
 International Journal of 

Molecular Sciences

Review

Ovarian Aging: Molecular Mechanisms and
Medical Management

Jan Tesarik * , Maribel Galán-Lázaro and Raquel Mendoza-Tesarik

����������
�������

Citation: Tesarik, J.; Galán-Lázaro,

M.; Mendoza-Tesarik, R. Ovarian

Aging: Molecular Mechanisms and

Medical Management. Int. J. Mol. Sci.

2021, 22, 1371. https://doi.org/

10.3390/ijms22031371

Academic Editor: Lorella Pascolo

Received: 21 December 2020

Accepted: 26 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

MARGen Clinic, 18006 Granada, Spain; biologas@clinicamargen.com (M.G.-L.);
mendozatesarik@gmail.com (R.M.-T.)
* Correspondence: jtesarik@clinicamargen.com; Tel.: +34-606-376992

Abstract: This is a short review of the basic molecular mechanisms of ovarian aging, written with
a particular focus on the use of this data to improve the diagnostic and therapeutic protocols both
for women affected by physiological (age-related) ovarian decay and for those suffering premature
ovarian insufficiency. Ovarian aging has a genetic basis that conditions the ovarian activity via a
plethora of cell-signaling pathways that control the functions of different types of cells in the ovary.
There are various factors that can influence these pathways so as to reduce their efficiency. Oxidative
stress, often related to mitochondrial dysfunction, leading to the apoptosis of ovarian cells, can be
at the origin of vicious circles in which the primary cause feeds back other abnormalities, resulting
in an overall decline in the ovarian activity and in the quantity and quality of oocytes. The correct
diagnosis of the molecular mechanisms involved in ovarian aging can serve to design treatment
strategies that can slow down ovarian decay and increase the quantity and quality of oocytes that
can be obtained for an in vitro fertilization attempt. The available treatment options include the use
of antioxidants, melatonin, growth hormones, and mitochondrial therapies. All of these treatments
have to be considered in the context of each couple’s history and current clinical condition, and a
customized (patient-tailored) treatment protocol is to be elaborated.

Keywords: ovarian aging; age-related ovarian decay; premature ovarian insufficiency; genetics
of ovarian aging; signaling pathways in ovarian aging; oxidative stress; mitochondrial function;
mitochondrial therapy; apoptosis; melatonin; growth hormone

1. Introduction

The importance of issues related to ovarian aging has been increasing progressively
over the past several decades since, increasingly, more couples in all developed countries
choose to postpone parenthood to more advanced female ages [1]. This trend is associated
with an increasing rate of aneuploidy in oocytes, causing chromosomal abnormalities
in embryos resulting from natural conception, conventional in vitro fertilization (IVF),
or intracytoplasmic sperm injection (ICSI) [2,3]. On the other hand, no association has
been found between advanced male age and aneuploidy rates in embryos derived from
IVF/ICSI attempts using oocytes from young donors [1].

The mechanisms involved in ovarian aging are not completely understood and appear
to be multifactorial. A better knowledge of the factors and mechanisms causing age-related
or premature ovarian decay is needed to optimize diagnostic tests and tune treatment
options so as to reflect the individual condition of each couple. This minireview resumes
different factors causing ovarian decay and their respective molecular mechanisms of action
with the aim of elaborating a patient-tailored treatment regimen for each individual couple.

2. Methods

Works used for this minireview were found by searching MEDLINE (PubMed) from
1995 to 2020. A combination of medical subject headings and keywords was used to gener-
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ate a subset of citations as following (in alphabetical order): (i) antioxidants, (ii) apoptosis,
(iii) epigenetic, (iv) genetic, (v) mitochondria, (vi) ovarian aging, (vii) oxidative stress.

3. Molecular Mechanisms

The age of menopause is an inheritable trait, and the age at which primary ovarian
failure occurs has a strong genetic component [4,5]. However, not all ovarian failures are
primary, and different associated pathologies can play a role. Some of them appear to be
related to defective DNA repair pathways [6].

3.1. Genetic Basis

Genetic factors can influence ovarian function selectively (primary ovarian insuffi-
ciency) or as part of the symptomatology of disorders implicated in other pathologies.

3.1.1. Primary Ovarian Insufficiency

Primary ovarian insufficiency (POI) is the most frequent cause of early menopause,
which occurs in about 10% of women before 45 years of age and in 1–2% before 40 years [4],
while fertility impairment starts around 20 years before the menopause [7]. Chromosome
X structural abnormalities and X-autosome translocations can be at the origin of some
cases of POI [6]. As for single-gene perturbations, several genes have been suggested to
be implicated in POI (Table 1), some of them located on the X-chromosome and others on
autosomes [4,8,9].

Table 1. Overview of the principal nuclear genes with a known role in the protection of the ovaries
against aging 1.

Gene Location Function

WNT4 1p36.23-p35.1 Female sex determination and differentiation

FIGLA 2p13.3 Primordial follicle and zona pellucida formation

NOBOX 7q35 Transition from primordial to growing follicles

FOXO3 6q21 Transition from primordial to growing follicles

PTEN 10q23.3 Transition from primordial to growing follicles

FSHR 2p21-p16 Hormone-dependent phase of follicular growth

GPR3 1p36.1-p35 Maintenance of meiotic arrest until the LH surge

MSH4 1p31 DNA mismatch repair during meiotic recombination

MSH5 6p21.3 DNA mismatch repair during meiotic recombination

PGRMC1 Xq22-q24 Apoptosis of ovarian cells

FOXO1 13q14.1 Granulosa cell function

DMC1 22q13.1 Repair of DNA damage during meiotic divisions
1 See the main text for the full name of each gene. Full review of the genes can be found in references [4,8,9].

The former group includes bone morphogenetic protein 15 (BMP15) (Xp11.2), pro-
gesterone receptor membrane component 1 (PGRMC1) (Xq22-q24), androgen receptor
(AR) (Xq12), forkhead box O4 (FOXO4) (Xq13.1), premature ovarian failure 1B (POF1B)
(Xq21.2), dachshund family transcription factor 2 (DACH2) (Xq21.3), and fragile X mental
retardation 1 (FMR1) (Xq27.3).

The genes on autosomes include growth differentiation factor 9 (GDF9) (5q31.1);
folliculogenesis-specific bHLH transcription factor (FIGLA) (2p13.3); newborn ovary home-
obox gene (NOBOX) (7q35); nuclear receptor subfamily 5, group A, member 1 (NR5A1);
steroidogenic factor-1 (SF-1) (9q33); FSH receptor (FSHR) (2p21-p16); TGF beta receptor
III (TGFBR3) (1p33-p32); G protein-coupled receptor 3 (GPR3) (1p36.1-p35); wingless-
type MMTV integration site family member 4 (WNT4) (1p36.23-p35.1); inhibins: inhibin
alpha (INHA) (2q35), inhibin beta A (INHBA) (7p15-p13), inhibin beta B (INHBB) (2cen-
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q13); POU class 5 homeobox 1 (POU5F1) (6p21.31); MutS homolog 4 (MSH4) (1p31) and
MSH5 (6p21.3); forkhead box O3 (FOXO3) (6q21); cbp/p300-interacting transactivator
with Glu/Asp-rich carboxy-terminar domain 2 (CITED2) (6q23.3); spermatogenesis-and
oogenesis-specific basic helix-loop-helix transcription factor 1 (SOHLH1) ((9q34.3) and
SOHLH2 (13q13.3); phosphatase and tensin homolog (PTEN) (10q23.3); Drosophila nanos
homologs 1, 2, and 3: NANOS 1 (10q26.11), NANOS2 (19q13.32), NANOS 3 19p13.13);
cyclin-dependent kinase inhibitor 1B (CDKN1B) (12p13.1-p12); anti-Mullerian hormone
receptor type II (AMHR2) (12q13); forkhead box O1 (FOXO1) (13q14.1); spalt-like transcrip-
tion factor 4 (SALL4) (20q13.2); and DNA meiotic recombinase 1 (DMC1) (22q13.1).

However, the implication of some of these genes is suspected rather than confirmed.
Those of them with the strongest evidence for playing a role in POI are shown in Table 1.

Most of these genes (Table 1) are known to be somehow related to oogenesis during
its different phases, from the fetal period throughout postnatal life until the final phases
of meiotic maturation, and to regulate essential events in human oogenesis [4,5]. These
include female sex determination and differentiation (WNT4), the formation of primordial
follicles and the coordinated expression of zona pellucida genes (FIGLA), the transition
from primordial to growing follicles (NOBOX, FOXO3, PTEN), the hormone-dependent
phase of follicular growth (FSHR), the maintenance of meiotic arrest in antral follicles
until the luteinizing hormone (LH) surge (GPR3), DNA mismatch repair during meiotic
recombination (MSH4, MSH5), the apoptosis of ovarian cells (PGRMC1), granulosa cell
function (FOXO1), and the repair of DNA damage arising from defective meiotic divisions
(DMC1) [4,6,8,9] (Table 1). However, the incidence of anomalies in some of these genes
among women suffering from POI is extremely low, and perturbations of other genes
are mostly related to specific ethnic groups [10]. Thus, only a few of these genes, such
as FMR1 premutation, BMP15, GDF9, and FSHR, have been incorporated as diagnostic
biomarkers [5,11,12]. More research is needed to use more genes as routine diagnostic tools.

3.1.2. Ovarian Insufficiency due to Mendelian Disorders Implicated in Other Pathologies

Distinct from non-syndromic POI, pleiotropic Mendelian disorders, including fragile
X syndrome: familial mental retardation 1 (FMR1); (Xq27.3), blepharophimosis-ptosis-
epicanthus syndrome (BPES): forkhead box L2 (FOXL2) (3q23); galactosemia: galactose-1-
phosphate uridyl transferase (GALT) (9p13); carbohydrate-deficient glycoprotein syndrome
type 1: phosphomannomutase 2 (PMM2) (16p13), may manifest POI as part of their
phenotypic spectrum [4]. There are some other pleiotropic Mendelian disorders suspected
to cause POI, but a definitive confirmation of this association is still lacking.

3.1.3. Gene Mutations Affecting Mitochondrial Function

Genes governing mitochondrial functions may be located in the nucleus or in the
mitochondria themselves. Many different nuclear genes affecting mitochondrial function
are known nowadays, and according to current experience most gene mutations impairing
mitochondrial function are nuclear ones, as reviewed in [4]. Both oocyte and ovarian cell
mitochondria are important for the correct folliculogenesis and oocyte maturation [13–16].
As to the risk of mitochondrial DNA deletions, it was shown to be affected by the global
secondary structure of the mitochondrial genome [17].

3.2. Cell-Signaling Pathways

The main cell-signaling pathways involved in physiological (age-related) ovarian
failure and POI are those involved in cell protection against oxidative stress. A recent
study using single-cell transcriptomic analysis of ovaries from young and aged non-human
primates identified seven ovarian cell types with distinct gene-expression signatures, in-
cluding oocyte and six different somatic cells, and identified the disturbance of antioxidant
signaling specific to early-stage oocytes and granulosa cells [9]. The further analysis of
cell-type-specific aging-associated transcriptional changes uncovered age-related distur-
bances of antioxidant signaling specific to early-stage oocytes and granulosa cells [9]. The
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authors have completed their observations on non-human primates with those on human
granulosa cells obtained from follicular fluid samples aspirated from patients undergoing
an IVF attempt. Consistent with the results in monkeys, human granulosa cells exhibited
the age-related downregulation of the transcription of three genes involved in antioxidative
pathways—IDH1, PRDX4, and NDUFB10—and this phenomenon was accompanied by an
increase in reactive oxygen species and apoptosis in the granulosa cells [18], indicative of
oxidative damage as a crucial factor in ovarian functional decay.

Similar to the primates, an age-related increase in oxidative damage and a decrease in
antioxidant gene expression was previously observed in mice [14]. The oxidative damage of
mouse granulosa cells was reported to impair the supply of ATP and the mitochondrial gene
expression, which are required not only for the proliferation but also the differentiation of
granulosa cells during follicular development [13]. Moreover, aging-related mitochondrial
(mt) DNA instability also leads to an accumulation of mtDNA mutations in the oocyte,
leading to the deterioration of oocyte quality in terms of competence and the risk of
transmitting mitochondrial abnormalities to offspring [14]. As mentioned above, the risk of
mtDNA damage is also conditioned by epigenetic factors, especially the global secondary
structure of the mitochondrial genome; certain patterns of the global secondary structure
of the human single-stranded heavy chain of mtDNA make the DNA molecule more prone
to deletions than others [17].

Mitochondrial damage leads to the activation of apoptotic pathways in granulosa
cells, which, in turn, decreases the expression of aromatase, which is required for the
transformation of androgens to estrogens, thus leading to the prevalence of androgens
over estrogens within the follicles [18]. Androgens and estrogens present in follicular fluid
exert rapid non-genomic effects on maturing human oocytes, affecting oocyte cytoplasmic
maturation and postfertilization developmental potential rather than the completion of
meiosis [19]. This can explain why age-related or premature disturbances of antioxidative
pathways reduce oocyte quality even in cases in which the number of mature oocytes
recovered for IVF is not affected.

New data suggest that POI may be of polygenic origin, and that overlap exists between
the genetic backgrounds of diminished ovarian reserves and POI [20]. Whole-exome
sequencing and bioinformatics analysis may become a useful clinical tool for etiological
diagnosis and risk prediction for affected women in the future [20]. In addition, array
comparative genomic hybridization or specific next-generation sequencing panels should
be considered to identify chromosomal deletions/duplications under karyotype resolution
or other pathogenic variants in specific genes associated with POI. This is particularly
important in patients with first-or second-degree relatives also affected with POI, improving
their reproductive and genetic counseling [21].

Moreover, even with the same genetic background, with the use of multiple systems
biologic approaches to compare developmental stages in the early human embryo with
single-cell transcript data from blastomeres, it was shown that blastomeres considered to
be totipotent were not transcriptionally equivalent [22].

4. Clinical Management
4.1. Diagnosis

A woman’s age is the basic predictor of the degree of ovarian aging. However, ovarian
aging can develop prematurely, and specific diagnostic methods are needed to detect this
condition. There are two types of ovarian aging manifestations with respect to the ovarian
ability to produce oocytes: a quantitative one and a qualitative one. To detect the former, a
combination of antral follicle count (AFC), determined by vaginal ultrasound scan at the
beginning of the menstrual cycle, and the determination of serum anti-Mullerian hormone
(AMH) concentration, which can be performed at any time during the menstrual cycle [23],
is used.

By contrast, oocyte quality is not necessarily related to AFC and serum AMH. Pre-
mature decay of oocyte quality is mainly related to a low-for-age production of growth
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hormone (GH) [24]. Due to the pulsatile pattern of GH secretion, insulin-like growth
factor-1 (IGF-1), which does reflect the GH secretion pattern, but with a less pronounced
pulsatility, was suggested to identify young patients with a premature decay of oocyte
quality who could benefit from treatment with GH during ovarian stimulation [25]. The
data presented show that the ‘GH/IGF-1’ age can be more than 20 years higher than
the chronological age in some young women, and it was this group of patients who ap-
peared to be more likely to benefit from GH administration during ovarian stimulation,
although the authors suggested that larger prospective studies were needed to confirm this
assumption [25].

There are only a few clues to detect premature ovarian aging in addition to the above
criteria, and further research is warranted to detect more molecular markers that could
guide the clinician to propose the best treatment regimen.

4.2. Treatment

In view of the fact that oxidative stress is the main factor involved in ovarian aging,
it can be assumed that agents reducing oxidative damage represent the first-line choice.
These agents can be direct antioxidants or molecules affecting cell-signaling pathways
involved in the antioxidant defense of ovarian cells (Table 2). Some molecules combine
both of the above activities.

Table 2. Agents that can be used to treat the consequences of physiological or premature ovarian aging.

Agent Administration Mechanisms of Action References

GH Subcutaneous

Activation of cell-signaling
pathways acting

[26–32]against oxidative stress

Possible activation of DNA
damage repair

Melatonin Oral

Direct antioxidant [33–36]

Indirect antioxidant (signaling
pathway modulator)

Anti-inflammatory agent

Immunomodulator

Coenzyme Q10 Oral Direct antioxidant [37–39]

Vitamin C Oral Direct antioxidant [40]

Vitamin E Oral Direct antioxidant [40]

Folic acid Oral Direct antioxidant [40]

4.2.1. GH

GH administration during ovarian stimulation was the first treatment shown to
be beneficial in older women. A randomized controlled trial, conducted in a group of
100 women of >40 years undergoing assisted reproduction treatment and randomized
between a GH treatment group and a placebo group, showed significantly higher delivery
and live birth rates in the GH arm as compared to the placebo arm [26]. Subsequent studies
confirmed these findings and extended the use of GH treatment also to younger women
with POI [27–31]. This effect of GH is at least partly due to the alleviation of oxidative
stress in the ovary, an effect previously described in some other organs [25]. Though
it is not a direct antioxidant, GH intervenes in the cell-signaling pathways involved in
cellular defense against oxidative stress [28], and adult GH deficiency causes an inadequate
reactivity of cells against radical production [29]. This can explain why age-related or
premature GH deficiency contributes to ovarian decay, even in cases where it is primarily
due to other causes. Hence, GH can be used as an adjuvant treatment during ovarian
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stimulation in women with both age-related ovarian decay and POI. This conclusion
was drawn from the results of 13 articles of a special research topic on the role of GH
in reproduction, edited by Jan Tesarik, John Yovich, and Yves Menezo, and published in
Frontiers in Endocrinology, reviewed in Tesarik et al. in 2021 [32].

4.2.2. Melatonin

Melatonin is an example par excellence of a molecule acting as a direct antioxidant
and a modulator of systems protecting cells against oxidative stress. First introduced into
reproductive medicine to treat infertility caused by endometriosis and adenomyosis [33,34],
it has proven its usefulness in many more indications, including the protection against the
contraction of COVID-19 [35]. Since then, new data have emerged showing the possibilities
of melatonin in preventing ovarian aging [36]. Even though the mechanism underlying
the anti-aging effect of melatonin in the human ovary still needs to be fully explained, the
administration of melatonin, lacking serious side-effects and providing additional benefits
to patients treated with it [36], is clearly indicated in women with age-related ovarian decay
or POI.

4.2.3. Other Antioxidants

Since ovarian aging is mainly due to oxidative stress, superimposed on the existing
genetic makeup, any antioxidant agent can be supposed to improve IVF results in older
women and in young women suffering from POI [37–39]. Unfortunately, there are only a
few clinical studies that can conclusively support this reasoning. Coenzyme Q10 (CoQ10)
is the antioxidant that accumulates the most evidence in favor of its use in the treatment of
women with diminished ovarian reserves [37,38], a conclusion corroborated by a recent
randomized control trial [39]. However, though potentially less efficient, any antioxidant
agent, such as vitamins C and E and folic acid, can be of help [40].

4.2.4. Mitochondrial Therapy

The issue of mitochondrial health has been widely debated with respect to the
oocyte [41]. Nevertheless, data obtained from a study in an animal model (mouse) indicate
that the granulosa cell mitochondria are no less important for the correct oocyte maturation
than those of the oocyte itself [15]. Antioxidant agents, such as melatonin, coenzyme
Q10, or vitamins C and E (see above) can improve this condition. This can explain why
antioxidant pretreatment (coenzyme Q10) improves the ovarian response to gonadotropin
stimulation and embryo quality in low-prognosis young women [37–39].

On the other hand, the accumulation of mitochondrial DNA mutations/deletions in
the oocyte, in addition to jeopardizing oocyte developmental potential, can also compro-
mise the health of the offspring [42]. Optimal mitochondrial function is required for oocyte
maturation, fertilization, and embryonic development. Improvement of the mitochondrial
function, either through the use of small molecules or procedures involving mitochondrial
transfers, could lead to better fertility outcomes. Moreover, mitochondrial replacement
procedures could open a new page in the treatment of mitochondrial diseases.

Mitochondrial transfer from a healthy donor oocyte to the patient’s oocyte is a possible
solution, practiced from the late 1990s [42–45] but thereafter banned in most countries. This
technique can be performed in two different ways: first, by injection of a small amount
of donor oocyte cytoplasm into the patient’s oocytes [42–44]; second, by transferring the
metaphase chromosomes, associated with the meiotic spindle, from the patient’s oocytes
to previously enucleated donor oocytes [45]. Curiously, even though the latter technique
results in a much higher proportion of “healthy” mitochondria in the reconstructed oocytes
as compared to the former one, the efficiency of both techniques appeared similar; more
than 40% of live births in young women with previous implantation failures, and several
tens of births were obtained with both of them [46,47]. It has to be stressed, however,
that the original indication of both of these techniques was focused on the recurrent
failure of embryo development and implantation in young women, rather than on the
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avoidance of mitochondrial disease transmission. In addition to mitochondria, ooplasm
also contains other developmentally important molecules that can be deficient in patients’
oocytes. One of them is stored maternal mRNA which is crucial for guiding human
embryo development until the 4-to 8-cell stage, when the first signs of embryonic genome
expression can be detected [48–51]. However, stored maternal mRNA is also involved
in the control of relatively late stages of human preimplantation development, after the
activation of embryonic gene expression, when the two mRNA sources act together to
regulate the differentiation of the first two embryonic tissues, the inner cell mass, and the
trophectoderm [51].

While still banned in the United States, the technique of mitochondrial replacement
therapy, using a spindle-chromosome complex transfer from the patient’s oocytes to enu-
cleated donor oocytes, was used with success by a team in a US clinic in Mexico, where
there is no legal restriction with regard to this technique, to avoid the mother-to-offspring
transmission of a heritable mitochondrial disease, the Leigh syndrome [52]. The authors
chose the previously described technique of nuclear transfer, with slight modifications [53],
rather than ooplasmic injection. This technique is currently used, in countries in which it is
legally possible, for its initial indication: the repeated failure of embryonic development in
young couples with male partners having normal spermatozoa, without strict limitations
to previously detected mitochondrial DNA abnormalities.

4.2.5. Patient-Tailored (Customized) Treatment Protocols

In order to be able to decide between different treatment options, the choice of the
therapy to be used must be made on the basis of a complete diagnosis of both the male
and female partner of each couple. The treatment choice should not be based merely on
the primary cause of infertility, but should also take into account all possible secondary
contributing factors. Basic guidelines for this approach were published under the name
“CARE” (Customized Assisted Reproduction Enhancement) [54]. In bad-prognosis pa-
tients, this individualized approach seems to be more efficient as compared with standard
protocols [55]. Further prospective studies are needed to definitively confirm this thesis.

5. Conclusions

All the available data lead to the conclusion that ovarian aging is mainly due to ox-
idative stress. While the external factors leading to oxidative stress might be similar, the
damage produced is patient-dependent due to genetically programmed defense mecha-
nisms. Deficiencies of these mechanisms can be caused by mutations/deletions of both
nuclear and mitochondrial genes. Independent of the genetic background (which is impos-
sible to resolve at present), the clinical manifestations can be alleviated with treatments
using direct antioxidants (e.g., vitamins C and E, coenzyme Q10), agents affecting the cell
response against oxidative stress (e.g., growth hormone), or those combining both of these
activities (e.g., melatonin). If mitochondrial DNA mutations occur in the oocyte, mito-
chondrial replacement therapy can resolve the problem. Independent of the results of the
individual diagnostic tests performed, a synthetic view is needed to propose a customized
therapeutic plan for each infertile couple.
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