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Abstract. Since the discovery of polymerase chain reaction 
(PCR) in 1985, several methods have been developed to 
achieve nucleic acid amplification, and are currently used in 
various fields including clinical diagnosis and life science 
research. Thus, a wealth of information has accumulated 
regarding nucleic acid‑related enzymes. In this review, some 
nucleic acid‑related enzymes were selected and the recent 
advances in their modification along with their application to 
nucleic acid amplification were described. The discussion also 
focused on optimization of the corresponding reaction condi-
tions. Using newly developed enzymes under well‑optimized 
reaction conditions, the sensitivity, specificity, and fidelity of 
nucleic acid tests can be improved successfully.
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1. Introduction

Nucleic acid amplification tests are core technologies of clinical 
diagnosis. In pulmonary tuberculosis, such testing is capable 
of identifying Mycobacterium species in clinical respiratory 
samples more rapidly and accurately than sputum specimen 
examinations and culture‑based methods. This advantage is 
key to appropriate treatment, prevention, and control of trans-
mission of tuberculosis. In HIV detection, the nucleic acid 
amplification test is more sensitive and quantitative than other 
methods based on HIV‑1‑specific antibody or viral antigens, 
enabling the detection of HIV‑1 at the initial stage of infection 
and the monitoring of disease progression (1,2).

Various nucleic acid amplification technologies have been 
devised, but the most widely used is PCR. In basic research, 
most researchers use PCR primarily for amplification, 
possibly because primer design is convenient and the enzymes 
are available at a reasonable price (3). In clinical diagnosis, 
on the other hand, isothermal nucleic acid amplification 
methods such as nucleic acid sequence‑based amplification 
(NASBA) (4), strand displacement amplification (SDA) (5), 
rolling circle amplification (RCA)  (6), helicase‑dependent 
isothermal DNA amplification (HAD) (7), and loop‑mediated 
isothermal amplification (LAMP)  (8) are also used. The 
advantage of isothermal amplifications over PCR is that 
they do not require a complex device such as thermal cycler, 
improving throughput in situations when large numbers of 
clinical samples must be processed, as well as facilitating 
point‑of‑care diagnosis (4‑9).

The performance of a nucleic acid amplification test 
depends largely on the performance of the enzymes 
involved. Thermostable DNA polymerase, first identified in 
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Thermus aquaticus (Taq) in 1976 (10), has become widely 
used since the discovery of PCR. Concerning performances 
of Taq polymerase, it was initially reported that the activity 
decreased to 50% at incubation at 95˚C for 1.6 h; the rate of 
processing was 60‑150 nucleotides/sec; and the error rate was 
0.38‑1.32x104 errors/base (11). Since then, the performances 
of Taq polymerase were improved by genetic engineering. 
For example, the mutation of Phe667 into Tyr increased its 
efficiency of incorporation with ddNTP by 103‑fold (12), and 
fusion of the helix‑hairpin‑helix motifs of DNA topoisom-
erase V to Taq polymerase increased the enzyme's stability 
and processivity (13). The performances of DNA polymerases 
from the hyperthermophilic archaeon Thermococcus koda‑
karensis (KOD) or Pyrococcus furiosus (Pfu) and that from 
thermophilic bacteria Thermus thermophilus (Tth) have also 
been improved by genetic engineering. Today, they are widely 
used in PCR along with Taq polymerase.

In addition to altering the enzymes, it is also important to 
optimize the reaction conditions. In the amplification tech-
niques using multiple enzymes, such as RT‑PCR and NASBA, 
this process is more complicated because each enzyme has its 
own optimal condition. Another concern is lowering the risk 
of contamination. In this regard, it is preferable to perform 
one‑tube reactions with real‑time monitoring (14).

The aim of the review is to outline recent advances in 
nucleic acid amplification technologies. The foci of the study 
are, reverse transcriptase as an example of an enzyme that has 
been markedly improved by genetic engineering; recombina-
tion polymerase amplification, an isothermal amplification 
which has attracted a great deal of recent attention; and focus 
helicase, an enzyme which increases specificity and decreases 
noise in the amplification. Next‑generation sequencing (NGS) 
was used to evaluate the fidelity of cDNA synthesis and the 
statistical method to optimize the reaction conditions.

2. Thermostabilization of reverse transcriptase

Reverse transcriptase (RT) has RNA‑ and DNA‑dependent 
DNA polymerase and ribonuclease (RNase) H activities. It 
is responsible for RNA viral genome replication. Moloney 
murine leukemia virus (MMLV) RT and avian myeloblastosis 
virus (AMV) RT are widely used in cDNA synthesis  (15) 
(Table I). MMLV RT is a 75‑kDa monomer, and AMV RT 
is a heterodimer consisting of an α subunit (63‑kDa) and 
a β subunit (95‑kDa) (16,17). The result of the homology search 
performed using the search program DNA Data Bank of Japan 
(DDBJ; https://www.ddbj.nig.ac.jp/index‑e.html) CLUSTALW 
and the crystal stuructures of MMLV RT is shown in Fig. 1. 
MMLV RT and the α subunit of AMV RT comprise the 
fingers, palm, thumb, connection, and RNase H domains. The 
β subunit of AMV RT includes these five domains along with 
the C‑terminal integrase domain. MMLV RT and AMV RT 
have two active sites. The active site for the DNA polymerase 
reaction is in the fingers/palm/thumb domain, and that for the 
RNase H reaction is in the RNase H domain.

Thermostability of DNA polymerases is important for 
their wide‑range practical use. For cDNA synthesis, an 
elevated reaction temperature is highly desirable because it 
reduces RNA secondary structure and nonspecific binding 
of the primer. However, RT is thermolabile. The initial 

activities of MMLV RT and AMV RT are reduced by 50% 
at 44 and 47˚C, respectively, during a 10‑min incubation (18). 
Thus, improving the thermostability of RT has been an impor-
tant subject. The thermostabilities of MMLV RT (19‑21) and 
AMV RT (20) were first improved by eliminating the RNase H 
activity. The thermostability of MMLV RT was improved 
by introducing the triple mutation E286R/E302K/L435R or 
E286R/E302K/L435R/D524A in which the negatively charged 
(Glu286 and Glu302) and hydrophobic (Leu435) residues that 
were thought to interact with a template‑primer were replaced 
with positively charged residues, and the catalytic residue 
responsible for RNase H activity Asp524 was replaced with 
Ala (22). The thermostability of MMLV RT was also improved 
by the mutation of Val433 present on the molecular surface 
to Arg (23). Finally, a highly thermostable MMLV variant 
A32V/L72R/E286R/E302K/W388R/L435R was generated by 
combining the triple mutation E286R/E302K/L435R with the 
following mutations: The mutation of the internal residue, Ala32 
to Val in order to stabilize the hydrophobic core, the mutation 
of the hydrophobic surface residue, Leu72 to Arg, and the muta-
tion of Trp388 which is close to the negatively charged residues 
to Arg in order to introduce a salt bridge (24). In a random 
mutation assay followed by a combination of stabilizing muta-
tions, E69K/E302R/W313F/L435G/N454K was generated 
using a filter assay (25), L139P/D200N/T330P/L603W/E607K 
was generated using emulsion PCR  (26), and D200C was 
obtained by screening an amino acid scanning library (27). 
The amino acid residues mutated for thermostabilization are 
widespread throughout the molecule (Fig. 1B).

Recombinant MMLV RT is well expressed in the soluble 
fractions in Escherichia coli, from which sufficient amounts 
of active enzymes are purified. On the contrary, AMV RT 
has been barely expressed in the soluble fractions of E. coli. 
Instead, the active AMV RT α subunit was expressed in insect 
cells (28), and its thermostability was improved by introducing 
the triple mutation V238R/L388R/D450A, corresponding to 
E286R/W388R/D524A in MMLV RT (29). Notably, recombi-
nant AMV RT has been successfully expressed in the soluble 
fractions in E. coli since then, and is now commercially available.

cDNA synthesis, as with PCR, is a key technology both in 
clinical diagnosis and basic research. However, cDNA synthesis 
is less sensitive than PCR. To circumvent this problem, a cDNA 
synthesis method using three enzymes, the thermostable 
MMLV RT quadruple variant E286R/E302K/W388R/D524A 
(described above), the genetically engineered family A DNA 
polymerase variant with RT activity from the hyperthermo-
phile Thermotoga petrophila K4 (K4polL329A) which will be 
described in the next section and the DNA/RNA helicase from 
a hyperthermophilic archaeon Thermococcus kodakarensis 
(Tk‑EshA), was developed (Table I). K4polL329A and Tk‑EshA 
will be described later. In amplification techniques using 
multiple enzymes such as NASBA (1,30), optimization is more 
complicated than when using a single enzyme as in the case 
of PCR. In this case, statistical methods such as Taguchi's 
method have been successfully used for optimization  (31) 
(Fig. 2). The merit of statistical methods is that many factors 
can be optimized at the same time with the minimum number 
of experiments.

Stabilization of RT is desirable for cDNA synthesis. 
Improvement in the thermostability of MMLV RT and AMV 
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RT is an important subject. Characterization of about 700 vari-
ants of phage T4 lysozyme revealed that there can be various 
kinds of effective stabilizing methods such as disulfide bridge, 
salt‑bridge interaction, metal binding, and hydrophobic stabi-
lization (32). We consider that the thermostabilities of MMLV 
RT and AMV RT may be further improved by combining 
stabilizing mutations.

3. Creation of the reverse transcriptase activity in 
thermostable DNA polymerase

The DNA‑dependent DNA polymerase distinguishes suitable 
substrates DNA and dNTPs from unsuitable RNA and rNTPs. 
The exact mechanisms of this distinction are unknown, but 
two mechanisms have been proposed. One mechanism is for 
rNTP/dNTP distinction. In Klenow polymerase, the bulky 
2' hydroxyl group of ribose interferes with the substrate‑binding 
region of Klenow polymerase: Glu710 sterically blocks the 
2' hydroxyl group of rNTP. As a result, the enzyme accepts 
dNTP but excludes rNTP (33). A similar hindrance effect was 
reported in archaeon Thermococcus litoralis family B DNA 
polymerase: Tyr412 exludes rNTP by acting as a steric gate for 
the 2' hydroxyl group of ribose (34). The other mechanism is 
for template distinction. Archaeal family B DNA polymerase 
excludes uracil‑containing templates, and DNA synthesis is 
prematurely arrested at the position where uracil is contained. 
By contrast, bacterial DNA polymerase I ignores the absence 
of the 5' methyl group in uracil, and accepts a uracil‑containing 
template. Therefore, the 2' hydroxyl group of ribose is consid-
ered a key factor for the distinction of RNA/DNA for bacterial 
DNA‑dependent DNA polymerase  (35). A similar effect 

was reported in Klenow polymerase: Asn420 and Tyr423 
in the 3'‑5' exonuclease domain play a role in RNA exlusion 
by interfering with the 2' hydroxyl group of the template 
molecule (36).

To generate thermostable RT using DNA polymerases 
from thermophilic bacteria and archaea, several approaches have 
been taken (37‑42). Some bacterial DNA polymerases (Pol I) 
show reverse transcriptase activity in the presence of Mn2+. The 
Tth DNA polymerase from Thermus thermophilus also shows 
the RT activity (37,38). It lacks a 3'‑5' exonuclease domain, 
which contributes to fidelity in PCR. DNA polymerase I from 
the hyperthermophilic bacterium, Thermotoga sp, possesses 
a 3'‑5' exonuclease domain. A study on chimeric DNA poly-
merases from Thermotoga sp and Thermus sp showed that 
chimeric DNA polymerases with RT activity possessed attenu-
ated 3'‑5' exonuclease activity (42). Mutations were introduced 
into another DNA polymerase from Thermotoga petrophila 
K4 (K4PolI) to allow K4PolI to accept an RNA. Among the 
variants constructed, T326A, L329A, Q384A, F388A, M408A, 
and Y438A exhibited RT activity while their 3'‑5' exonuclease 
activites were reduced. By contrast, K4PolN422A and K4PolF451A 
did not exhibit RT activity but possessed full 3'‑5' exonuclease 
activity (43). These results suggest that there is a correlation 
between the gain of RT activity and the loss of 3'‑5' exonuclease 
activity. On the other hand, introduction of random mutations 
into Taq polymerase showed that mutations in domains other 
than the 3'‑5' exonuclease domain generated the mutants with 
RT activity (39). Further structural studies are needed to exlopre 
the mechnasim connecting RT and 3'‑5' exonuclease activities.

Archaeal family B DNA polymerases, such as those from 
Pyrococcus furiosus (44) or Thermococcus kodakarensis (45), 

Table I. Enzymes used for nucleic acid amplification.

Enzyme	 Application	 (Refs.)

Reverse transcriptase (RT)
  AMV RT	 cDNA synthesis, NASBA	 (15,18,20,28,59)
  MMLV RT	 cDNA synthesis	 (16‑27,29,59,60)
DNA polymerase
  Taq polymerase	 PCR	 (10‑13)
  Tth polymerase	 PCR, cDNA synthesis	 (37,38)
  K4polL329A

a	 PCR, cDNA synthesis 	 (43,48)
  RTXb	 PCR, cDNA synthesis	 (47,48)
  Bacillus subtilis polymerase 	 RPA	 (70)
DNA helicase
  Tk‑EshA	 PCR, cDNA synthesis	 (48,54,56)
  Tk‑Upf1	 PCR	 (56)
Single‑strand DNA‑binding protein
  T4 gp32	 RPA	 (68,70)
Recombinase
  T4 uvsY	 RPA	 (69,70)
  T4 uvsX	 RPA	 (70)

aL329A variant of DNA polymerase from Thermotoga  petrophila K4, b16‑tuple variant of KOD DNA polymerase. KOD, Thermococcus 
kodakarensis; RPA, recombinase polymerase amplification.
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possess a higher fidelity than thermophilic bacteria enzymes, 
such as those from T. aquaticus and T. thermophilus. However, 
as mentioned above, archaeal family B DNA polymerase 
excludes a template containing uracil, which is different 
from bacterial DNA polymerase (46). Family B DNA poly-
merase recognizes DNA more precisely than bacterial DNA 
polymerase I. Modified family B DNA polymerases with a 
Pol ζ fingers domain that displayed RT activity were devel-
oped by the mutation experiment into the 3'‑5' exonuclease 
domain of hybrid archaeal family B DNA polymerases with 
a Pol ζ fingers domain (41). Recently, Ellefson et al gener-
ated a 16‑tuple variant of KOD DNA polymerase known as 
RTX with RT activity from the hyperthermophilic archaeon, 
Thermococcus  kodakarensis, by a directed evolution 
method (47). In this method, emulsion PCR was carried out 
with primers containing various numbers of ribonucleotides 
so that only DNA polymerase with RT activity enabled 
self‑replication  (47). These results indicate that family  B 

DNA polymerases can be used as a source to create reverse 
transcriptase.

DNA polymerases with RT activity enable one‑step RT‑PCR 
without retroviral RT. The merit of one‑step RT‑PCR over 
two‑step RT‑PCR is that multiple openings of reaction tubes 
and reagent delivery are not necessary, leading to a decrease 
in DNA contamination risk. Furthermore, artificially created 
reverse transcriptase K4polL329A and RTX are applicable for 
high sensitive RNA detection by one‑step RT‑PCR combining 
with the genetically engineered MMLV‑RT and thermostable 
DNA/RNA helicase (48). COVID‑19 RNA was also detected 
from clinical samples by using the system (data not shown). 
Details of the helicase role are mentioned below.

4. Use of helicase to increase specificity

DNA/RNA helicases exhibit nucleic acid binding, ATP hydro-
lysis, translocation, and unwinding of nucleic acid duplex by 

Figure 1. (A) Domain structures of MMLV RT and AMV RT. (B) A sequence alignment of MMLV RT and AMV RT. A homology search was performed 
using the search program DNA Data Bank of Japan (DDBJ) CLUSTALW and was revised based on the data of X‑ray crystallographic analysis of MMLV RT. 
Asterisks show homologous amino acid residues. The amino acid residues to be mutated for thermostabilization are marked in bold and are underlined. Leu603 
and Glu607 in ref. 26 correspond to Leu593 and Glu597, respectively.
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eliminating hydrogen bonds from the base‑pairing between 
DNA/DNA, DNA/RNA, and RNA/RNA hybrids from the 
3' or 5' unpaired end utilizing the energy generated upon 
ATP hydrolysis. Therefore, helicases are expected to unwind 
the secondary structured template and partially annealed 
primer/template duplexes in DNA and RNA synthesis. 
DNA/RNA helicases are classified into several superfami-
lies (SFs) according to their amino acid sequences (49). The 
SF1 and SF2 helicases are large and diverse groups, sharing 
catalytic cores with almost identical folds and extensive struc-
tural similarities. UvrD, an SF1 DNA helicase that unwinds 
blunt‑end substrates as well as nicked circular DNA, was used 
in an isothermal DNA amplification at low temperature, called 
helicase‑dependent amplification (50‑53). In this amplification, 
a mesophilic DNA polymerase is applicable.

Unexpected DNAs sometimes get amplified due to 
primer mis‑annealing during PCR. In order to efficiently 
reduce such mis‑amplified products, an approach using heli-
case was devised  (54). Tk‑EshA, a euryarchaeota‑specific 
SF2 helicase EshA from the hyperthermophilic archaeon 
Thermococcus kodakarensis, was first used for this purpose. 
In the presence of RNA, Tk‑EshA exhibited maximal ATPase 
activity at 80˚C. Tk‑EshA unwinds forked and 3' overhung 

DNAs (54). Tk‑EshA also possesses euryarchaeal termina-
tion activity (Eta), which disrupts the transcription elongation 
complex (55). We hypothesized that Tk‑EshA unwinds the 
structured template and peels off mis‑annealed primers 
during PCR. To address this issue, PCR was performed using 
various DNAs as a substrate. When 16S rDNA was used, 
several mis‑amplified products (noise DNAs) were detected 
in the absence of Tk‑EshA. However, they were eliminated 
in the presence of Tk‑EshA. These effects of Tk‑EshA were 
confirmed whether Taq DNA polymerase (a family A DNA 
polymerase, PolI type) or KOD DNA polymerase (a family B 
DNA polymerase, α type) was used. When toxA gene from 
Pseudomonas aeruginosa DNA, which possesses high GC 
content (69%), was used, mis‑amplified bands were also 
eliminated by the addition of Tk‑EshA, suggesting that 
Tk‑EshA was more effective than increasing the annealing 
temperature to reduce mis‑amplified DNAs in the toxA 
amplification (54). The action of Tk‑EshA is shown in Fig. 3. 
Another type (superfamily 1B) of helicase, Tk‑Upf1 (TK0178) 
from T.  kodakarensis, was examined for the effects on 
conventional PCR and digital PCR and compared with those 
of Tk‑EshA. It is important to eliminate nonspecific amplifica-
tion for identification of SNPs. Of four double‑stranded DNA 
substrates, forked, 5' overhung, 3' overhung, and blunt‑ended 
DNAs, the unwinding activity of Tk‑Upf1 was the highest 
towards 5' overhung DNAs (56). The concentration of Tk‑Upf1 
required for noise DNA elimination was 10‑fold lower than 
that of Tk‑EshA. The addition of Tk‑Upf1 also eliminated 
noise DNAs derived from the misannealed primer when a 5' or 
3' overhung misannealed primer was included as a competitive 
primer along with specific primers. In digital PCR, Tk‑EshA 
and Tk‑Upf1 functioned as signal enhancers: Tk‑EshA or 
Tk‑Upf1 increased the fluorescent intensities, improving 
separation between the common and risk allele clusters. The 
amount of Tk‑Upf1 required to improve the performance of 
digital PCR was smaller than that of Tk‑EshA.

5. Fidelity evaluation with NGS

Fidelity indicates the performance in the incorporation of 
correct nucleotides. Various methods have been applied to 
analyze DNA polymerase fidelity such as misincorpora-
tion (57), misextension (57), primer extension (58), and M13 
lacZ mutation (59) assays. In a misincorporation assay, the 
reaction rates to incorporate correct and incorrect nucleotides 
are compared, while in a misextension assay, the reaction rates 
for extension from the mispaired end (i.e., A:G) and from the 
paired end (i.e., A:T) are compared (57). In these two assays, 
the reactions are carried out under single‑turnover conditions. 
In a primer extension assay, the reaction in the absence of 
one dNTP is compared with that in the presence of all four 
dNTPs (58). In the M13 lacZ mutation assay, the error rates 
are calculated from the mutation frequency, which is deter-
mined as the ratio of mutant plaques to all plaques (59). The 
error rates of MMLV RT and AMV RT determined by this 
assay were 3.3‑5.9x10‑4 errors/base and that of HIV‑1 RT 
was 5.9x10‑3 errors/base (59). The M13 lacZ mutation assay 
has been the only method used to determine the error rate. 
However, it has some issues. Silent mutation affects the calcu-
lation of error rates. Identification of plaque color depends on 

Figure 2. Application of Taguchi's method to optimize the reaction condi-
tions with multiple enzymes. Schematic illustration of the cycle to optimize 
the reaction conditions is shown.
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the individual. In addition, the reaction is DNA‑dependent 
DNA synthesis, but not RNA‑dependent DNA synthesis, even 
for RT.

In NGS, hundreds of million sequences are obtained in one 
NGS run. NGS has been widely used to identify rare muta-
tions, misincorporations, and base modifications introduced 
in genomic DNA (60,61). One of the problems of NGS is that 
a number of errors are introduced. To address this issue, a 
method to identify ultra‑rare mutations in the genomic DNA 
using NGS was devised (62), which uses adaptors containing 
two tags of 12 randomized bases for the ligation of DNA frag-
ments containing the sequences to be analyzed. All sequence 
reads are grouped based on tag sequences and orientations. By 
analyzing whether all sequence reads in the same group had 
the same mutation or not, each mutation that was observed via 
NGS indicated whether the error was already present in the 
genome or was incorporated by PCR or NGS (62).

We used NGS to determine the error rate of cDNA 
synthesis (63,64). As shown in Fig. 4, cDNA was synthesized 
from a standard RNA with a primer possessing a tag of 14 
randomized bases. All sequence reads are grouped based on 
tag sequences. By analyzing all sequence reads in the same 
group, each mutation revealed whether the error was incor-
porated by cDNA synthesis or not. The error rate obtained 
using this method of MMLV RT was 1.0x10‑4 errors/base 
and that with HIV‑1 RT was 2.6x10‑4 errors/base (63), which 
was approximately 20% of those reported using the M13 lacZ 
mutation assay (59). Notably, unlike the M13 lacZ mutation 
assay, the NGS‑based mutation assay reveals the mutation 
species and the frequency at each nucleotide position (63). 
This method may be effective in the assessment of the fidelity 
of various RTs with different reaction conditions: We reported 
that high concentrations of dNTP, MgCl2, and Mn(OCOCH3)2 

decreased the fidelity, and these effects were obvious in 
reactions using HIV‑1 RT (64).

Fidelity of cDNA synthesis is important in clinical diag-
nosis and in life science research. The issue raised is how 
fidelity of RT and DNA polymerase can be ameliorated. One 
strategy is to optimize the concentrations of the enzyme, salts, 
and dNTP in the reaction solution. Another strategy is based 
on the studies conducted on HIV‑1 RT (65‑67). The fidelity of 
HIV‑1 RT is lower than that of MMLV RT and AMV RT. One of 
the consequences of low fidelity of HIV‑1 RT is the emergence 
of drug‑resistant HIV‑1 RT variants, such as K65R, R78A, and 
V75I. Interestingly, the mutations that confer drug resitance to 
these variants increase the fidelity of HIV‑1 RT (65‑67). This 
suggests that introduction of the corresponding mutations in 
MMLV RT or AMV RT may increase the fidelity, although 
such evidence has not yet been reported.

6. Use of recombinase and single‑strand binding protein 
for isothermal DNA amplification

Recombinase polymerase amplification (RPA) is an 
isothermal reaction that is conducted at a temperature 
between 37 and 42˚C. RPA specifically amplifies a target DNA 
sequence with a recombinase, a single‑stranded DNA‑binding 
protein (SSB), and a strand‑displacing polymerase (68). SSB 
binds to the primers and prevents oligonucleotide primers 
from forming secondary structures. Recombinase binds to 
the primers in the presence of ATP and with the assistance of 
the loading factor, T4 UvsY, which was originally identified 
as the T4 recombination mediator protein (69). The primers 
of the resulting complex bind to the homologous sequences 
of the DNA template using the ATP hydrolyzing activity of 
recombinase. In addition, SSB binds to the dispatched strand, 

Figure 3. Model for noise reduction in PCR by helicase. Image of noise reduction in PCR by helicase such as a Tk‑EshA is shown in the figure. In the absence 
of helicase, primers mis‑anneal to various homologous regions, resulting in the amplification of noise DNAs. In the presence of helicase shown as a pacman, 
mis‑annealed primers are peeled off and specific primers dominantly anneal to the target region, resulting in the reduced amplification of noise DNAs.
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and strand‑displacing polymerase extends the primer. Thus, 
the synthesis of a new DNA strand occurs (Fig. 5A).

In the first report of RPA in 2006 (70), T4 uvsX and T4 
uvsY were used as recombinase, T4 gp32 was used as SSB, and 
Bacillus subtilis polymerase was used as strand‑displacement 
DNA polymerase (Table I). Since then, RPA has been widely 
used to detect various targets. At present, the RPA kit is 
commercially available from TwistDX (Cambridge). One of 
the merits of RPA over other isothermal nucleic acid amplifi-
cation methods is that the reaction occurs at the human body 

temperature (37˚C). RPA has the potential to eliminate the use 
of specialized equipment to provide the required temperature. 
Thus, RPA may be the most ideal nucleic acid amplification 
method for use in point‑of‑care diagnosis. Indeed, a number 
of RPA targets reported to date are pathogenic organisms 
including Mycobacterium tuberculosis  (71,72), Chlamydia 
trachomatis  (73), Streptococcus  pneumoniae  (74), and 
Leishmania donovani (75).

In accordance with this trend, various technologies 
have been combined with RPA. For example, cutaneous 

Figure 4. Workflow of the analysis of the error rate in the cDNA synthesis reaction. N14, Key‑n, and adaptor α and β indicate the 14‑base randomized barcode 
sequence, five‑base key nucleotide sequence, and Ion Proton sequencing adaptor α and β sequences, respectively.
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leishmaniasis was detected using an FTA card, a paper‑based 
card commercialized by GE Healthcare for the isolation and 
storage of nucleic acids, and loop‑mediated isothermal amplifi-
cation (LAMP) (76,77). Lateral flow assay (78), enzyme‑linked 
oligonucleotide assay (79), and electrochemical method (80) 
were used for end‑point detection of RPA amplicons, whereas 
solid phase amplification was used for the real‑time detection 
of RPA amplicons (81).

Clustered, regularly interspaced, short, palindromic repeats 
(CRISPR)/CRISPR‑associated (CAS) systems were originally 
identified as an RNA‑guided genetic silencing system in bacteria 
and archaea (82). At present, CRISPR/CAS9 is widely used in 
genome engineering. CRISPR‑Cas13a and CRISPR‑Cas12a 
have been applied to RPA (Fig. 5B). Specific high sensitivity 
enzymatic reporter unlocking (SHERLOCK) was established 
using Cas13a, an RNA‑guided RNase that cleaves its specific 
target as well as the nearby non‑targeted RNAs (collateral 
effect). The collateral cleavage enables release of the quenched 
fluorescent reporter (83). A multiplexed detection system was 
also established using Cas13, Cas12a, and Csm6 (84). Use 
of SHERLOCK allowed detection of Zika virus (sensitivity 
2  aM) and that of a single nucleotide polymorphism of a 
human gene (83,84). DNA endonuclease‑targeted CRISPR 
transreporter (DETECTR) was established using CAS12a, an 
RNA‑guided DNase. The DETECTR detected human papil-
lomavirus (HPV) 16 and 18 at attomolar levels (85). These 
approaches may thus serve as valuable tools to increase the 
sensitivity of RPA and provide a means for developing novel 
point‑of‑care diagnosis with high sensitivity and rapidness.

7. Other considerable factors involved in nucleic acid 
amplification

Various factors are known to be involved in enzymatic reac-
tions, and such factors include organic solvents. Enzymes are 

generally inactivated by organic solvents, but use of organic 
additives in enzymatic reactions can sometimes make previ-
ously problematic processes feasible. Indeed, various organic 
additives have been used to improve reaction efficiency and 
specificity in PCR (86,87). Dimethyl sulfoxide (DMSO) and 
formamide have been used to improve specificity for the 
reaction with a G+C‑rich DNA (88,89). In cDNA synthesis, 
DMSO and formamide increased the reaction efficiency to 
some extent (90).

Since nucleic acids are highly negatively charged, they 
may be affected by positively charged small molecules such as 
polyamines. It was initially reported that spermidine was not 
beneficial in PCR (91). However, subsequent reports showed 
that spermidine prevents PCR inhibition problems encountered 
while analyzing clinical stool samples (92,93). By optimizing 
the effects of these polar molecules, the efficiency of nucleic 
acid amplification is expected to further improve.

8. Conclusions and future perspectives

Despite being a widespread analytical method both in 
fundamental research and clinical diagnosis, there are limi-
tations in nucleic acid amplification, which are represented 
by false‑positive and false‑negative results. Many efforts 
are still being devoted to improve the sensitivity, specificity, 
rapidness, and accuracy of nucleic acid amplification. The 
catalytic mechanism of nucleic acid‑related enzymes has been 
extensively investigated by means of X‑ray crystallography, 
kinetic analysis, and site‑directed mutagenesis, leading to the 
generation of enzymes exhibiting extremely high activity and 
stability. Such enzymes and optimized reaction conditions 
offer many advantages that can be expected to enhance the 
efficiency of nucleic acid amplification tests, which may meet 
the increasing demand of point‑of‑care diagnosis both in 
developed and developing countries.

Figure 5. (A) Schematic illustration of the RPA process. (B) Models of SHERLOCK and DETECTR nucleic acid detection systems.
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