also previously been suggested as alternative method 

to Laplacian transformation for “deblurring” EEG data (Foffani et al., 2004). Although other 

decomposition approaches as PCA or a combined CSD-PCA approach would have been 

possible (Kayser and Tenke, 2006a; Kayser et al., 2009), we decided to apply ICA to allow 

for more direct comparisons with other recent ICA studies on the stop-signal task (Huster et 

al., 2013; Wessel and Aron, 2014). Here, we applied ICA to examine the contribution of 

stop-signal related components to change-signal activity and to study the relevant 

components’ single-trial activity relative to motor responses.

In summary, we aimed to resolve previous inconsistent findings regarding stopping or 

changing a motor response (Coxon et al., 2007; Kenner et al., 2010; Krämer et al., 2011). 

Whereas fMRI-data pointed to a similar network recruited in both types of response control 

(Boecker et al., 2011; Kenner et al., 2010), EEG-results suggested different mechanisms 

invoked by stop- and change-signals (Krämer et al., 2011). The studies differed, though, in 

aspects of response selection difficulty and probability of trials with incongruent stimulus-

response mapping. In the present study, we used stimuli with weaker response association 

and did not include flanker stimuli. We focused on the stop-N2 as electrophysiological 

marker of response control and improved SSP analyses by applying Laplace transformation 

and by performing independent component analysis of the surface ERPs.

2. Material and methods

2.1 Participants

The study included 22 right-handed participants. As we implemented a tracking algorithm in 

the stop-change paradigm aiming for 50% inhibition rates (see below for explanation), data 

of four participants were rejected because they had less than 40 % (three participants) or 

more than 60 % (one participant) failed stop- or change-trials. Two participants were 

excluded because of extensive EEG artifacts. The final sample consisted of 16 participants 

(age range 18 – 38 y, mean: 23.1; 9 women). All volunteers were recruited from the student 

population of the University of California in Berkeley.

The participants gave informed consent and received money for participation (US$10 per 

hour). None of the participants had psychiatric or neurological disorders (self-report). The 

study was performed in agreement with the Declaration of Helsinki and approved by the 

ethics committee of the University of California, Berkeley.

2.2 Design and Stimuli

The stimuli were numbers from 1 to 9, with numbers from 1 to 4 indicating to press the left 

button of a mouse, and numbers from 6 to 9 indicating to press the right button (GO 

condition). Participants used their left and right index fingers for button presses. Each 

number appeared with the same probability. In stop-trials, the number 5 was presented after 

a short delay, indicating to withhold the response. In change-trials, a high (low) number was 

presented shortly after a low (high) number, indicating to respond with the left (right) 
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instead of the right (left) mouse button. A schematic representation of the task is shown in 

Figure 1A.

The participants performed two practice blocks (168 trials each) with the first including only 

go-trials and the second including go-, stop- and change-trials. The experiment proper 

consisted of 12 blocks, each one including 168 trials, of which 71.4 % of the trials were go-

trials, 14.3 % stop-trials and 14.3 % change-trials. This yielded 1440 go-trials, and 288 trials 

each of both stop- and change-trials. Regarding stimulus probabilities, the stop-stimulus 

(letter “5”) appeared 288 times, whereas every other letter appeared 252 times in total during 

the experiment.

The duration of each stimulus was 100 ms and the inter-trial-interval (ITI) varied randomly 

between 1.3 s to 1.7 s. The stop and change signal delay was adjusted based on a staircase-

tracking algorithm. The signal delay started with 140 ms and increased by 10 ms after a 

successful and decreased by 10 ms after failed trials. Such algorithm was implemented to 

yield 50 % successful stop- and change-trials (adapted from De Jong et al., 1995).

2.3 Procedures

The experiment was performed using the Presentation® software (Version 11.3). Stimuli 

were presented in the center of a 17” screen, about 1m away from the participant. After each 

of the experimental blocks the participant had a short break.

Participants were instructed to be as fast and accurate as possible. Participants were told that 

the task was designed in such a way that made it impossible to be successful in every stop 

and change trial. This was done to prevent participants from slowing down to the primary 

go-task.

2.4 EEG recordings and data preprocessing

The electrophysiological recordings were performed using 64 active scalp electrodes, with 

the BioSemi Active2 system (BioSemi, Amsterdam, The Netherlands). Electrodes were 

placed according to an extension of the International 10–20 system (Nuwer et al., 1998). 

Vertical and horizontal eye movements (VEOG and HEOG) were recorded, the latter using 

electrodes located on the outer canthus of each eye, and the former using electrodes placed 

below and above the right eye. Reference electrodes were placed on the right and left 

earlobes. The sampling rate was 512 Hz.

2.5 Behavioral data analyses

Reaction times and failed trial rates were calculated for the go, stop-and change-conditions. 

SSRT and CSRT were computed based on the distribution of reaction times in go-trials and 

the average stop and change signal delays (SSD and ChSD; Logan et al., 1984). First, the 

reaction times in go-trials are rank ordered; second, the reaction time that corresponds to the 

nth centile is chosen with n being the probability to respond in stop- (change-) trials; and 

third, the average of the SSD (or ChSD) is subtracted from the nth reaction time. The SSRT 

and CSRT were subjected to a paired samples t-test.
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2.6 EEG data analyses

EEG data analysis was performed with EEGlab (Delorme and Makeig, 2004) and custom 

written Matlab scripts. EEG data was re-referenced to the average of the signal from the two 

earlobe electrodes, resampled to 256 Hz, and high-pass filtered with 0.5 Hz. The data were 

epoched for the different conditions (go, change- and stop-trials). Epochs included one 

second before and two seconds after the stimulus. The baseline was defined as the 100 ms 

preceding the stimulus. An Independent Components Analysis (ICA) was performed on the 

epoched data including all conditions. Independent components accounting for blink 

artifacts were visually identified and removed from the data (Delorme et al., 2007; Jung et 

al., 2000a; Jung et al., 2000b). Trials affected by other artifacts caused e.g. by muscle 

tension were rejected from further analysis.

2.6.1 Event Related Potentials (ERPs)—The ERP analysis focused on identifying the 

differences in processing the stop and change stimuli; since this processing may be affected 

by the GO signal presented previously, a technique similar to the ADJAR proposed by 

Woldorff (1993) was used. In contrast to the procedure suggested by Woldorff, the correct 

GO trials were divided in fast and slow trials (division made based on the SSRT and CSRT), 

these trials were shifted from their original distribution according to the stop/change signal 

delays. The resultant ’delay-corrected’ go-ERPs were subtracted from the successful and 

failed stop/change trials (fast GO trials with failed and slow GO trials with successful stop/

change trials). The difference ERPs reflect the processing of the stop/change signal 

regardless of the GO signal presented before (Krämer et al., 2011). In order to increase the 

spatial resolution and distinguish frontal and parietal contributions to stop-signal processing, 

Current Source Density (CSD) was estimated using Laplacian transformation based on 

spherical splines interpolation with a spline order of 4 (Kayser and Tenke, 2006b). We used 

the CSD toolbox developed by Jürgen Kayser (2009). We present the data before and after 

Laplacian transformation to demonstrate how this approach helps distinguishing frontal and 

parieto-occipital activity in the N2 time-range. This was done for go- and inhibited stop-

trials in which the effect of Laplacian transformation can best be evaluated.

To assess the stop-related activity over parieto-occipital and frontocentral sites, we ran 

repeated measures ANOVAs of the mean amplitude in go- and inhibited stop-trials for the 

early parieto-occipital negativity (150 – 200 ms) and later differences (200 – 250 ms). To 

assess statistical differences for our main comparison of interest, mean amplitudes were 

computed for every participant and the stop- and change-conditions (separately for 

successful and failed trials) during time-windows of interest. To accurately analyze the 

spatial distribution of the effects and to increase signal-to-noise ratio, we formed clusters of 

4 electrodes each. We performed separate repeated measures ANOVAs for the early and late 

task effects. The early negativity ANOVA was applied for two lateral posterior clusters (left/

right), and the late negativity ANOVA for the three frontal clusters (left/center/right), both 

with Stop (stop-all/stop-change), Inhibition (failed/inhibited) and Laterality as within-

subject factors.

For all statistical effects involving more than one degree of freedom in the numerator, the 

Greenhouse-Geisser correction was applied to correct for possible violations of the 
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sphericity assumption (Greenhouse and Geisser, 1959). We report the uncorrected degrees 

of freedom, corrected probabilities and the ε-value.

2.6.2 Independent component analysis—Analysis of stop- or change-signal related 

ERPs is complicated by the fact that go-signal and stop-/change-signal ERPs are 

overlapping as the stimuli are presented in rapid succession. Moreover, ERP components as 

the stop-N2 likely result from several brain processes, such as visual attention to the stop-

signal or response inhibition. Computing difference waves (see above) and performing 

Laplace transformation of the ERPs are first steps to deal with these problems. However, 

these methods are limited, as they are prone to effects of noise and have not generally been 

used for analyses of single-trial data with respect to single-trial behavioral performance. 

Here, we followed an alternative analysis approach by using independent component 

analyses of the stop- and change-signal data. Note that ICA was performed on surface-

potentials and not on Laplacian transformed data.

We performed independent component analysis (ICA) in two steps. First, we applied ICA to 

identify blink-related components (see EEG data analysis paragraph above), removed 

respective components and performed artifact rejection on the data that was uncontaminated 

by blinks. Second, we performed a spatial principal component analysis on the artifact-free 

data-sets to reduce the data dimensionality to 30 components and ran a second ICA. ICA 

was computed on the stimulus-locked data from all conditions. ICA has frequently been 

applied to EEG analysis, particularly in order to remove artifacts. However, there is no 

consensus on how to best use ICA in group studies, i.e. how to compare independent 

components across subjects. As ICA has mostly been done on single-subject level, this 

yields a different component structure in each subject. Previous EEG-ICA studies all used 

different methods to select comparable ICs in single subjects to then compare them across 

subjects with respect to condition differences. Critically, the suitable method to identify 

relevant components across subjects depends also on the kind of research question or 

components of interest. For instance, most studies using ICA in group studies focused on the 

error-related negativity (ERN). These studies used a set of well-established criteria 

characterizing the ERN (topography, latency, differences between failed and succeed trials) 

to identify the component(s) of interest (Debener, 2005; Gentsch, et al., 2009; Roger, et al., 

2010) and study their single-trial activity or differences between conditions.

Here, we used ICA to examine components that are related to response inhibition. Such 

components should show stronger activity in successful stop-trials compared to go-trials in 

the relevant time-window (~ 0–300 ms after stimulus-presentation). In the first step, we 

compared for each participant and component the activity in successful stop-trials and go-

trials with a non-parametric test (Wilcoxon rank-sum test). Note that change-trials were not 

included in the selection of ICs. This comparison was done for three consecutive time-

windows (each 100 ms length) after stimulus presentation by comparing the average 

amplitude in these time-windows. We evaluated the first 20 components in each participant 

(sorted by explained variance of the signal) and accordingly corrected for multiple 

comparison (20 components and 3 time-windows) using a Bonferroni correction. To 

compare results across participants, we clustered the identified components using clustering 

functions of EEGlab (Delorme & Makeig, 2004). First, an N-dimensional distance matrix is 
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created based on selected component measures, which are reduced to N dimensions using 

PCA. For the present study, we considered the components’ ERPs and the equivalent dipole 

model solution as relevant measures. Second, the components are clustered using the k-

means algorithm of MATLAB (MathWorks, Natick, MA). The k-means algorithm partitions 

the components into k clusters with the goal to minimize across all clusters the sum of each 

component’s distance within a cluster to the cluster’s centroid. We included only those 

components with a dipole solution with less than 10% residual variance. The dipoles were 

fitted using the dipfit2 toolbox implemented in EEGlab (provided by Robert Oostenveld, 

Donders Institute, Nijmegen), assuming a boundary element head model (Oostendorp and 

van Oosterom, 1989).

3. Results

3.1 Behavioral data

Participants had an average reaction time of 617 ms (s.d.± 54) in go-trials and had 6.7 % 

(s.d.± 5.7) of failed trials. Participants were slower in the correct go-trials than in the failed 

stop- and change-trials (stop-all: t15 = 9.44, p < 0.001; change: t15 = 20.37, p < 0.001), but 

significantly faster than in successful change trials (t15 = 42.13, p < 0.001). In stop-trials, the 

average reaction time of failed trials was 543 ms (± 63) and the percentage of failed trials 

was 48 % (± 3). In change-trials, the average reaction time of failed trials was 515 ms (± 

46), and 981 ms (± 75) in successfully changed trials. Even when subtracting the ChSD from 

the reaction times for successful changed trials (yielding 638 ms ± 44) to estimate the 

reaction time relative to the change signal, the participants were faster in the go-trials than in 

successful change trials (t15 = 2.21, p < 0.05). The percentage of failed change-trials was 49 

%.

The results indicate that the inhibitory process in the change condition (CSRT = 224 ms± 

26) was faster than in the stop condition (SSRT = 240 ms ± 29; t15= 6.72, p < 0.001; see 

Figure 1B).

3.2 Event Related Potentials (ERP)

We first compared inhibited stop- with go-trials to evaluate the effect of Laplacian 

transformation on the N2 in terms of its topography and specificity to stop-trials. As can be 

observed in Figure 2B, surface potentials show the typical, broadly distributed N2 to stop-

signals. The N2 amplitude is increased relative to go-trials in most electrodes as can be seen 

in the topography on the right side (Figure 2). Notably, go- and stop-trials differ already 

before the N2, beginning with stimulus onset, likely caused by remaining overlap with go-

stimulus ERPs. In the CSD data, the frontocentral and parieto-occipital negativity can be 

distinguished (Figure 2A) and go- and stop-signals show less differences before the N2 

time-window. Comparably to go-trials, stop-signals showed a strong negativity (visual N1 

sink) over parieto-occipitals electrodes (maximal around 180 ms). Stop-signals elicited an 

increased negativity over lateral parieto-occipital and frontocentral electrodes (200 – 250 

ms).
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To analyze these effects, we performed repeated measures ANOVAs with the factors 

Condition (Go vs. Stop inhibited) and Laterality (left vs. right parietal cluster) for the earlier 

(150 – 200 ms) and later time-window (200 – 250 ms) on the CSD data. Activity in stop-

signals did not differ from go-signals in the early time-window (main effect Condition: F1,15 

= 1.2, p = 0.285; Condition × Laterality: F1,15 = 2.7, p = 0.12), but was increased in the late 

time-window (Condition: F1,15 = 17.26; p = 0.001). We also performed an ANOVA for the 

frontocentral N2 sink (200 – 250 ms) with the factors Condition (Go vs. Stop-inhibited) and 

Laterality (left, midfrontal and right). This resulted in a significant main effect of Condition 

(F1,15 = 18.28; p = 0.001) and interaction of Condition with Laterality (F2,30 = 5.55; p = 

0.013, ε = 0.851) reflecting an increased effect of central and right electrode sites. 

Summarizing, these results show the advantage of Laplacian transformation for sharpening 

the waveforms and distinguishing frontocentral and parietal stop-related effects as well as 

replicating the stop-related frontocentral N2 sink. In the following, we compared stop- and 

change-related Laplacian potentials in the N2 time-range to address our main research 

question.

Both stop- and change-signal related ERPs showed the pronounced negativity peaking 

around 180 ms over parieto-occipital electrodes bilaterally and, slightly later around 220 ms, 

over frontocentral electrodes (Figure 3). To assess condition effects during these time-

windows, we subjected average amplitudes to repeated measures ANOVA separately for the 

early (150 – 200 ms) and late time-window (200 – 250 ms). The first ANOVA comprised 

the factors Stop (stop vs. change), Inhibition (succeed vs. failed trials) and Laterality (left vs. 

right parietal cluster). For the second time-window, we ran one ANOVA with the same 

factors to assess parieto-occipital effects and one ANOVA comprising the same factors, but 

the Laterality factor had three levels (left, central and right frontal cluster) to assess 

differences in the frontal N2 sink. Greenhouse-Geisser correction was applied when required 

(Greenhouse and Geisser, 1959).

The ANOVA of the early posterior time window revealed a slightly higher negativity in 

failed compared to successful trials (Figure 3), yielding a significant main effect of the 

factor Inhibition (F1,15= 4.58, p = 0.049). Additionally, an interaction of Stop × Laterality 

(F1,15= 4.78, p = 0.045) demonstrated an increased negativity in change-compared to stop-

trials over left parietal areas (Stop: F1,15 = 5.13, p = 0.039; right cluster: F < 1). The 

ANOVA on mean amplitudes at parietal electrodes in the later time-window (200 – 250 ms) 

did not yield any significant condition effects (main effect Condition: F1,15 = 0.33, p = 0.57; 

interaction Condition × Laterality: F1,15 = 1.049, p = 0.33).

For the frontal N2 sink, we analyzed data from the three frontocentral electrode clusters 

(Figure 4). The negativity could be observed over the right and central cluster, but was not 

detectable over the left hemisphere (right cluster: −4.9 µV vs. left cluster: 2.7 µV; main 

effect Laterality: F2,30 = 8.01, p = 0.005, ε = .717). The effect differed between successful 

and failed trials depending on the electrode location (Inhibition × Laterality: F2,30 = 4.56, p 

= 0.045, ε = .553). Over right frontal areas, the negativity was enhanced in successful 

compared to failed trials (F1,15 = 6.21, p = 0.025), but no differences were observed over left 

electrodes (F1,15 = 1.26, p = 0.28). Over central electrodes, we detected a tendency for an 

increased negativity in failed compared to successful trials, but this did not yield 
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significance (F1,15 = 3.20, p = 0.09) due to a larger amplitude variability at these electrode 

sites. Main effect of Condition (F < 1) and interaction with Inhibition (F < 1) or Laterality (F 

< 1) were not significant. To assess the consistency of the N2 sink across trials, its temporal 

relationship to the stop-stimulus and responses and to allow comparisons with the ICA 

results, we also plotted single-trial data across all subjects of the failed stop- and inhibited 

change-trials sorted by response time (relative to the stop-/change-stimulus; Figure 4C and 

D). The N2 sink shows a clear temporal relationship to the stimulus and not the response 

although this is less clear in failed stop-trials.

3.3 Independent component analysis

The ICA was performed on surface potentials (see methods). The comparison of stop-signal 

and go-signal ERPs for each participant’s components resulted in 2 to 7 significant 

components per participant. Visual inspection of the components highlighted one 

component, characterized by a mediofrontal maximum and a prominent negativity around 

200 ms, which was present in most participants. This observation was supported by the k-

means clustering algorithm. When clustering the components into four clusters 

(corresponding to the average number of components per subject), we identified one 

mediofrontal cluster which comprised 24 components from 14 (out of 16) participants 

(Figure 5A). The average topography showed a maximum over central electrodes, the 

centroid of estimated dipoles was in the anterior cingulate gyrus and the cluster’s time-

course was characterized by a negativity peaking around 200 ms and an ensuing positivity 

maximal around 330 ms (Figure 5). For visualization purposes, Figure 5B shows the average 

backprojected time-course of the mediofrontal cluster’s components at electrode Cz for 

successful stop-trials and go-trials. As the components were selected based on statistical 

comparisons between Go and Stop on the single-subject level and as the components’ time-

course is consistent across participants, the ERPs in the two conditions differ also on the 

group level. The other three clusters showed maximum activity over posterior electrodes 

with centroids of estimated dipoles in the superior temporal gyrus or precuneus 

(supplementary material, Figure 1). As these clusters each comprised less than two-thirds of 

participants, they were not further considered for statistical comparisons between conditions.

In the next step, we examined whether the identified mediofrontal cluster’s components 

differentiate between conditions of stop- and change-conditions and between failed and 

successful inhibitions (Figure 6A & B). We averaged the amplitude in a 100 ms time-

window around the maximum of the negativity (150 – 250 ms), backprojected to electrode 

Cz, and subjected it to a repeated-measures ANOVA with the factors Stop (stop-all vs. 

change) and Inhibition (failed vs. inhibited). Note that these analyses included only the 14 

participants who were represented in the mediofrontal cluster. If more than one component 

of a participant was included in the cluster, we back-projected both components’ time-

courses. The mediofrontal negativity did not differ between stop- and change-trials or 

between failed and successful inhibitions (Condition: F1,13 = 2.02, p = 0.18; Inhibition: F1,13 

= 1.66, p = 0.22; Condition × Inhibition: F1,13 = 0.608, p = 0.45; Figure 6A & B). As can be 

observed in Figure 5, while most components show a clear frontocentral topography, some 

have a different, more lateralized topography. We also performed the statistical analyses 

with only including those components with a clear frontocentral topography. This analysis 
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did not show significant differences between stop- and change-conditions (F1,13 = 3.15, p = 

0.1) or between failed and successful inhibitions (F1,13 = 2.32, p = 0.15).

The latency of the mediofrontal cluster negativity, about 200 ms, is in line with a critical 

role in inhibitory motor control, considering an SSRT and CSRT of about 220 – 240 ms. In 

this case, one might expect enhanced activity or a shorter latency in successful compared to 

failed inhibitions, which we did not observe. Alternatively and in line with the Horse-Race 

Model of inhibition (Logan et al., 1984) and previous electrophysiological data (Krämer et 

al., 2011), one might argue that the success of the inhibition depends more on the speed of 

response preparation. In failed stop- or change-trials, the response would have been 

executed before the maximum of the mediofrontal activity. To examine this, we plotted 

single-trial activity of the mediofrontal components sorted by reaction times (relative to the 

stop-/change-stimulus) in failed stop-trials (Figure 6C). This was done across all 14 

participants, yielding about 1400 total trials. As can be assessed from the figure, the 

negativity was maximal at the time of or after the motor response and reduced or absent in 

trials with late responses (reaction times > 300 ms). Notably, the reaction time distribution 

shows a considerable number of responses later than 300 ms after the stop-signal, i.e. after 

the SSRT. The horse-race model predicts fast errors when the response preparation was 

faster than the inhibition process. Slow errors or failed inhibitions on the other hand might 

be rather caused by slips of attention. We also plotted the negativity in successful change 

trials (Figure 6D) which confirmed the stimulus-locked activity around 200 ms and no 

evident relationship to the reaction times of the succeed responses. The direct comparison of 

single-trial CSD-data (Figure 4C–D) and single-trial ICA data (Figure 6C–D) revealed a 

similar pattern. In both cases, the negativity around 200 ms showed a clear relationship with 

the stimulus and not the response time. However, the negativity in failed stops was less 

consistent in single-trial CSD data compared to the ICA based data which underscores the 

strength of the ICA approach for single-trial analyses.

4. Discussion

In this study, we sought to identify the underlying brain mechanisms engaged when stopping 

a response or switching to an alternate response. We compared neural activity elicited by 

stop-vs. change-signals and focused on the stop-N2 as a neural correlate of response 

inhibition. We observed a faster CSRT than SSRT, but no differences were found between 

the neural correlates of stopping and changing a response. There are several noteworthy 

results of the EEG analysis. Laplacian transformation of the data allowed direct comparisons 

of stop- and go-ERPs and revealed comparable amplitudes of the visual N1 sink but 

increased activity for stop-trials over lateral parietal electrodes between 200 – 250 ms and an 

increased stop-N2 sink over frontocentral sites. Neither of these components showed 

differences between trials that required stopping vs. changing the response. Finally, 

independent component analyses supported the notion of an important role of mediofrontal 

structures in response control.
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4.1 Behavioral results

The latency to inhibit in change- and stop-trials differed significantly as previously reported 

by Krämer and colleagues (2011) with the CSRT being faster than the SSRT. It should be 

noted that the SSRT and CSRT are assumed to only estimate the latency of the inhibition 

(Logan et al., 1984; Verbruggen and Logan, 2008), but not the additional response selection 

required in change-trials. As all stimuli were almost equally probable, any behavioral or 

electrophysiological differences between stop- and change-trials cannot be explained by 

stimulus probabilities. Previous studies reported differences in the opposite direction, with 

CSRTs higher than SSRTs (e.g., Coxon et al., 2009; van de Laar et al., 2010). This indicates 

that behavioral differences depend on the specific task demands. If the task implies 

withholding one response but not another (Coxon et al., 2009) or if the change implies 

bimodal responding (i.e. inhibiting the manual response but executing pedal response), the 

CSRT appears to be higher than the SSRT (De Jong et al., 1995). This shows that the CSRT 

depends on whether the alternative response is part of the current primary task-set or not. 

Generally, most previous studies with the change-signal task used a change-response that 

was not used in go-trials (Boecker et al., 2007; De Jong et al., 1995; Logan and Burkell, 

1986). The probability of the change-response in these paradigms hence corresponded to the 

probability of stopping the response. In the current paradigm, the response required in 

change-trials corresponded to responses in go-trials. The overall probability of the responses 

given in change-trials was thus considerably higher (here: 42% of either right- or left-hand 

response) compared to stopping the response (14%). Studies directly comparing these 

different change-conditions are needed to answer whether response probabilities are 

sufficient to explain CSRT and SSRT differences. However, an influence of the nature of 

the change-response on the CSRT would argue against the assumption of serial processes in 

change-trials and point to parallel processing of stopping and preparation of the second 

response (Verbruggen et al., 2008). Finally, whether stop- and change-trials are presented in 

the same blocks as in the present study or in alternating blocks (e.g. Kenner et al. (2011)) 

may additionally contribute to SSRT vs. CSRT differences.

4.2 Electrophysiology of motor inhibition: Laplacian ERPs and ICA

We presented two ways to examine stop-signal ERPs by applying Laplace transformation of 

the data and by performing independent component analyses. Laplace transformation 

improves the spatial resolution of EEG, especially in combination with higher density 

recordings (> 64 electrodes) as in the present data set (Babiloni et al., 1995). This analysis 

helped to distinguish bilateral parietal and frontocentral contributions to stop-activity. The 

parieto-occipital negativity has been linked to perceptual processing of the attended and 

task-relevant stop-signal and likely emanates from extrastriate visual areas and/or inferior 

parietal cortex (Krämer et al., 2013; Schmajuk et al., 2006). The parieto-occipital negativity 

has previously been reported in Laplace transformed stop-signal data (Krämer et al., 2013). 

In this study, the negativity was strongest contralateral to the laterally presented stop-signals 

and was reduced in patients with focal frontal lesions. This is consistent with activity in 

extrastriate areas which is modulated by prefrontal cortex. These results converge with 

fMRI-findings of enhanced inferior parietal activity in response to stop- and nogo-signals, 

especially if they are task-relevant (Boehler et al., 2010). The posterior negativity was 

slightly enhanced in failed compared to successful trials under both stop- and change-
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conditions, which was unexpected if assuming that it reflects orienting of attention towards 

the stop-signal. It might be that the computation of difference waves controls only partly for 

overlap with go-signal ERPs, which causes a shift of ERPs in failed and successful trials 

because of baseline differences. Additionally, we observed a difference in lateralization of 

the parietal negativity between stop- and change-trials such that stop-trials showed a slightly 

right-lateralized negativity, whereas no lateralization was evident for change-trials. This 

resulted in an increased negativity for change-compared to stop-trials over left parietal areas. 

A right-lateralization is consistent with fMRI results of a right-lateralized network in stop-

trials (Aron et al., 2004; Rubia et al., 2001; Wager et al., 2005).

Besides the posterior negativity, Laplacian potentials revealed a frontocentral negativity 

around 230 ms. The frontal N2 sink was maximal at central electrodes (Cz) and higher over 

right than left frontal areas. Previous Laplacian data of the stop-signal paradigm also 

reported a fronto-central N2 (Krämer et al., 2013). In this study, healthy controls presented a 

centrally maximal N2 to stop-signals whereas patients with focal frontal lesions had an 

increased N2 in their intact hemisphere, ipsilateral to the side of the stop-stimulus. This 

increased frontal N2 was interpreted as compensatory activity (Krämer et al., 2013). 

Interestingly, successful trials elicited in the present study an enhanced N2 over right frontal 

electrodes, whereas failed trials tended to elicit a larger N2 over central electrodes. Again, 

inspection of the ERPs suggested differences between failed and successful trials before the 

N2, likely due to differences in go-ERPs (see Krämer et al., 2011 for further discussion of 

this point), which renders interpretation of the effects difficult.

One approach to overcome these limitations is an independent component analysis, which 

decomposes the EEG signal into components with maximally independent time-courses, 

supposedly reflecting distinct brain processes (Makeig et al., 2004; Onton et al., 2006). ICA 

results of the present study highlighted a component with a central maximum and a time-

course characterized by a negativity at 200 ms and ensuing positivity at 330 ms. The 

centroid of the components’ estimated dipoles was located in the anterior cingulate cortex. 

This component was identified based on the comparison of go- and successful stop-trials and 

showed clear stop-signal specific activity. However, the component did neither distinguish 

failed and successful inhibitions nor stop- and change-trials. Additionally, components with 

a parietal or occipital maximum significantly differed between stop- and go-trials. However, 

these components appeared less consistent across participants, resulting in few components 

and participants in respective clusters. This makes statistical comparisons across participants 

difficult and we refrained from further analyses of these components. This shows a 

limitation of the ICA approach as analyses of condition effects require the comparison and 

grouping of components across participants (see Huster et al., 2014 for a different 

approach). As previously mentioned, different approaches have been suggested on how to 

best perform ICA group analyses of EEG data (Onton et al., 2006). Here, we chose a step-

wise procedure by first identifying within participants components which differ between go- 

and successful stop-trials and then clustering the specified components across participants.

As alluded to in the introduction, ICA and Laplacian transformation are very different 

analyses methods which make different assumptions. As shown here and in previous work 

(Krämer et al., 2013), Laplacian transformation resulted in a sharpening of stop-signal 
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related neural effects and helped to specify differences between go- and stop-signal 

processing as well as differentiating parieto-occipital and frontocentral stop-signal effects 

within the same time-window. Together with previous reports of differential effects of 

prefrontal lesions on parietal and frontal inhibition-related ERP effects which were observed 

after Laplacian transformation (Krämer et al., 2013), these results strongly advocate 

Laplacian transformation for (high-resolution) EEG recordings of the stop-signal paradigm. 

However, Laplacian signals of the stop-signal data still depend on the correction for overlap 

with go-ERPs through ADJAR-like procedures. As could be observed in the current data, 

the correction might not work perfectly resulting in remaining unspecific condition 

differences (cf. Figure 4). ICA on the other hand aims to identify distinct, statistically 

independent neural processes and does not depend on such correction. With this approach it 

was possible to separate frontocentral and parietal effects in distinct component cluster. The 

observed frontocentral component cluster showed temporally more specific activity which 

could best be assessed in the single trial time-courses (cf. Figures 4 and 6). As can be 

observed when comparing Figure 4C and Figure 6C, the ICA based single-trial data of 

particularly failed stop-trials showed more consistent effects across trials than the single-trial 

CSD-data. The ICA might thus be more promising to relate condition differences and inter- 

and intraindividual variability across trials to specific neural processes. However, as we did 

not combine CSD with PCA as suggested by others (Kayser and Tenke, 2006a; Kayser et 

al., 2010), we cannot exclude that other methodological approaches might have provided 

similar advantages. Importantly, ICA has also many drawbacks, especially the challenge 

how to identify equivalent components across subjects (Onton et al., 2005). Despite these 

differences, the results of Laplacian ERPs and ICA were quite similar which is consistent 

with a previous comparison of these methods (Foffani et al., 2004) and strengthens the 

conclusions.

With this approach, we present further evidence for the relevance of frontocentral areas, 

likely ACC or pre-SMA, for inhibitory response control (Floden and Stuss, 2006; Li et al., 

2006; Mostofsky and Simmonds, 2008; Picton et al., 2006). Although the Laplacian ERPs 

indicated a right-lateralized N2 effect, we did not observe inhibition-related components 

with a right-lateralized frontal maximum, which were consistent across participants. The 

present results thus not speak to the hypothesis of a critical influence of right IFG on 

response inhibition. However, recent data from patients with lateral prefrontal lesions who 

were not impaired in inhibitory speed provided evidence against this hypothesis (Krämer et 

al., 2013).

As mentioned in the introduction, it is debated whether the stop-N2 reflects an inhibitory 

process or a more general conflict-monitoring process (Huster et al., 2013). In the present 

study we did not observe clear differences between inhibited and failed stop- or change-

trials or even an enhanced N2 activity for failed trials which seems difficult to reconcile with 

an inhibitory process. A recently suggested unifying theoretical framework for inhibitory 

control might account for many of the stop-N2 findings (Munakata et al., 2011). The authors 

argue that conflict signals activate the pre-SMA and/or ACC, possibly reflected in the stop 

N2, which then inhibit the motor output via the STN. Whether or not the inhibition is 

successful or not will still depend on whether motor preparation in the cortico-striatal-

thalamo-cortical loop crossed a critical threshold (Schmidt et al., 2013).
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4.3 Stopping vs. changing a motor response

Results from Laplace transformed ERPs and ICA showed no evidence for differences 

between stop- and change-trials for the frontocentral N2. This suggests a common neural 

mechanism, possibly involving the hyperdirect or indirect fronto-basal ganglia pathway and 

posterior medial frontal cortex, accounting for stopping and changing a response in the 

current task. This is in accord with recent fMRI data (Kenner et al., 2010), but different from 

previous ERP results (Krämer et al., 2011). How can these discrepancies be explained? 

There are key differences between paradigms that need to be considered. In the present 

study, the task required an association between a number and a response hand, whereas in 

the previous EEG-study the association was made between the direction of an arrow and a 

response hand. This implies for the present task a much weaker stimulus-response 

association, which was reflected in generally higher reaction times. However, the task of 

Kenner et al. also involved a higher stimulus-response association for stop-trials, which 

required stopping after a color change to red. More importantly, the stop- and change-trials 

were embedded in Flanker trials in the previous EEG-study (Krämer et al., 2011), with a 

high probability (50 %) of incongruent stimulus-response mapping. If considering 

incongruent Flanker trials as similar to change-trials with a ChSD of 0 ms, this would 

strongly increase the probability of change-relative to stop-trials. A high probability of 

conflictive stimulus-response mappings might drive the system towards alternative response 

control mechanisms such as biased competition in the cortex (Miller and Cohen, 2001). 

Whereas response-switching in change-trials in the previous study might have been easier to 

accomplish, this was not the case in the present paradigm. Interestingly, we still observed a 

faster CSRT than SSRT in the current data-set, which is difficult to reconcile with the neural 

effects we observed. Unfortunately, we were unable to manipulate stimulus-response 

mappings to compare neural and behavioral effects due to limitations in the length of the 

recording sessions. The results of the two EEG-studies and fMRI-study, however, suggest 

that neural mechanisms of response inhibition depend not only on the selectivity of the 

inhibitory control, but also on the task context (e.g. probability of response conflict) and 

stimulus-response mapping.

It should be noted that the finding of no condition differences essentially confirms the null 

hypothesis which limits the conclusions one can derive from the results. As the number of 

subjects and number of trials per condition were comparable to our previous study with the 

stop-change-paradigm (Krämer et al., 2011), we believe that the power was sufficient to 

detect these conditions differences. Moreover, the converging results from different analysis 

approaches gives further credibility to the stability of the effects.

4.4 Conclusions

The present study provides further support for the importance of posterior mediofrontal 

areas in inhibitory response control and is consistent with a common neural pathway 

underlying stopping and changing a motor response. The data also show the advantages of 

using high-density EEG recordings together with Laplace transformation or ICA to 

disentangle activity of parietal and frontal sources involved in response inhibition. Based on 

the ICA, we identified a mediofrontal component with a negativity peaking at 200 ms after 

the stop- or change-stimulus with a likely source in ACC.
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Highlights

- We studied neurophysiologial response to stop-signals and change-signals

- Laplacian transformation revealed bilateral parietal and midfrontal activity

- Using ICA, a mediofrontal component with likely source in ACC was 

identified

- Stop- and change-trials did not differ in neurophysiological activity
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Figure 1. Task and behavioral results
A Schematic representation of the task, showing the three conditions, Go, Stop and Change 

(SSD stop-signal delay; ChSD change-signal delay). B Results for the Stop Signal Reaction 

Time (SSRT) and Change Signal Reaction Time (CSRT), which differed significantly (** p 

< 0.001). Error bars denote standard errors.
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Figure 2. Surface and Laplace ERPs of go- and inhibited stop-trials
Shown are the ERPs without current source density transformation (B) and after CSD 

transformation (A), both for go- (black) and inhibited stop-trials (red). The time-point 0 ms 

refers to onset of the go-stimulus for the go-trials and to the onset of the stop-stimulus for 

the stop-trials. The upper row shows the data of the midfrontal electrode cluster and the 

middle row shows the signal of the left parietal electrode cluster (indicated on the map on 

the right side). The grey bar indicates the analyzed time-window for the fronto-central 

electrodes (200 – 250 ms) and the parietal electrodes (150 – 250 ms). The lower row depicts 
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the topography of the difference between inhibited stop- and go-trials between 180 and 220 

ms for CSD ERPs (left side) and surface ERPs (right side).
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Figure 3. Stop- and change-signal-locked Laplace-ERPs
Shown are the ERPs for Change (dashed lines) and Stop trials (solid lines) for the left 

posterior electrode cluster, separately for failed (A) and successful (B) trials. The time-point 

0 ms refers to the stop-/change-stimulus onset. The time-window used for the analysis, 150 

to 200 ms, is highlighted in grey. On the right side, the location of the posterior electrode 

cluster is indicated and topographical map of the average amplitude between 150–200 ms is 

presented for successful stop. A 15 Hz low-pass filter was applied for plotting purposes, but 

not for the analysis.
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Figure 4. A Stop-signal-locked Laplace-ERPs
Shown are ERPs for the left, frontocentral and right frontolateral electrode cluster, 

separately for failed (red) and successful trials (black). The analyzed time-window (200 – 

250 ms) is highlighted with a grey frame. The topographical map of the mean amplitude in 

the same time-window for successful stop-trials is shown. B Change-signal locked ERPs for 

left, frontocentral and right frontolateral electrode clusters, separately for failed (red) and 

successful trials (black). C+D Plotted are single-trial Laplacian ERPs for all stop-failed (C) 

and change-succeed (D) trials across all participants (~ 1400 trials) at electrode Cz, sorted 
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by reaction time (relative to stop-/change-stimlus; using a smoothing window of 20 trials), 

which is depicted with a solid black line.
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Figure 5. Results of the independent component analysis
A Shown are the topographic maps for the components included in the mediofrontal cluster 

with the participants’ codes noted above each component. Note that the direction of the 

maps (positive vs. negative) is arbitrary. The directionality of the component’s activity is 

split into the weight matrix (spatial map) and the time-course. B Average time-course of the 

depicted components back-projected to electrode Cz, separately for go-trials (solid line) and 

successful stop-trials (SI, dashed line). C Centroid of the estimated sources of the included 

components shown in anterior cingulate cortex.
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Figure 6. ICA results for stop- and change-trials
A Average time-course of the mediofrontal cluster’s components back-projected to electrode 

Cz, separately for stop-succeed (solid line) and change-succeed trials (dashed line). B 
Shown is the average time-course of the mediofrontal cluster’s components back-projected 

to electrode Cz, separately for stop-succeed (black line) and stop-failed (red line). C+D 
Plotted are single-trial ERPs for all stop-failed (C) and change-succeed (D) trials across all 

participants (~ 1400 trials) from the mediofrontal components, sorted by reaction time 

(relative to stop-/change-stimulus; using a smoothing window of 20 trials), which is depicted 

with a solid black line. The negativity at 200 ms is clearly stimulus-related and maximal 

shortly after or around the erroneous motor response.
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