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Introduction
Numerous epidemiological studies have concluded that long-
term exposure to particulate matter smaller than 2.5 µm in 
diameter (PM2.5) increases the risk of mortality, shortens life 

expectancy, and increases the risk of cardiovascular and respira-
tory morbidity.1–13 The Global Burden of Diseases, Injuries, and 
Risk Factors study ranked air pollution as the fifth highest mor-
tality risk factor in 2015, mostly from ischemic heart disease 
and cerebrovascular disease.1

Randomized controlled trials (RCTs) are not feasible when 
studying population-based air pollution effects. Therefore, 
the majority of the evidence relies on classical observational 
approaches. Unlike RCTs, where the randomization assures that 
the exposure of interest is independent of all other parameters 
at the time of randomization, classical observational approaches 
are prone to confounding bias.14 The causal modeling approach 
overcomes this limitation by using methods designed to mimic 
the randomization process as much as possible.

Causal modeling methods follow the potential outcome 
approach and aim to estimate the difference between the out-
come of an exposed population, and the expected outcome 
of the same population had they received different exposure. 
Because that counterfactual outcome is missing by definition, 
causal modeling methods seek unbiased ways to estimate these 
unobserved potential outcomes.15–17
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Background: Dozens of cohort studies have associated particulate matter smaller than 2.5 µm in diameter (PM2.5) exposure 
with early deaths, and the Global Burden of Disease identified PM2.5 as the fifth-ranking mortality risk factor in 2015. However, 
few studies have used causal modeling techniques. We assessed the effect of annual PM2.5 exposure on all-cause mortality rates 
among the Medicare population in the Northeastern and mid-Atlantic states, using the difference-in-differences approach for causal 
modeling. 
Methods: We obtained records of Medicare beneficiaries 65 years of age or more who reside in the Northeastern or mid-Atlantic 
states from 2000 to 2013 and followed each participant from the year of enrollment to the last year of follow-up. We estimated the 
causal effect of annual PM2.5 exposure on mortality rates using the difference-in-differences approach in the Poisson survival analysis. 
We controlled for individual confounders, for spatial differences using dummy variables for each ZIP code and for time trends using 
a penalized spline of year. 
Results: We included 112,376,805 person-years from 15,401,064 people, of whom 37.4% died during the study period. The in-
terquartile range (IQR) of the annual PM2.5 concentration was 3 µg/m3, and the mean annual PM2.5 concentration ranged between 
6.5 and 14.5 µg/m3 during the study period. An IQR incremental increase in PM2.5 was associated with a 4.04% increase (95%  
CI = 3.49%, 4.59%) in mortality rates. 
Conclusions: Assuming no omitted predictors changing differently across ZIP codes over time in correlation with PM2.5, we found a 
causal effect of PM2.5 on mortality incidence rate.
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What this study adds
Numerous studies found higher mortality risks associated with 
long-term exposure to particulate matter smaller than 2.5 µm 
in diameter (PM2.5). However, because randomized controlled 
trials are not feasible when studying population-based air 
pollution effects, the majority of the evidence originates from 
observational approaches. This cohort study of 112,376,805 
person-years shows a significant effect of PM2.5 on the risk of 
mortality among the elderly population. Therefore, the associa-
tions between PM2.5 and mortality remain when using a casual 
modeling approach designed to overcome the limitations of a 
nonrandomized observational study.
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Studies that used these causal modeling methods for air pol-
lution have become more common in recent years,15,18,19 but are 
still scarce. A common approach is the use of propensity score 
matching or inverse probability weighting, to make the exposure 
of interest independent of all measured confounders.15,16 Makar et 
al18 used a propensity score approach in a representative sample 
of 32,119 Medicare beneficiaries. Wang et al19 applied a doubly 
robust causal modeling estimate with inverse probability weights 
to look at PM2.5 and mortality in the Southeastern United States. 
The disadvantage of these methods is that it can only account for 
measured confounders and for unmeasured confounders that are 
highly correlated with the measured confounders.20

The difference-in-differences (DID) approach overcomes this 
limitation and allows controlling for unmeasured confounders 
by design. In recent decades, the increasing availability of rou-
tinely collected electronic health records has provided the op-
portunity to conduct large population-based studies. However, 
because the data are not collected for specific study aims, many 
potential confounders remain unmeasured and may bias the 
studied associations. Hence, the importance of controlling for 
these unmeasured confounders.21

In a classical DID model, mean outcomes are calculated for 
the exposed and nonexposed groups in the preexposure and 
postexposure periods. The difference between preexposure 
and postexposure periods in the unexposed group is a negative 
outcome control for the difference in the exposed group, and 
the difference in these pairs of differences is a causal estimate, 
assuming that no other exposure has affected the two groups 
differently over time.22 This is because the difference between 
death rates in the same location between two periods controls 
for all slowly varying predictors of mortality such as socioec-
onomic status (SES), smoking, obesity, etc. The difference be-
tween the two periods in the control location controls for time 
trends in an outcome that is similar between the two locations.

In a previous analysis done by our group, Wang et al23 applied 
a variant of the DID approach among all mortality cases in New 
Jersey. We applied the DID approach of Wang et al23 to the Medicare 
population of the Northeastern and mid-Atlantic states, extended 
the analysis to incorporate individual covariates, and assessed the 
effect of annual PM2.5 exposure on all-cause mortality rates.

Methods

Study population

We included all the Medicare beneficiaries 65 years of age or more 
who reside in the following states from 2000 to 2013: Maine, New 
Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, 
New York, New Jersey, Delaware, Pennsylvania, Maryland, 
Washington, D.C., Virginia, and West Virginia. Participants entered 
the cohort on January 1 of the year after they became Medicare 
participants, and were followed for each calendar year until death 
or end of the study. This study was approved by the human subjects 
committee at the Harvard T. H. Chan School of Public Health.

Exposure data

Our group generated highly spatially resolved PM2.5 data (1 × 1 km 
spatial resolution) from a hybrid satellite-based model incorporat-
ing daily satellite remote sensing Aerosol Optic Depth data and 
classic land-use regression methodologies. We used out-of-sample 
10-fold cross-validation to quantify the accuracy of the model 
predictions and found excellent model performance for both days 
with available satellite data (mean out-of-sample R2 = 0.88) and 
days without satellite observations (mean out-of-sample R2 = 
0.87). For more in-depth description, please refer to Kloog et al.24

We averaged the exposure values of all grid cells located within 
each ZIP code and a 500 meters buffer annually and assigned ex-
posure data to ZIP codes using ArcGIS based on spatial location.

Covariates

The Medicare denominator file includes data on the partici-
pant’s age, sex, race, date of death, ZIP code of residence, and 
eligibility for Medicaid, which provides additional coverage for 
low-income participants.

We obtained the mean annual temperature in the summer and 
winter seasons from the North American Regional Reanalysis 
data and estimated daily mean values for each ZIP code in our 
study area.25

Statistical analysis

We used a causal modeling approach to assess the effect of long-
term PM2.5 exposure on the rate of death. Specifically, we used the 
DID approach in a Poisson survival analysis using the Anderson–
Gill formulation with time-varying covariates.26 We have ex-
tended the classical DID approach to continuous exposures and 
multiple time periods.23 We used a similar approach in this study, 
but added some controls for individual covariates. We followed 
Medicare participants in 7600 ZIP codes in the Northeastern and 
mid-Atlantic states. We begin with the potential outcomes frame-
work of the Rubin Causal Model.27 Let YA=a

i,c,t be the potential 
outcome in person I, in ZIP code c if exposed to A = a in year t, 
and let YA=a′ i,c,t be the potential outcome under the alternative 
exposure A = a′. We assumed that the incidence of death depends 
on predictors in the following manner:

Log E Y a Z U W Wa
i c t t c t i i t , , , ,( )( ) = + + + + +β β β β β β0 1 2 3 4 5  (1)

where Zc is small area level confounders that vary between ZIP 
codes but not over the study period; Ut is temporal confounders 
that vary over time but not between ZIP codes; Wi is the per-
son’s individual confounders that do not vary over time and Wi,t 
is the person’s individual confounders that do vary over time.

A dummy variable for each ZIP code will effectively remove 
confounding by variables that only vary across exposure groups 
(Zc and Wi). Similarly, a penalized spline for the year of study 
will remove all the temporal confounders that vary between 
periods (Ut and Wi,t). The adjustment to the individual charac-
teristics will account for individual confounders that may not be 
captured by adjustment to the ZIP code of residence. Then, the 
remaining variability of the annual PM2.5 levels can be treated 
as the difference in these pairs of differences (i.e., the causal esti-
mate). The benefit of this approach is that we are able to control 
for unmeasured confounders, because they are removed by the 
time trend and ZIP code intercepts. This is a generalization of 
the original DID approach where there were only two treatment 
units and two time periods, and the causal effect of treatment 
was the interaction term. It reduces to the same thing in that 
case.23,28

The DID assumptions

For a causal interpretation of the DID estimate, the following 
assumptions must hold29:

 1. The intervention (or the exposure, in this case) is unre-
lated to the outcome at baseline. Meaning that the level of 
annual PM2.5 exposure is not determined by the mortality 
rates.

 2. All the ZIP codes have parallel trends in mortality rates. 
Meaning that, had the PM2.5 levels not been changing the 
same over time, the difference in mortality rates between 
the ZIP codes will be stable over time as well. This can be 
weakened to allow differences in the trend in mortality 
rates over time by ZIP code due to other factors, as long 
as those differences are not correlated with differences in 
PM2.5 over time by ZIP code.
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For the first assumption to hold, mortality in a current year 
should not affect the current exposure and should not be af-
fected by past exposures. In a classical DID approach, there is a 
defined driver for the change in exposure between the preinter-
vention and postintervention periods (usually an intervention), 
which can potentially be affected by the outcome. This seems 
unlikely in this case, because EPA policy changes are not im-
pacted by Northeast mortality rates.

Regarding the second assumption, we must assume that 
differences from year to year in Wi,t which are not common 
across ZIP codes are not correlated with PM2.5. That is, as long 
as the annual within ZIP code changes in individual smoking 
rates, diet, etc., which are different from the same changes else-
where are not correlated with annual within ZIP code changes 
in PM2.5 that are different from the same changes elsewhere, 
then we will obtain a causal estimate of the effect of PM2.5. 
Because this assumption cannot be tested statistically, it must 
be judged based on knowledge and plausibility from outside 
the study. The only factors that may potentially confound the 
association are factors like smoking rates or SES that may vary 
differently with time across ZIP codes. However, for these vari-
ables to confound the association, it requires a highly unlikely 
scenario in which these variations are correlated with varia-
tions in PM2.5 levels from the average ZIP code level and the 
average annual level.

The long-term trend in exposure is removed by the penal-
ized spline, and the exposure contrast is the local deviation from 
that trend. That can be parsed into two parts: difference be-
tween the long-term trend in the ZIP code from the trend in the 
Northeastern United States and fluctuations about that trend 
from year to year. The major driver of trends in PM2.5 in the 
Northeast in this time period was EPA required reductions in 
NOx and SO2 emissions at upwind power plants. ZIP code 
trends in PM2.5 concentrations will vary depending on the extent 
to which the ZIP codes are downwind of the plants that put on 
controls during the period, and when the controls were installed. 
All these factors are unlikely related to trends in SES, smoking, 
or any other potential confounder.23 That said, as an additional 
measure to control for potential confounding, we adjusted the 
models for individual characteristics that may be related with 
SES. The remaining variability in PM2.5 depends mostly on me-
teorological factors, such as year-to-year differences in mixing 
height and wind speed, which seem random with respect to 
year-to-year differences from trend in ZIP code mortality rates.

However, it is possible that mortality in the current year will 
be related to exposures in earlier years. We, therefore, added 
two sensitivity analyses aimed to make sure that the effects of 
current year exposure are not confounded by earlier exposures. 
First, we repeated our model, assessing the effect of PM2.5 in the 
year of death (time t), with adjustment for PM2.5 exposure in the 
previous year (time t−1). Second, we obtained the residuals from 
our main analysis, which assessed the effect of PM2.5 in time t 
on mortality, adjusting for time trends and ZIP code differences. 
We then assessed the mean within ZIP code correlation between 
the residuals in time t and time t−1.

The one variable that has the potential to confound the tested 
association despite the adjustment for the spatial, temporal, and 
individual confounders is temperature. We, therefore, adjusted 
the models to seasonal temperatures.

To support our findings, we added a sensitivity analysis ana-
lyzing the association between PM2.5 exposure and alcoholic 
fatty liver disease, as a negative outcome control. This condition 
is a result of alcohol consumption, and therefore, theoretically 
should not be related to PM2.5 exposure. Therefore, an associ-
ation would suggest residual confounding by unmeasured con-
founders as shown in the Directed acyclic graph (Figure 1).

To further address the possibility of confounding by differ-
ential changes in SES across ZIP codes, we conducted an ad-
ditional sensitivity analysis controlling for annual estimates of 

population density, percent over 65 years of age and living in 
poverty, and median household income.

Due to computational limitations arising from the large 
sample size, we randomly split the data into subsets and applied 
our models on each subset. The effect estimates were then 
pooled using a fixed-effect meta-analysis. Results are presented 
as percent change for IQR increase in annual exposure.

We assessed modification of the PM2.5 and mortality asso-
ciation by adding multiplicative interaction terms with race 
and eligibility to Medicaid services. Each interaction term was 
assessed separately.

Results
We included 112,376,805 person-years from 15,401,064 people, 
of whom 37.4% have died during the study period. The mean 
age of the study population was 78 years, and the mean age of 
death was 82 years, 42.8% were males, 85.2% were white, and 
16.2% had dual eligibility for the Medicare and Medicaid serv-
ices (Table 1). The IQR of the annual PM2.5 concentration was 3 
µg/m3. Figure 2 shows the states and ZIP codes included in the 
study and the centiles of the mean annual PM2.5 concentration, 
ranging between 6.5 and 14.5 µg/m3 throughout the study pe-
riod (Figure 2).

After adjustment for personal characteristics and the spatial 
and temporal annual variation in PM2.5, an IQR incremental 
increase in PM2.5 was associated with a 4.04% increase (95% 
CI = 3.49%, 4.59%; P < 0.001) in mortality rates. The effect 
was modified by eligibility to Medicaid insurance and race (in-
teraction P value <0.001 for both), with larger effects among 
people who are eligible to Medicaid Services (5.99%; 95% CI = 
4.38%, 7.62%) and among blacks (10.10%; 95% CI = 8.56%, 
11.67%) (Table 2).

We conducted several sensitivity analyses to assess whether 
the assumptions, required for a causal interpretation of the es-
timate, are met. First, when we repeated our model with ad-
justment to the PM2.5 exposure in the previous year. The effect 
of PM2.5 in the current year remained unchanged (4.10% in-
crease; 95% CI = 3.55%, 4.65%; P < 0.001), and we observed 
no association with the earlier exposure (0.33% increase; 95% 
CI = −0.19%, 0.86%; P = 0.189). In addition, after removing 
the variability in the outcome that is related to PM2.5 in the 
current year, ZIP code differences, time trend, and individual 

Figure 1. Directed acyclic graph for the causal association between air pollu-
tion exposure (A), mortality as the primary outcome (Y), fatty liver disease as 
the negative outcome control (N), measured confounders (C), and unmeas-
ured confounders (U).
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confounders – the mean Pearson’s correlation – of the within 
ZIP code residuals, was very low (r = −0.02). Second, when we 
tested the association with alcoholic fatty liver as a negative out-
come, we found no association with PM2.5 (3.0% increase; 95% 
CI = −4.7%, 11.4%; P = 0.456). Third, when we added ad-
justment for annual estimates of percent of persons 65 years of 
age and more living in poverty, population density, and median 
household income, the effect was similar (3.88%; 95% CI = 

3.33%, 4.43%) to the base analysis. In addition, the correlation 
between median income in the first and last year of the study by 
ZIP code was 0.86, suggesting that there has been little trend in 
status by ZIP code during the period.

Discussion
This study of 14 years of follow-up involved all Medicare 
beneficiaries of 14 US states, includes a large number of per-
sons and deaths, and also captures participants who reside in 
rural areas. We found a significant effect of PM2.5 on the risk 
of mortality using a method that controls for many, and pos-
sibly all, omitted confounders. These findings suggest that the 
associations between PM2.5 and mortality remain when using a 
casual modeling approach designed to overcome the limitations 
of a nonrandomized observational study. The specific approach 
used in this study only examines the association of year-to-year 
changes in PM2.5 within ZIP code with year-to-year changes in 
mortality risk within ZIP code, after removing time trends from 
both, and control for some key individual covariates.

These results are in line with results from another study 
conducted among this study population, which estimated the 

Table 1

 Population characteristics (n = 15,401,064 people)

Personal characteristics  

Death, n (%) 5,765,395 (37.4)
Male, n (%) 6,594,913 (42.8)
Race, n (%)
                White 13,119,522 (85.2)
                Black 1,495,027 (9.7)
                Asian 231,128 (1.5)
                Other 487,913 (3.2)
Medicaid eligibility, n (%) 2,491,551 (16.2)
Mean age, mean ± SD 78.0 ± 8.5

Figure 2. The ZIP codes included in the study and the centiles of the mean annual PM2.5.
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distribution of life expectancy as a function of annual PM2.5 ex-
posure. Comparing the percent of the population that would die 
before the age of 76 years, the authors found higher mortality 
rates among those exposed to PM2.5 at 12 µg/m3 (23.5%) than 
those exposed to PM2.5 at 7 µg/m3 (20.1%). While this study 
uses a different methodology and a different outcome, it support 
our findings of the causal effect of PM2.5 on mortality.30

We believe the trends within ZIP code exposures found in our 
study are likely to be independent of potential confounders, and 
therefore, the association identified is likely causal. It is possible 
that events occurred during the study period that affected both 
the exposure and the outcome differentially across ZIP code, 
and therefore may still confound the association. For example, if 
a major industrial site was closed, this has the potential to affect 
both PM2.5 levels and mortality rate only among ZIP code which 
are located closer to the factory. However, because our anal-
ysis only included the elderly population, this scenario is less 
likely. Furthermore, such a change would likely be felt through 
a change in SES, and control for annual SES in each ZIP code 
did not modify our results. In addition, since most of the change 
in PM2.5 in our study period is due to nonlocal sources, we think 
that differential temporal changes by zip codes and other predic-
tors of health are not likely to be correlated. The decline in PM2.5 
in the United States over this time period derives from two basic 
sources. First, SO2, and NOx controls were retrofit on many 
coal-burning power plants during this time period. This reduced 
concentrations of sulfate, nitrate, and secondary organic aero-
sols downwind of those plants and the impact was felt primarily 
in ZIP codes hundreds of miles downwind. However, because 
that assignment to more or less secondary particles is random 
with respect to socioeconomic changes, or other predictors of 
health, and is rather the result of wind patterns, we do not ex-
pect it to confound the association. The second source of decline 
was the imposition of particle controls on new Diesel engines, 
and the gradual retirement of older trucks. Because this reduc-
tion in emissions is due to lower emissions rates per truck, and 
not less truck traffic, it is less likely to impact socioeconomic 
patterns.

Sofer et al31 suggested the negative outcome controls can be 
used to detect confounding bias. A negative outcome can be any 
measured outcome that is not causally related to the exposure of 
interest and is influenced by the same unmeasured confounders 
of the exposure–outcome association of interest.31 We chose al-
coholic fatty liver as a negative outcome and found no associa-
tion with PM2.5. This suggests that unmeasured confounders do 
not confound the association of interest in our study.

The association between particulate pollution, morbidity, 
and mortality has been well documented in many observational 
studies.8,11,32–35 Even with the decreasing trend of air pollution, 
PM2.5 exposure is still linked to excess mortality.32 For example, 
a recent cohort study of all Medicare beneficiaries in the United 
States found a 7.3% increase in all-cause mortality associated 
with 10 µg/m3 increase in annual PM2.5 exposure.12 Another ex-
ample is a study that included seven US southeastern states and 
found a 23% increase in all-cause mortality associated with 10 

µg/m3 increase in annual PM2.5 exposure.36 These associations, 
reported repeatedly in many settings, different populations, and 
geographical areas are compelling. However, by definition, these 
studies describe associations and do not prove causation.

Controlled exposure studies can assess underlying mecha-
nisms and prove causation.37 A few controlled exposure studies 
that assessed the effect of air pollution on ECG changes38 or 
heart rate variability39 were conducted over the years. Another 
trial has randomized people to either functional or sham in 
home particle filters for a year and documented a 7–mm Hg 
difference in blood pressure.40 These trials can provide indirect 
support for the effect of air pollution exposure on mortality by 
identifying mechanisms. Despite the important advantage of 
randomization and controlled exposure, the major limitation of 
these studies is the ethical issues that arise when exposing indi-
viduals to these toxic components.

Animal toxicology studies can also provide mechanistic 
support for a conclusion of causality. For example, mice on a 
high-fat diet exposed for 6 months to an average particle con-
centrations of 15.2 μg/m3 had almost twice the atherosclerotic 
plaque as animals exposed to filtered air.41 Another study re-
ported that lung function in mice exposed to outdoor air, with 
average particle concentrations of 16.8 μg/m3, was lower than 
in mice exposed to filtered air, with particle concentrations of 
2.9 μg/m3.42

The use of causal modeling techniques allowed us to con-
duct a large-scale population-based study while obtaining an 
estimate for the PM2.5 effect that is causal if our assumptions are 
met. Similar to our study, a previous analysis done by our group 
Wang and colleagues23 has estimated the causal effects of long-
term exposure to PM2.5 on mortality. The authors found 3% 
increase in all-cause mortality, associated with an IQR increase 
(2 µg/m3) in annual PM2.5 exposure, among mortality cases in 
New Jersey.23

Another study that estimated the causal effect of 2-year ex-
posure to PM2.5 on mortality among a representative sample of 
Medicare beneficiaries found that increases in PM2.5 were as-
sociated with increases of all-cause and cause-specific hospital 
admission rates but did not find evidence of an increase in mor-
tality.18 However, that study had only a one-year follow-up on 
32,119 individuals and the number of deaths in that follow-up 
period was small. The different inferences may be due to the 
use of individual survival data, the size of the cohort and the 
number of deaths analyzed, the selected population, and the ad-
justment for personal confounders.

In addition to the methods and study design, another term 
required for the determination of a causal effect is biological 
plausibility. Two possible mechanisms that link PM2.5 expo-
sure with mortality are commonly described in the literature. 
First, the development of pulmonary oxidative stress may lead 
to respiratory mortality or an indirect effect on the circulatory 
system. The later may cause cardiovascular events, arrhythmia, 
and even death as a result of the inflammatory responses, vas-
cular dysfunction, and the accumulation of cytokines and clot-
ting factors. Second, ultrafine particles can penetrate directly 
into the circulatory system through the pulmonary system and 
cause local oxidative stress, which may lead to the same cardio-
vascular and mortality outcomes.32,43

We found larger effects among people with eligibility 
for Medicaid services and blacks. People dual eligibility to 
Medicaid are often of lower SES.23,44,45 The larger effects found 
in these populations may be related to the higher likelihood of 
non-white and low-income populations to be exposed to higher 
pollution levels.44,46 It can also be related to limited financial and 
physical access to healthcare services.44,47–49

The large sample size and geographical area covered in 
this study are the major strengths of the study. Using a satel-
lite-based model to estimate PM2.5 exposure, we were able to 
include both urban and rural population and to obtain exposure 

Table 2

Percent increase in total mortality, associated with interquartile 
range increase (3 µg/m3) in annual PM2.5 exposure

% Change  
(95% confidence intervals)

Main effect 4.04% (3.49%; 4.59%)
Interaction with Medicaid eligibility (P value) <0.001
                No Medicaid eligibility 3.54% (2.93%; 4.15%)
                Medicaid eligibility 5.99% (4.38%; 7.62%)
Interaction with race (P value) <0.001
                White 3.35% (2.87%; 3.84%)
                Black 10.10% (8.56%; 11.67%)
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in high spatial resolution. In addition, if our assumption that all 
the time-varying confounders were accounted for in the models, 
holds, we were able to identify the causal association between 
PM2.5 and mortality.

Our study also has limitations. First, we were not able to 
directly adjust the models to predictors such as comorbidities, 
smoking or BMI. To the extent that those predictors varied 
slowly during the follow-up period, or similarly within ZIP 
codes, they were removed by the DID approach. We believe 
any remaining variation in such predictors will be uncorrelated 
with within ZIP code year-to-year variations in PM2.5, but 
that is an untestable hypothesis. An examination of a random 
sample of the Medicare cohort that did have individual-level 
information on such covariates found no association between 
them and PM2.5 even before using the DID approach.12 Trying 
to minimize confounding by individual factors, we did con-
trol for the measured personal and socioeconomic predictors. 
Second, despite the use of highly spatially resolved exposure 
models, because we assigned the same annual average to 
each ZIP code, exposure misclassification may still be pre-
sent. However, because the potential error is Berksonian, it 
may increase the confidence intervals but should not bias the 
estimates.

In conclusion, assuming no predictors changing differentially 
across ZIP codes over time other than those accounted for in 
our model, we found a causal effect of PM2.5 on the mortality 
incidence rate. The negative outcome control approach provides 
farther strength to our findings.
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