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Prostacyclin-IP signaling and prostaglandin 
E2-EP2/EP4 signaling both mediate 
joint infl ammation in mouse 
collagen-induced arthritis 

Tetsuya Honda,1,2 Eri Segi-Nishida,1 Yoshiki Miyachi,2 
and Shuh Narumiya1

1Department of Pharmacology and 2Department of Dermatology, Faculty of Medicine, Kyoto University, 
Kyoto 606-8501, Japan

Prostaglandin (PG)I2 (prostacyclin [PGI]) and PGE2 are abundantly present in the synovial 
fl uid of rheumatoid arthritis (RA) patients. Although the role of PGE2 in RA has been well 
studied, how much PGI2 contributes to RA is little known. To examine this issue, we back-
crossed mice lacking the PGI receptor (IP) to the DBA/1J strain and subjected them to 
collagen-induced arthritis (CIA). IP-defi cient (IP−/−) mice exhibited signifi cant reduction in 
arthritic scores compared with wild-type (WT) mice, despite anti-collagen antibody pro-
duction and complement activation similar to WT mice. IP−/− mice also showed signifi cant 
reduction in contents of proinfl ammatory cytokines, such as interleukin (IL)-6 in arthritic 
paws. Consistently, the addition of an IP agonist to cultured synovial fi broblasts signifi -
cantly enhanced IL-6 production and induced expression of other arthritis-related genes. 
On the other hand, loss or inhibition of each PGE receptor subtype alone did not affect 
elicitation of infl ammation in CIA. However, a partial but signifi cant suppression of CIA 
was achieved by the combined inhibition of EP2 and EP4. Our results show signifi cant roles 
of both PGI2-IP and PGE2-EP2/EP4 signaling in the development of CIA, and suggest that 
inhibition of PGE2 synthesis alone may not be suffi cient for suppression of RA symptoms.

Rheumatoid arthritis (RA) is a chronic infl am-
matory disease of the joint characterized by 
 infl ammatory cell infi ltration, synovial lining 
hyperplasia, and destruction of cartilage and 
bone. Although the etiology of RA has not yet 
been fully understood, recent studies have 
 suggested the involvement of autoantibody 
 production, immune complex formation, in-
fl ammatory cell infi ltration, and tumor-like pro-
liferation of synovium in the pathogenesis of 
RA (1–4). Autoantibodies, such as rheumatoid 
factor (anti-IgG antibody) and anti–type II col-
lagen (CII) antibody, are detected in RA pa-
tients with high probability. These autoantibodies 
make immune complexes within the joint, lead-
ing to activation of the complement cascade and 
infl ammatory cell infi ltration into the joint. Par-
ticular attention is now paid to the network of 
cytokines, chemokines, and growth factors in 

the development of RA (5, 6). Infi ltrated mac-

rophages and neutrophils release IL-1β, which 

activates synovial cells. Activated synovial cells 

then produce various chemokines, cytokines, 

and growth factors. Chemokines such as CCL2 

(monocyte chemoattractant protein 1 [MCP-1]) 

and CCL3 (macrophage infl ammatory protein 

1α) produced by synovial cells further recruit 

infl ammatory cells into the joint (7), and IL-6 

and fi broblast growth factors (FGFs) produced 

by synovial cells contribute to their proliferation 

in an autocrine manner (8). IL-6 also induces 

both B and T cell activation and osteoclast for-

mation. These positive-feedback loops amplify 

infl ammation and de struction within the joint.

Collagen-induced arthritis (CIA) and colla-

gen antibody–induced arthritis (CAIA) are the 

widely used arthritis models in the mouse. CIA 

is induced by immunizing mice with CII, 

whereas CAIA is induced by the administra-

tion of a combination of monoclonal anti-CII 

antibodies and LPS. CAIA can be induced in 
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various mouse strains with rapid onset compared with that of 
CIA. However, the lesions of CAIA are milder and its symp-
toms last for a shorter duration than CIA (9). Furthermore, 
an acute induction of CAIA by LPS injection may not mimic 
the natural course and mechanisms in RA development. On 
the other hand, although the induction of CIA is limited to a 
few mouse strains such as DBA/1J and takes about a month 
to develop, its lesions last for a long time and its histopathol-
ogy, characterized by synovitis, pannus formation, cartilage 
erosion, and bone destruction in joints, is quite similar to that 
of human RA (10). Therefore, CIA is an arthritis model suit-
able for analyzing chronic joint infl ammation.

Prostanoids, including prostaglandin (PG)D2, PGE2, 
PGF2α, prostacyclin (PGI)2, and thromboxane A2, are lipid 
mediators produced by sequential catalysis of cyclooxygenase 
(COX) and the respective synthase (11). They are produced 
in large amounts at infl ammatory sites in response to various 
stimuli. Nonsteroidal antiinfl ammatory drugs (NSAIDs) that 
inhibit COX and suppress PG production have been long and 
widely used for the treatment of RA. NSAIDs reduce the ex-
tent and number of tender or swollen joints in RA patients, 
implicating PGs in pain and infl ammation of RA. Consis-
tently, an inducible form of COX, COX-2, is expressed in the 
infl ammatory synovium of RA patients (12). Among PGs, 
PGE2 has been suggested as a main PG species working in RA 
reactions because PGE2 is detected as one of the major PGs in 
the synovial fl uid in RA patients (13) and shows pleiotropic 
proinfl ammatory actions in vitro (for example, see reference 
14). Recently, it has also been reported that mice defi cient 
in microsomal PGE synthase (mPGES)-1−/− showed reduced 
arthritic responses in CIA (15). On the other hand, although 
PGI2 is known as another major prostanoid, often detected 
more abundantly than PGE2 in the synovial fl uid of RA 

 patients (13), whether PGI2 contributes to the development of 
arthritis has not been tested extensively. Prostanoids exert their 
actions via a family of G protein–coupled receptors, (11), 
which include PGD receptor (DP), four subtypes of PGE re-
ceptor (EP1, EP2, EP3, and EP4), PGF receptor (FP), PGI re-
ceptor (IP), and thromboxane A receptor (TP). We have 
generated mice defi cient in each of the PG receptor types and 
subtypes individually and subjected them to various disease 
models to defi ne the roles of each PG (16–19). Using mice 
lacking the IP, we previously showed the role of PGI2 as a 
mediator of acute infl ammation induced by bradykinin or car-
rageenin, and of acute pain response to acetic acid (16). In this 
study, we have subjected IP-defi cient mice (IP−/−) to CIA 
and examined the roles of PGI2 in this model. We have further 
compared the phenotype of IP−/− mice with those of mice 
lacking one of the PGE receptor subtypes (EP1, EP2, or EP3) 
and/or mice administered with an EP4-selective antagonist.

RESULTS
Involvement of PGI2-IP signaling in CIA
To examine how PGI2 contributes to the development of 
CIA, we backcrossed mice defi cient in IP to the DBA/1J 
background for 10 generations. CIA was induced by intrader-
mal injection of CII with CFA on day 0, followed by a booster 
injection of CII with IFA on day 21. Arthritic lesion of each 
paw was evaluated from day 21 for the extent of swelling, 
 erythema, and deformity, and graded on a scale of 0–4. The 
sum of scores obtained from four paws was used as the ar-
thritic score of each mouse. The arthritic lesions appeared 
around day 25 in WT mice, and by day 35 �90% of the mice 
developed arthritis. Although the incidence of mice showing 
more than 1 arthritic score was not diff erent between WT 
and IP−/− mice (Fig. 1 A), the arthritic score in IP−/− mice 

Figure 1. Effects of disruption of IP on CIA or CAIA responses, and 
anti-CII antibody production in IP−/− mice. (A) Time course of inci-
dence of arthritis in WT and IP−/− mice in CIA. The cumulative number 
of mice showing arthritis in each group is shown as a percentage of the 
total number immunized with CII. ●, WT mice, n = 15; ○, IP−/− mice, 
n = 13. (B) Time course of arthritic scores in WT (●, n = 15) and IP−/− 
(○, n = 13) mice. *, P < 0.05 versus WT mice in CIA. Results show the 

mean ± SEM. (C) Time course of arthritic scores in WT and IP−/− mice in 
CAIA. *, P < 0.05 between WT and IP−/− mice (two-way ANOVA). (D) Anti-CII 
antibody production. Sera of WT (black bars, n = 7) and IP−/− (white bars, 
n = 8) mice in CIA were collected on day 21, and titers of anti-CII 
 antibody in total and each IgG subclass were measured by ELISA. Results 
are expressed as the mean ± SEM in arbitrary units for total IgG, IgG2a, 
IgG2b, and IgG1.
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was signifi cantly lower than that of WT mice all through the 
elicitation phase (Fig. 1 B). To examine if this phenotype of 
IP−/− mice refl ects the role of IP in the antibody-mediated 
eff ector mechanisms of infl ammation, we applied CAIA to 
IP−/− mice. The CAIA model bypasses the immunization 
phase by direct injection of monoclonal anti-CII antibodies. 
IP−/− mice again showed a signifi cant reduction in the ar-
thritic score compared with that of WT mice, although the 
extent of the reduction was milder than that in CIA (Fig. 1 
C). These results show that the PGI2-IP signaling works sub-
stantially in the pathogenesis of both CIA and CAIA, and the 
fi ndings in CAIA suggest the role of this signaling in the anti-
body-induced infl ammatory responses. Next, we examined if 
the PGI2-IP signaling also works in the immunization of mice 
in CIA. Sensitization to CII and a consecutive anti-CII anti-
body production are important steps in the development of 
CIA. We collected sera from immunized WT and IP−/− mice 
on day 21 and measured anti-CII antibody titers. The levels 
of anti-CII antibody in the total IgG fraction and each of the 
IgG2a, IgG2b, and IgG1 subclasses were similar in WT and 
IP−/− mice (Fig. 1 D). These results demonstrate that the loss 
of IP does not impair anti-CII antibody production in CIA.

Histology of CIA in IP−/− mice
To evaluate arthritic lesions in WT and IP−/− mice histologi-
cally, we prepared sections of knee joints from WT and IP−/− 
mice on day 35 and stained them with hematoxylin and eosin 
(H&E) or toluidine blue (Fig. 2 A). The arthritic lesion in 

CIA is characterized by three parameters: cell infi ltration, sy-
novial lining hyperplasia, and tissue destruction. On day 35, 
joints of WT mice showed characteristic features of CIA in 
all three parameters: marked infi ltration of infl ammatory cells 
in the cavity, lining hyperplasia and invasive pannus forma-
tion, and bone and cartilage destruction. Compared with 
these fi ndings in WT mice, IP−/− mice showed markedly re-
duced infi ltration of infl ammatory cells, less lining hyperpla-
sia, and less destruction of bone and cartilage. When these 
parameters were graded from 0 to 3 (0, normal; 1, minimal; 
2, mild; 3, severe), the score of IP−/− mice in each parameter 
was signifi cantly lower than that of WT mice (Fig. 2 B). 
These results suggest that the PGI2-IP signaling acts in pro-
motion of joint infl ammation in CIA.

In CIA, anti-CII antibody produced makes an immune 
complex with collagen on the cartilage surface of the joint 
and triggers complement activation, an essential process lead-
ing to joint infl ammation in CIA (20). Large complement 
fragments such as C3b and C5b accumulate on the cartilage 
surface, and small complement fragments such as C3a and 
C5a promote infl ammatory cell infi ltration to the joint. Be-
cause the joints of IP−/− mice on day 35 showed markedly 
reduced infl ammation, we next examined whether the com-
plement activation had occurred on the cartilage surface in 
IP−/− mice. We examined deposition of C3b on the cartilage 
surface in the knee joints by immunohistochemistry. No C3b 
deposition was found on the cartilage surface of naive WT and 
IP−/− mice (Fig. 2 C, top left and top right, respectively). 

Figure 2. Histological analysis of arthritic lesions in IP−/− mice. 
(A) Representative H&E and toluidine blue sections of the knee joint of WT 
and IP−/− mice on day 35 of CIA. Top- and bottom-middle panels show 
higher magnifi cation views of areas indicated by white arrows in the top 
panels. Arrow in the left top-middle panel indicates infl ammatory cell in-
fi ltration. Arrows in the left bottom-middle panel indicate destructive 
pannus formation, and white arrowheads in the right bottom-middle 
panel indicate less proliferative synovium in IP−/− mice. Arrowheads in the 
left bottom panel indicate proteoglycan depletion in WT mice. Scale bars, 
500 μm (top  panels) and 100 μm (middle and bottom panels). (B) Patho-

histological scores in WT (black bars, n = 14) and IP−/− (white bars n = 
10) mice. Sections were blindly  examined for lining hyperplasia, infl amma-
tory cell infi ltration, and tissue destruction as described in Materials and 
methods. Results are expressed as the mean ± SEM from two indepen-
dent experiments. *, P < 0.05 versus WT mice. (C) Complement  deposition 
on the cartilage surface. Sections of the knee joint from control naive WT 
and IP−/− mice (top left and right, respectively) and WT and IP−/− mice on 
day 35 of CIA (bottom left and right, respectively) were stained for C3b 
deposition (brown). Arrows indicate the surface of cartilages. Data shown 
are representative of fi ve  independent experiments. Scale bar, 100 μm.
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The deposition of C3b was clearly detected in the WT joint 
on day 35 (Fig. 2 C, bottom left). The joint of IP−/− mice 
also showed C3b deposition to the extent of that in the WT 
joint (Fig. 2 C, bottom right). These results suggest that the 
loss of IP suppressed the progression of the infl ammatory 
process despite the equivalent extent of antibody production 
and complement activation.

Reduced concentrations of proinfl ammatory cytokines 
in the arthritic paws of IP−/− mice
The results described above indicate that the PGI2-IP signaling 
functions in progression or enhancement of the infl ammatory 
process in CIA. Because proinfl ammatory cytokines such as 
IL-1β, TNF-α, and IL-6 have been suggested to play impor-
tant roles in RA (2), we measured the concentrations of these 
cytokines in the paws of arthritic mice. Paws were collected on 
day 35 and homogenized. The homogenates were then centri-

fuged and the supernatants obtained were subjected to ELISA 
for IL-1β, TNF-α, and IL-6. The concentrations of IL-1β 
and IL-6 were signifi cantly lower in IP−/− mice than in WT 
mice (Fig. 3 A). The concentration of TNF-α was below the 
detection limit and could not be determined in both groups. 
To clarify whether the PGI2-IP signaling can directly regulate 
production of these cytokines within the infl ammatory joint, 
we next prepared arthritic cell suspension, a mixture of syno-
vial cells and various infl ammatory cells from the knee joints 
of arthritic WT mice on day 35. The eff ects of indomethacin 
and an IP agonist on IL-1β and IL-6 production by these cells 
were examined (Fig. 3 B). As the production of IL-1β by these 
cells was too low to detect by ELISA under the basal condi-
tion, we stimulated them with LPS. LPS induced signifi cant 
production of IL-1β.However, no signifi cant eff ects of either 
indomethacin or an IP agonist, cicaprost, were observed on 
the LPS-induced IL-1β production. On the other hand, the 
arthritic cell suspension produced a signifi cant amount of IL-6 
on a 24-h incubation. The addition of indomethacin signifi -
cantly suppressed IL-6 production, and the further addition of 
the IP agonist completely reversed the suppressive eff ect of in-
domethacin. These results indicate that although  endogenous 

Table I. Clusters of genes induced by IL-1β 
in synovial fi broblasts

Cluster (IL-1𝛃) (IL-1𝛃, indo.) (IL-1𝛃, indo., IP agonist)

1 increase 0
2 increase 19 decrease 18
3 no change 1
4 increase 138
5 increase 489 decrease 183 decrease 11
6 no change 34
7 increase 45
8 no change 287 decrease 44
9 no change 198

Genes whose expression levels are increased by IL-1β stimulation are clustered fi rst 
to three groups based on the effect of indomethacin (indo.) treatment (increase, 
decrease, and no change), and then further grouped into three based on the 
IP agonist (iloprost) actions.

Figure 3. Concentrations of proinfl ammatory cytokines in arthritic 
paws and production by arthritic cell suspension. (A) Cytokine con-
centrations in arthritic paws. WT (n = 10) and IP−/− (n = 10) mice were 
killed on day 35 of CIA, and paws were isolated. The concentrations of IL-
1β and IL-6 in the supernatants of the paw homogenates were measured 
by ELISA. The values were normalized with total protein concentration in 
the supernatant. Results are expressed as the mean ± SEM. *, P < 0.05 
versus WT mice. (B) Effects of indomethacin and cicaprost on production 
of IL-1β and IL-6 by arthritic cell suspension. Cells were incubated in the 
absence or presence of 1 μM indomethacin (indo.) with or without 1 μM 
cicaprost as indicated. LPS was added at 1 μg/ml in the experiment for 
IL-1β production. After 24 h, concentrations of IL-1β and IL-6 in the 
supernatants were measured by ELISA. Results are expressed as the 
mean ± SEM (n = 3). *, P < 0.05 versus the vehicle-treated group; 
#, P < 0.05 versus the indomethacin-treated group. Data shown are 
 representative of at least two experiments. (C) MCP-1 concentrations in 
arthritic paws on day 35 of CIA (WT, n = 10 and IP−/−, n = 10). The 
 concentration of MCP-1 was measured by ELISA as described above. 
 Results are expressed as the mean ± SEM. *, P < 0.05 versus WT mice.

Figure 4. Potentiation of IL-1𝛃–induced IL-6 production by IP 
stimulation in synovial fi broblasts. (A and B) Effects of cicaprost, an IP 
agonist, on IL-6 production in synovial fi broblasts stimulated by IL-1β 
(Α) or nonstimulated synovial fi broblasts (B). Synovial fi broblasts from 
unimmunized WT or IP−/− mice were stimulated either with vehicle or 
5 ng/ml IL-1β in the presence or absence of 1 μM indomethacin (indo.) 
and 1 μM cicaprost as indicated for 24 h. The supernatants were collected 
and IL-6 concentration was measured by ELISA. *, P < 0.05 for 
indicated comparison.
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PGs do not directly regulate IL-1β production in  arthritic 
cell suspension, they contribute to IL-6 production, and the 
PGI2-IP signaling can mediate this process. IL-1β and IL-6 
are released mainly by infl ammatory cells and synovial cells, 
respectively (1). To access whether a reduced IL-1β concen-
tration in IP−/− mice was due to impaired infl ammatory cell 
infi ltration caused by reduced chemokine production in IP−/− 
mice, we measured MCP-1 in the arthritic paws of WT and 
IP−/− mice in the same manner as described above. MCP-1 is 
one of the chemokines that promotes RA (7, 21). IP−/− mice 
showed a signifi cant reduction in the MCP-1 concentration 
compared with that of WT mice (Fig. 3 C).

Enhancement of IL-6 production in synovial fi broblasts 
by PGI2-IP signaling
The results described above suggest that the PGI2-IP signal-
ing facilitates the activation of synovium in infl ammatory 

joints. Synovial fi broblasts are a major cell population in the 
synovium and have recently been recognized as one of the 
pivotal eff ectors in the infl amed joint because of their ability 
to produce various infl ammatory mediators (1). To obtain 
mechanistic insights into the role of IP signaling in synovial 
activation, we prepared synovial fi broblasts from normal knee 
joints of WT and IP−/− mice and expanded them by culture. 
They were then activated by IL-1β for 24 h in the absence or 
presence of indomethacin and cicaprost, and the eff ects of 
these compounds on the IL-1β–induced IL-6 production 
were examined (Fig. 4 A). IL-1β stimulation signifi cantly in-
creased IL-6 production by synovial fi broblasts from both 
WT and IP−/− mice. However, the IL-6 production by the 
IP−/− cells was signifi cantly less than that by the WT fi bro-
blasts, indicating that PGI2 was endogenously formed by 
IL-1β stimulation and worked for IL-6 production. This sug-
gestion was supported by an experiment examining the  eff ects 

Table II. Classifi cation of genes whose expression level was potentiated by an IP agonist

Group Unigene code Gene symbol Gene profi les Vehicle vs.
Il-1𝛃

Log2(fold)

Il-1𝛃 vs.
Il-1𝛃+Indo
Log2(fold)

Il-1𝛃+Indo vs.
Il-1𝛃+Indo+IP 

agonist
Log2(fold)

Infl ammation Mm.35814 Il11 Interleukin 11 4.1 −3 2.3
 Mm.35692 Il1rl1 Interleukin 1 receptor–like 1 2.3 −1 0.3

Mm.896 Il1r1 Interleukin 1 receptor, type I 0.7 −0.7 0.9
Mm.14595 Csf2rb1 Colony stimulating factor 2 

 receptor, β1, low-affi nity
1.5 −0.6 1.3

Mm.4186 Pla2g4a Phospholipase A2, group IVA(cPLA2)
 (cytosolic, calcium-dependent)

1.1 −0.6 0.5

Mm.1401 Cxcr4 Chemokine (C-X-C motif) receptor 4 0.7 −1.1 1.3
Mm.157750 Cxcl7 Cheymokine (C-X-C motif) ligand 7 1.1 −0.8 1.2

Proliferation Mm.31540 Vegfa VEGF-A 1.8 −0.9 0.9
Mm.57094 Fgf2 FGF-2 2.4 −2.7 2
Mm.57177 Fgf7 FGF-7 0.9 −0.6 0.5
Mm.20424 Fgf18 FGF-18 2.6 −4 2
Mm.3879 Hif1a Hypoxia inducible factor 1, 

 α subunit
1 −0.8 0.7

Mm.27969 Uap1 UDP-N-acetylglucosamine 
 pyrophosphorylase 1

2.7 −3 3.2

Mm.2580 Sdc1 Syndecan 1 0.8 −0.6 1.8
Mm.4575 Cspg2 Chondroitin sulfate proteoglycan 2 0.8 −1 1.5
Mm.2542 Has1 Hyaluronan synthase1 2.2 −2.7 3.3
Mm.5148 Has2 Hyaluronan synthase 2 1.3 −1.6 1.8

Bone and tissue
 destruction

Mm.6426 Tnfsf11 (RANKL) Tumor necrosis factor (ligand) 
 superfamily, member 11

4.2 −3.1 2.9

Mm.1421 Adamts1 A disintegrin-like and metallo-
 protease (reprolysin type) with 
 thrombospondin type 1 motif, 1

2.4 −1.5 0.7

Mm.39718 Adamts5 A disintegrin-like and metallo -
 protease (reprolysin type) with 
 thrombospondin type 1 motif, 5

1.1 −0.9 0.3

Mm.15969 Adam8 A disintegrin and metalloprotease
 domain 8

0.6 −0.6 1.2

Mm.44170 Vdr Vitamin D receptor 1.5 −3.2 3.4

22 genes are chosen from cluster 4 of Table I and are classifi ed based on their functions. The change in expression level is indicated as a logarithm of the fold-change. 
Indo, indomethacin.
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of indomethacin and cicaprost in WT cells. Indomethacin 
signifi cantly inhibited IL-6 production in the WT fi broblasts, 
and the further addition of the IP agonist reversed the  inhibition 
by indomethacin. Cicaprost, on the other hand, had no eff ect 
on IL-6 production in the IP−/− cells. Notably, the IL-6 
 production by the indomethacin-treated WT fi broblasts was 
signifi cantly less than that by the IP−/− cells, and the  production 
of IL-6 by the IP−/− cells was further attenuated by the 
 addition of indomethatcin, suggesting that PGs other than 
PGI2 also worked in this process. It was also noted that the 
treatment of nonactivated WT synovial fi broblasts with 
cicaprost alone could increase IL-6 production to some 
 extent, and cicaprost further exerted synergistic eff ects with 
IL-1β (vehicle: 210.9 ± 32.5 pg/ml; cicaprost alone: 1,743.8 ± 
127.9 pg/ml; IL-1β alone: 7,858.2 ± 305 pg/ml; cicaprost 
and IL-1β: 19,179 ± 196.5 pg/ml; Fig. 4, A and B).

Elevated expression of genes associated with infl ammation, 
synovial proliferation, and bone destruction 
by PGI2-IP signaling
To evaluate the action of the PGI2-IP signaling in synovial fi -
broblasts in more detail, we next used the microarray analysis 
using an Aff ymetrix Mouse Genome 430A 2.0 GeneChip 
that contains �14,000 genes. Synovial fi broblasts were 
treated with either vehicle, IL-1β, IL-1β with indometha-
cin, or IL-1β with indomethacin plus an IP agonist (iloprost) 
for 6 h and used for analysis on the gene expression profi les 
(see Table S1, available at http://www.jem.org/cgi/content/
full/jem.20051310/DC1). We used Statistical Algorithm in 
the Aff ymetrix GeneChip Expression Analysis software and 
fi rst compared the expression profi le of synovial fi broblasts 

treated with vehicle and those treated with IL-1β. After ex-
clusion of expressed sequence tags and overlapped genes, we 
detected 489 genes, the expression of which were statisti-
cally increased by the IL-1β treatment. Of the 489 genes, 
183 were decreased in their expression by treatment with 
indomethacin, suggesting that endogenous PG(s) enhances 
the expression of these genes. Of these 183 genes, the ex-
pression of 138 was increased again by further addition of 
the IP agonist (Table I). In the 138 genes, we focused on 22, 
which are known or have been suggested to be involved in 
the pathogenesis of arthritis (Table II).

We classifi ed these 22 genes into three groups based on 
their involvement in infl ammation, synovial proliferation, or 
bone and tissue destruction. The fi rst group consisting of 
seven genes is related to infl ammation and includes those for 
IL-11 (22), IL-1 receptor, CSF receptor, CXC chemokine 
ligand 7 (23), CXC chemokine receptor 4 (24), and cytosolic 
phospholipase A2 (25). There were 10 genes related to the sy-
novial proliferation, i.e., FGF-2 (26, 27), FGF-7, FGF-18, 
vascular endothelial growth factor (VEGF; references 26 and 
28), and hypoxia inducible factor 1α, syndecan 1 (29), chon-
droitin sulfate proteoglycan 2 (29), hyaluronan synthase 1, hy-
aluronan synthase 2 (30), and UDP-N-acetylglucosamine 
pyrophosphorylase 1. Five genes were identifi ed as those re-
lated to bone and tissue destruction. They are genes for recep-
tor activator of NF-κB ligand (RANKL; references 31 and 
32), vitamin D receptor, a disintegrin and metalloprotease 8 
(33), a disintegrin and metalloprotease with thrombospondin 
motifs 1, and a disintegrin and metalloprotease with thrombo-
spondin motifs 5 (34). To confi rm and quantify the eff ects of 
the IP signaling on the expression of these genes, we  performed 

Figure 5. Real-time RT-PCR analysis of IL-11, VEGF, and RANKL 
mRNA in synovial fi broblasts and arthritic paws. (A) IL-11, VEGF, and 
RANKL mRNA in synovial fi broblasts. WT synovial fi broblasts were pre-
pared and stimulated as indicated. After 6 h of stimulation, the cells were 
harvested and total RNA was extracted for quantifi cation of IL-11, VEGF, 
and RANKL mRNA. The amount of each mRNA was normalized to that of 
GAPDH mRNA, and an arbitrary unit (a.u.) was defi ned with the value of 

the vehicle-treated synovial fi broblasts as 1. Results are expressed as the 
mean ± SEM. For the indicated comparison: *, P < 0.05; #, P < 0.05. Data 
shown are representative of at least three experiments. (B) Decreased 
 expression of IL-11, VEGF, and RANKL genes in the arthritic paws of IP−/− 
mice. The paws were obtained from WT (n = 8) and IP−/− (n = 8) mice 
on day 35 of CIA. Total RNA was prepared and used for quantifi cation 
of mRNA for the indicated genes as in A.
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real-time RT- PCR analysis on genes for IL-11, VEGF, and 
RANKL (Fig. 5 A). Consistent with the microarray analysis, 
the treatment with indomethacin signifi cantly decreased ex-
pression of these genes and the additional treatment with the 
IP agonist reversed this inhibition. To  examine a possibility 
that these actions of the IP signaling were secondary to IL-6 
production, we added exogenous IL-6 to synovial fi broblasts 
and examined its eff ects on the expressions of those genes. We 
found that the addition of IL-6 did not change the expression 
level of these genes (unpublished data), suggesting that expres-
sion of the above genes is regulated by the IP signaling inde-
pendent of IL-6. Next, we examined whether the absence of 
the IP signaling aff ects the expression of these genes in vivo. 
As expected, the expression of IL-11, VEGF, and RANKL 
were signifi cantly decreased in the arthritic paws of IP−/− 
mice compared with that of WT mice (Fig. 5 B). These results 
suggest that the PGI2-IP signaling promotes progression of 
CIA by enhancing the expression of IL-6 and other arthritis-
related genes in synovial fi broblasts.

Identifi cation of EP receptor subtypes working 
in the elicitation phase of CIA
We have thus clarifi ed the role of PGI2-IP signaling in the 
development of CIA. However, although the CIA score was 
signifi cantly suppressed by the loss of IP, there was still a small 
extent of infl ammation remaining in IP−/− mice. To exam-
ine if other PG signaling contributes to this remnant infl am-
mation, we treated IP−/− mice with indomethacin from day 
21. We found that administration of indomethacin abolished 
the arthritis in IP−/− mice almost completely (Fig. 6 A). 
These results suggest that PG signaling other than the PGI2-
IP pathway also works in progression of CIA. The attenua-
tion of IL-6 production by IP−/− synovial fi broblasts with 
indomethacin in vitro described above (Fig. 4 A) also sup-
ports this possibility. Because plenty of evidence supports the 
role of PGE2 in RA (14, 15), we suspected that PGE2 plays a 
role in this process and wanted to identify PGE receptor sub-
types involved. Therefore, we backcrossed mice defi cient in 
each of the four subtypes of the PGE receptor (EP1−/−, 
EP2−/−, EP3−/−, and EP4−/−) individually to the DBA/1J 
background for 10 generations. Because EP4−/− mice could 
not survive in this background because of the patent ductus 
arteriosus (35), we administered an EP4-selective antagonist 
(ONO-AE3-208) at a dose of 10 mg/kg/day to evaluate the 
role of the EP4 receptor in CIA. This dose of the drug was 
previously shown to be suffi  cient in suppressing EP4 func-
tions in vivo (19). When EP1−/−, EP2−/−, or EP3−/− 
DBA/1J mice were subjected to CIA, all of these strains of 
mice developed swelling and erythema in the paws compara-
ble to those in WT mice (Fig. 6 B). Moreover, the adminis-
tration of the EP4 antagonist during the elicitation phase 
elicited little eff ect on the arthritic symptoms of WT mice 
(Fig. 6 C). Thus, despite the reduced CIA responses in 
 mPGES-1−/− mice (15), loss or inhibition of a single EP sub-
type alone does not signifi cantly aff ect the progression of 
CIA, suggesting a redundancy among the EP subtypes. 

 Because the PGI2-IP pathway uses the cAMP generation as a 
major signaling pathway and both EP2 and EP4 share this 
signaling, we suspected that EP2 and EP4 work redundantly 
to mediate PGE2 action in CIA and either one of the two can 

Figure 6. Effect of disruption of EP1, EP2, and EP3 or treatment 
with an EP4 antagonist on arthritic infl ammation in CIA. (A) Time 
course of arthritic scores in WT mice treated with vehicle (closed circle, 
n = 7) or in IP−/− mice treated either with vehicle (○, n = 7) or indo-
methacin (4 mg/kg/day; □, n = 6) in CIA. Vehicle or indomethacin was 
administered from day 21. *, P < 0.05 between IP−/− mice treated with 
vehicle and IP−/− mice treated with indomethacin (two-way ANOVA). (B) 
Time course of arthritic scores in WT (●, n = 37), EP1−/− (○, n = 20), 
EP2−/− (△, n = 10), and EP3−/− (□, n = 8) mice in CIA. Results show the 
mean ± SEM. No signifi cant difference was detected in the arthritic score 
at each time point between WT mice and mice defi cient in each EP subtype 
(Student’s t test). (C) Time course of arthritic scores in WT mice treated 
either with vehicle (●, n = 10) or an EP4 antagonist (ONO-AE3-208, 
10 mg/kg/day; ○, n = 10) in CIA. Vehicle or the EP4 antagonist was admin-
istered from day 21. (D) Time course of arthritic scores in EP2−/− mice 
treated with vehicle (●, n = 5) or the EP4 antagonist (○, n = 5) in CIA. 
Vehicle or EP4 antagonist (10 mg/kg/day) was administered from day 21.
 *, P < 0.05 versus vehicle-treated mice. (E) Effects of the IP agonist 
(1 μM cicaprost), the EP1 agonist (1 μM ONO-DI-004), the EP2 agonist 
(1 μM butaprost), the EP3 agonist (1 μM AE248), and the EP4 agonist 
(1 μM ONO-AE1-329) on IL-6 production in synovial fi broblasts. 
Synovial fi broblasts were treated as indicated, and IL-6 production was 
measured as described above. Results are expressed as the mean ± SEM 
(n = 3). *, P < 0.05 for the indicated comparison. Data shown are 
representative of at least three experiments.
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compensate for the loss of the other. To test this hypothesis, 
we administered the EP4 antagonist to EP2−/− mice during 
the elicitation phase in CIA. Administration of the EP4 
 antagonist reduced the arthritic score signifi cantly compared 
with that found in the vehicle-treated control EP2−/− mice 
(Fig. 6 D). These results support our hypothesis that EP2 and 
EP4 works redundantly for elicitation of CIA. Consistently, 
when agonists selective to each of the EP subtypes were 
added to the synovial fi broblast culture to examine their 
 activity to enhance the IL-1β–stimulated IL-6 production, 
the compounds selective to EP2 and EP4, but not those to 
EP1 and EP3, potently enhanced the IL-6 production (Fig. 
6 E). The EP2 and EP4 agonists also share the activity to 
 enhance production of IL-11, VEGF, and RANKL in this in 
vitro culture system (unpublished data).

DISCUSSION
The importance of PGs in the pathogenesis of RA has long 
been recognized through the wide use of NSAIDs for RA 
treatment (36, 37). Indeed, a large amount of PGI2 and PGE2 
was detected in the synovial fl uid of arthritic joints, suggest-
ing the actions of these PGs in infl ammatory sites (13). How-
ever, how each PG, PGI2 in particular, works in RA remains 
largely unknown. To examine this issue, we used CIA as a 
mouse model for RA and subjected IP−/− mice in the 
DBA/1J background to this model. We have found that 
IP−/− mice exhibited signifi cantly reduced clinical and histo-
logical arthritic scores compared with control mice, demon-
strating the importance of PGI2-IP signaling in the pathogenesis 
of CIA. This is an interesting result because PGI2 has been 
considered as a mediator of acute infl ammation by causing 
vasodilation or enhancing vascular permeability, and less at-
tention has been paid to the contribution of PGI2 to chronic 
infl ammation. It has long been thought that PGE2 is the 
primary PG responsible for infl ammation in RA. Our re-
sults indicate, however, that PGI2 works as much as PGE2 
in the progression of CIA. IP−/− mice showed signifi cantly 
reduced arthritic scores in CIA despite the level of anti-CII 
titers comparable with WT mice and also exhibited reduced 
responses in CAIA, indicating that the PGI2-IP pathway 
works in the antibody-dependent eff ector mechanisms of 
joint infl ammation.

There are two arms of cell populations possibly mediating 
the IP action in the eff ector mechanisms: the bone marrow–
derived cell population, such as macrophages and neutrophils, 
and the mesenchymal cell population, such as synovial fi bro-
blasts. Here, we have focused on the action of IP in synovial 
fi broblasts. We have found that the IP signaling working 
with IL-1β enhances IL-6 production from activated syno-
vial fi broblasts. IL-6 has been suggested to exert many actions 
in the pathogenesis of RA, such as B cell maturation, synovial 
proliferation, and osteoclast formation (8, 38). IL-6−/− mice 
showed reduced arthritic lesions in CIA (39), and the admin-
istration of anti–IL-6 receptor monoclonal antibody to RA 
patients resulted in a signifi cant improvement of both clinical 
symptoms and laboratory fi ndings (40). Other than IL-6, 

PGI2-IP signaling induces a variety of arthritis-related genes, 
including IL-11, VEGF, FGF-2, and RANKL. IL-11 is a 
member of the IL-6 family and exerts proinfl ammatory  eff ects 
in an acute methylated BSA/IL-1–induced arthritis model 
(22). VEGF and FGF-2 stimulate angiogenesis, and the 
blockade of their signals results in reduced arthritis severity 
(27, 28). RANKL is essential for osteoclast formation and 
mediates bone destruction (31). These fi ndings strengthen 
our hypothesis that the IP-dependent activation of synovial 
fi broblasts plays a signifi cant role in the eff ector mechanisms 
of infl ammation in the joint. It should be mentioned that IP 
signaling can induce expression of these genes only in com-
bination with IL-1β, and the stimulation of IP alone induces 
a signifi cant but marginal eff ect. The requirement of such 
synergism with IL-1β well explains the lack of arthritic symp-
toms in patients treated with an IP agonist, such as iloprost as 
a vasodilator. The lack of IP signaling and consequent im-
pairment in synovial lining hyperplasia may aff ect the amount 
of chemokine production, such as MCP-1, from synovial fi -
broblasts and reduce the further infi ltration of infl ammatory 
cells. The signifi cantly lower concentration of IL-1β in the 
paws of arthritic IP−/− mice might be due to the impaired 
network of cytokine and chemokine signaling between syno-
vial fi broblasts and infl ammatory cells. Collectively, our cur-
rent fi ndings suggest that the PGI2-IP signaling in synovial 
fi broblasts works as an amplifi er of the infl ammatory processes 
in the joint through the induction of various arthritis-related 
genes. Whether and how the IP signaling in the bone mar-
row–derived cell population contributes to this process will be 
examined in bone marrow chimera in our future study.

Our study also points to the role of both PGE2 and PGI2 
in the progression of CIA. For example, although the CIA 
score was signifi cantly suppressed by the loss of IP, there was 
still a small extent of infl ammation remaining in IP−/− mice. 
Our analysis for EP signaling indicates that this remaining in-
fl ammation is mediated by PGE2 via EP2 and EP4. Using 
mice defi cient in the EP subtypes individually as well as the 
EP4-selective antagonist, we found that although loss or in-
hibition of a single EP does not aff ect the extent of CIA, si-
multaneous inhibition of EP2 and EP4 signifi cantly reduced 
the arthritic score in CIA. These results suggest that EP2 and 
EP4 redundantly mediate the PGE2 action in joint infl amma-
tion and that these PGE2 signaling pathways work together 
with the IP signaling to induce a full extent of CIA. It is 
quite likely that EP2 and EP4 also mediate infl ammation by 
 activating synovial fi broblasts and promoting expression of ar-
thritis-associated genes because these EP receptors share the 
cAMP signaling pathway with IP, and the agonists selective 
to EP2 or EP4 potently stimulate the expression of genes for 
IL-6, IL-11, RANKL, and VEGF in synovial fi broblasts in 
 vitro. We also observed that IP−/− mice showed a signifi cantly 
reduced arthritic score in CAIA. Involvement of EP4 in 
CAIA was reported previously (41, 42). Therefore, evidence 
now exists for a signifi cant role for both PGE2 and PGI2 in 
both models of arthritis. Which PG or PG receptor plays a 
predominant role in vivo may depend on the context of 
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arthritis, which can determine the species of the PG(s) pro-
duced in arthritic joints.

The fi ndings described above naturally have an impact on 
the strategy for the development of anti-RA drugs. Although 
NSAIDs have been widely used for RA patients, gastrointes-
tinal toxicity associated with the inhibition of the COX-1 
isoform limits their use. To circumvent this problem, selec-
tive COX-2 inhibitors have been introduced and rapidly 
gained popularity (43). However, one of the selective COX-2 
inhibitors, rofecoxib, has recently been withdrawn from clini-
cal use because a placebo-controlled trial revealed a signifi cant 
rise in the rate of cardiovascular accidents in rofecoxib users 
(44). A major cause for such accidents is proposed to be the in-
hibition of COX-2–dependent PGI2 production from endothe-
lial cells. Indeed, it was shown experimentally that selective 
inhibition of the PGI2-IP signaling led to the acceleration of 
atherosclerosis and thrombosis (16, 45). Therefore, this study 
suggests a possibility that both benefi cial and  adverse eff ects of 
COX-2 inhibitors in RA come at least in part from the same 
mechanism; i.e., inhibition of PGI2 synthesis. Given the clinical 
effi  cacy of COX-2 inhibitors in RA patients and the current 
belief that PGE2 is the major PG working in the pathogenesis of 
RA, several attempts are now in progress to develop selective 
inhibitors of mPGES, which is regulated similarly to COX-2 
and, hence, is believed to work pre ferentially in infl ammation. 
This study on CIA, however, suggests that PGI2 also works 
 signifi cantly in RA, providing a cautious note that mPGES 
 inhibitors may not be so  eff ective in RA as COX-2 inhibitors.

MATERIALS AND METHODS
Materials. Mice lacking the IP, EP1, EP2, EP3, and EP4 receptor individu-

ally were generated as described previously (16, 35, 46, 47) and backcrossed 

10 times to DBA/1JNcr (Japan Charles River). Mice were bred at the Insti-

tute of Laboratory Animals of Kyoto University on a 12-h light/dark cycle 

under specifi c pathogen-free conditions. All experimental procedures were 

approved by the Committee on Animal Research of Kyoto University Fac-

ulty of Medicine. An EP4 antagonist, ONO-AE3-208 (AE3-208), was pro-

vided by Ono Pharmaceutical Co. The structures, binding affi  nities, 

selectivities, and pharmacokinetic properties of AE3-208 have been de-

scribed (19). Indomethacin was purchased from Sigma-Aldrich.

CIA. CIA was induced in 5–6-wk-old male mice. Bovine CII (Cosmo-Bio) 

was emulsifi ed with CFA (Difco). Mice were immunized with the emulsion 

containing 100 μg CII by intradermal injection at the base of the tail on day 

0 and boosted with 100 μg bovine CII emulsifi ed with IFA (Difco) on day 

21. The extent of arthritis was evaluated by eye and scored according to the 

method as essentially described (48). In brief, the arthritic lesion of each paw 

was graded on a scale of 0–4: 0, no change; 0.5, swelling and erythema of 

one digit; 1, swelling and erythema of two or more digits or slight swelling 

of the ankle or wrist joint; 2, mild swelling and erythema of the ankle or 

wrist joint; 3, severe swelling and erythema of the entire paw; 4, severe 

swelling and erythema with deformity of the entire paw.

CAIA. Mice were injected i.p. with a mixture of anti-CII monoclonal anti-

bodies (2 mg/500 μl/mouse; Chondrex) on day 0, and 3 d later, LPS (50 μg/

100̣ μl/body; Escherichia coli. 0111:B4; Chondrex) was injected i.p. Arthritis 

was scored as described for CIA.

Histological examination. Hind paws were fi xed in 10% neutral-buff ered 

formalin, decalcifi ed in 10% EDTA in PBS, and embedded in paraffi  n. 

 Sections of 7-μm thickness of the knee joint were stained with either H&E 

or toluidine blue at pH 4.5. Two observers blinded to the genotypes of the 

preparations examined the sections and scored them. Scoring was based on 

the degree of lining hyperplasia, infl ammatory cell infi ltration in the joint 

cavity, and tissue destruction on a scale of 0–3 (0, within normal limits; 1, 

minimal; 2, mild; 3, severe) essentially as described previously (25). As for 

tissue destruction, proteoglycan depletion, cartilage destruction, and bone 

destruction were scored separately, and the average of the scores of the three 

parameters was used to represent tissue destruction.

To examine complement deposition on the bone surface, the decalci-

fi ed hind paw preparation was soaked with 7.5% polyvinyl pyrrolidone in 

PBS and frozen at −80°C. 10-μm thick sections of the knee joint treated 

with Peroxo-Block (Zymed Laboratories) were incubated with rabbit anti–

mouse C3 antibody (Hycult Biotechnology) in PBS with 10% goat serum 

(Sigma-Aldrich) at 4°C overnight, and then with horseradish peroxidase–

conjugated polyclonal goat anti–rabbit IgG antibody (DakoCytomation) at 

room temperature for 2 h. The color was developed with diaminobenzidine 

tetrahydrochloride (Wako).

ELISA for anti-CII antibodies. A 96-well plate for ELISA (Sumitomo 

Bakelite) was coated with 5 μg/ml bovine CII in PBS overnight at 4°C.  After 

nonspecifi c binding was blocked with 1% BSA (Sigma-Aldrich) in PBS for 

2 h at room temperature, the diluted serum was added and incubated overnight 

at 4°C. After washing with 0.05% Tween 20 in PBS, either goat anti–mouse 

IgG, IgG1, IgG2a, or IgG2b antibody conjugated with alkaline phosphatase 

(SouthernBiotech) was added and incubated for 1 h at room temperature. 

The wells were washed and p-nitro-phenyl phosphate (Sigma-Aldrich) was 

added as a substrate. The color developed was determined by absorbance at 

405 nm. Standard curves (in arbitrary units) for anti-CII IgGs were  constructed 

from the pooled serum of a DBA/1J mouse with a high score of CIA. The 

 titer of the standard serum was defi ned as 10,000 units/ml.

Isolation and culture of synovial fi broblasts. Synovial fi broblasts were 

isolated and cultured essentially as described previously (49). In brief, the 

synovium of the knee joint from unimmunized control mice was dissected 

and then digested with 1 mg/ml collagenase A (Roche Diagnostics) in se-

rum-free RPMI 1640 medium at 37°C for 2 h. The tissue digests were sus-

pended and passed through nylon mesh. Dissociated cells were washed three 

times in RPMI 1640 medium containing 50 μM 2-mercaptoehtanol, 5 mM 

sodium pyruvate, and 10% heat-inactivated FCS, and cultured. After over-

night culture, nonadherent cells were removed. At confl uence, cells were 

trypsinized, divided into three, and replated. The passage was repeated three 

to four times before use.

Synovial fi broblasts were plated at a density of 2 × 104 cells/well in a 

96-well plate in RPMI 1640 medium with 1% FCS and cultured with or 

without mouse rIL-1β (R&D Systems). Indomethacin (Sigma-Aldrich) and 

either cicaprost, iloprost (Cayman), ONO-DI-004, butaprost (Cayman), 

ONO-AE-248, or ONO-AE1-329 was further added at the indicated con-

centration either alone or in combination. The ONO-DI-004, ONO-AE-

248, and ONO-AE1-329 were supplied by ONO Pharmaceutical. The 

ligand-binding specifi cities of these compounds for each PGE receptor sub-

type have been described (14). Supernatants were collected after 24 h of 

 incubation. For RNA extraction, cells were plated at a concentration of 

106 cells/dish in a 60-mm dish. Cells were isolated after 6 h. For some ex-

periments, 10 ng/ml IL-6 (Calbiochem) was added instead of IL-1β.

Arthritic cell suspension was also prepared from the knee joints from 

mice on day 35 of CIA in the same way as described for synovial fi broblasts. 

The arthritic cell suspension was used without passage. The cells were plated 

at a concentration of 2 × 104 cells/well in a 96-well plate, and supernatants 

were collected after 24 h of incubation. For IL-1β measurement, 1 μg/ml 

LPS (E. coli S16B5; Sigma-Aldrich) was added.

Cytokine assays. The amount of IL-6, IL-1β, and TNF-α in culture su-

pernatants and tissue homogenates was measured with ELISA kits (Endo-

gen). The amount of MCP-1 in tissue homogenates was measured with 

ELISA kits (Biosource). For assays of cytokines in arthritic paws, samples 

were prepared as described previously (50).
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DNA microarray analysis. Total RNA was prepared from synovial fi bro-

blasts by using an RNeasy Mini kit (QIAGEN) and subjected to microarray 

analysis using a Mouse Genome 430A 2.0 Array (Aff ymetrix). Data were an-

alyzed by Statistical Algorithm with the Aff ymetrix GeneChip Expression 

Analysis software (Microarray Suite 5.0). All microarray data are deposited in 

the Gene Expression Omnibus (GSE2676).

Quantitative real-time RT-PCR. Total RNA was obtained from ar-

thritic paws using TRIzol reagent (Invitrogen). Complementary DNA was 

synthesized using Superscript II (Invitrogen). The amount of each mRNA 

for RANKL, IL-11, VEGF, and GAPDH was quantifi ed by real-time RT-

PCR using LightCycler 2.0 (Roche Diagnostics). The primer sequences 

RANKL, VEGF, and GAPDH were described previously (51–53). Primers 

used for IL-11 were 5′-G A C T C T G G A G C C A G A G C T G -3′ (forward) and 

5′-G G G A T C A C A G G T T G G T C T G -3′ (reverse). Data were analyzed by 

LightCycler Software Version 4.0.

Statistics. Data are presented as the mean ± SEM. The comparison of two 

groups was analyzed using Student’s unpaired two-tailed t test or the Mann-

Whitney U test. For comparison of more than two groups, one-way 

ANOVA was performed fi rst, and either Dunnett’s or Tukey’s test was used 

to evaluate pairwise group diff erence. Two-way ANOVA was performed 

for comparison including two factors. A p-value of <0.05 was considered 

statistically signifi cant. The analyses were performed with the use of PRISM 

4.0 software (GraphPad).

Online supplemental material. Table S1 shows the number of genes in 

each cluster of microarray analysis and is available at http://www.jem.org/

cgi/content/full/jem.20051310/DC1.
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