
STUDY PROTOCOL

Wearables in rugby union: A protocol for

multimodal digital sports-related concussion

assessment

Dylan PowellID
1, Sam Stuart2, Alan GodfreyID

1*

1 Department of Computer and Information Sciences, Northumbria University, Newcastle-upon-Tyne, United

Kingdom, 2 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-

Tyne, United Kingdom

* alan.godfrey@northumbria.ac.uk

Abstract

Background

Pragmatic challenges remain in the monitoring and return to play (RTP) decisions follow-

ing suspected Sports Related Concussion (SRC). Reliance on traditional approaches

(pen and paper) means players readiness for RTP is often based on self-reported symp-

tom recognition as a marker for full physiological recovery. Non-digital approaches also

limit opportunity for robust data analysis which may hinder understanding of the intercon-

nected nature and relationships in deficit recovery. Digital approaches may provide more

objectivity to measure and monitor impairments in SRC. Crucially, there is dearth of proto-

cols for SRC assessment and digital devices have yet to be tested concurrently (multi-

modal) in SRC rugby union assessment. Here we propose a multimodal protocol for

digital assessment in SRC, which could be used to enhance traditional sports concussion

assessment approaches.

Methods

We aim to use a repeated measures observational study utilising a battery of multimodal

assessment tools (symptom, cognitive, visual, motor). We aim to recruit 200 rugby play-

ers (male n�100 and female n�100) from University Rugby Union teams and local ama-

teur rugby clubs in the North East of England. The multimodal battery assessment used

in this study will compare metrics between digital methods and against traditional

assessment.

Conclusion

This paper outlines a protocol for a multimodal approach for the use of digital technologies

to augment traditional approaches to SRC, which may better inform RTP in rugby union.

Findings may shed light on new ways of working with digital tools in SRC. Multimodal

approaches may enhance understanding of the interconnected nature of impairments and

provide insightful, more objective assessment and RTP in SRC.
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Clinical trial registration

NCT04938570. https://clinicaltrials.gov/ct2/results?cond=NCT04938570&term=&cntry=

&state=&city=&dist=

Introduction

Rugby union has the highest occurrence of Sports-Related Concussion (SRC, otherwise

known as mild traumatic brain injury) of any contact sport [1]. The incidence of SRC (per

1000 hours) is 20.4 in professional rugby union, 16.6 in university rugby union and 4.7

national league rugby [2]. Consequently, participation in professional or amateur rugby union

poses a considerable risk of sustaining injury [3–5]. SRC can cause a variety of motor and cog-

nitive effects which typically resolve without any active treatment. However recognising SRC

in a timely manner is essential to mitigate secondary injury and more severe adverse neurolog-

ical impact [6–8]. Recent research highlighted the potential longer-term impact of inappropri-

ate SRC management and links with the neurogenerative disease chronic traumatic

encephalopathy [9,10]. Public health concerns that poorly managed SRC can cause harm to

brain health and function in active and retired players, has driven demand for evidence-based

research pertaining to diagnosis, monitoring and treatment [11].

Sports related concussion monitoring and return to play

Despite the development of new objective physiological assessments in SRC such as biomarker

screening [12], monitoring of SRC remains hugely challenging. Even in resource-rich environ-

ments where sufficient numbers of medical staff can better spot insidious mechanisms of

injury associated with SRC, some diagnoses can be delayed or missed entirely [5,13,14]. In

amateur environments where there may be one coach or first aider only, the detailed monitor-

ing of SRC performed in professional contexts is not fully achievable. Therefore, in amateur

environments with reduced medical provision, the binary approach of ’Recognise & Remove’

is adopted [15]. This involves permanently removing players suspected of SRC (e.g., clear con-

tact to head) or if they display common signs and broad symptoms associated with SRC. The

introduction of ‘Recognise and Remove’ approach has improved awareness and likely reduced

the number of missed or SRC occurrences in low-resource, community environments.

SRC presents with a wide variety of signs and symptoms, which are often subtle, easily

missed and may only become measurable in the hours and days following injury [16]. Typi-

cally this is followed by general management advice such as provision of head injury informa-

tion leaflets only [14]. Therefore, significant challenges remain in the monitoring and

objective or personalised return to play (RTP) procedures. There is inconsistency in what tests

are performed during participants RTP, varying widely from neurocognitive testing to visual

assessment [17,18]. Our previous work outlines the deficiencies in current traditional assess-

ment methods [19,20]. The most commonly used mechanism administered by a health profes-

sional to inform RTP within amateur rugby union, is the 5th version of the Sports Concussion

Assessment Tool (SCAT5) questionnaire which tests symptoms, cognition, balance and vision

[21,22]. The manual (pen and paper) and subjective nature of test like the SCAT5, mean for-

mal SRC diagnosis, rehabilitation and RTP is based on clinical judgement [23], with a heavy

weighting given to (self-reported) symptom assessment to determine readiness to play. Indeed,

unions across the major rugby playing nations do not endorse the use of any novel
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technologies in RTP. Absence in regular data collection and lack of objective assessment

means SRC recovery times and prognosis are highly variable among all players. This further

highlights the need for valid and objective tools to aid diagnosis and monitoring [24].

Progression to objective multimodal digital assessment

Non-invasive mobile wearable technologies have been used to objectively measure and moni-

tor impairments in neurological injury [25,26]. Examples include visual assessment technolo-

gies to objectively monitor eye movements during laboratory tasks, assessing visual and

cognitive processing [27,28]. In mobility assessment (e.g., balance, gait and turning), inertial

wearables have successfully been used to track disease progression in Parkinson’s disease [29].

Wearables offer several advantages over traditional (non-mobile) methods of assessment. This

includes the opportunity for passive monitoring, whereby continuous data can be collected on

participants without their active attention or participation. Remote monitoring outside of

clinic or laboratory can augment traditional assessment, and avoid ‘snapshot’ collection at epi-

sodic intervals [25,30]. Indeed, viewing SRC impairments in isolation could be futile and

ignores the interconnected and related nature of SRC [22]. Wearables may provide continuous

digital outcome measures, which can be easily compared and integrated with other impair-

ments (e.g., cognitive function) [18]. SRC is considered a complex injury and will likely require

a multimodal assessment approach to provide sufficient sensitivity for diagnosis and monitor-

ing and enhanced understanding. Using a multimodal digital approach could provide objec-

tive outcome measures and robust data for more informed SRC assessment and monitoring

[31,32]. However, to the authors knowledge, no multimodal protocols for digital assessment in

SRC across rugby union have been published. As such there is a need to develop and refine

multimodal protocol aims and methods, to translate technical research validation into clinical

acceptance and application [33].

Here we propose a multimodal protocol and technical exploration for digital assessment

and monitoring in SRC. We hypothesise that multimodal digital-based wearables will yield

more objective data relevant to cognitive, gait, balance, turning, and visual metrics in those

with s SRC compared to the traditional assessment method.

Primary aims:

1. Investigate use of multimodal digital-based wearables to capture objective data relevant to

cognitive, gait, balance, turning, and visual metrics in those with SRC compared to a tradi-

tional assessment method.

2. Explore free-living mobility (balance, gait and turning) deficits with inertial wearable in

those with SRC.

Secondary aims:

1. Explore the interaction and sex differences between cognitive, motor, visual and symptom

characteristics, collected by wearables and questionnaires in those with SRC.

2. Consider practical and technical considerations of digital multimodal protocols in SRC.

Materials and methods

Study design

We aim to use a repeated measures observational study utilising a battery of SRC assessment

tools (motor, visual and symptom assessment). The protocol was developed according to the

Standard Protocol Items: Recommendations for Interventional Trials’ (SPIRIT) checklist [34],
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as appropriate. As this is a study protocol, no data has been included and conforms to PLOS

data policy. The protocol was registered with clinicaltrials.gov (NCT04938570).

Participants

University-level and amateur rugby players (males n�100, and females n�100) will be

recruited and assessed over one season (June 2021 to August 2022). Participants will be strati-

fied according to gender (males and females). The inclusion and exclusion criteria are outlined

in Table 1. Those that have a mTBI/Concussion during the season must have a diagnosis of

mTBI from a healthcare professional (physiotherapist or medic) based upon standard criteria

or identified head injury from their contact sport governing body Although the number of

SRC that will be observed during the season is not known, we will compare number of head

injuries/SRC to our results from cohort baseline testing. Those that do not sustain a concus-

sion will also have follow up testing at the end of the season, which will allow comparison

between baseline and post-season.

Setting

Testing will be conducted at Clinical Gait Laboratory, Coach Lane Campus, Northumbria Uni-

versity, Newcastle upon Tyne and at the amateur rugby clubs in the North East of England.

Recruitment

An ethics application was submitted to Northumbria University research ethics committee

and approved June 2020 (23365). An amended ethics application (due to changes required

from of the COVID-19 pandemic) was submitted to same ethics committee in October 2020

and approved in January 2021. Written, informed consent to participate will be obtained by all

participants prior to each stage of the study in accordance with General Data Protection Regu-

lations (GDPR). All Northumbria University Rugby Union Players will be invited to take part

in the study. Additionally, local adult rugby union teams within 25 miles of Newcastle Upon

Tyne will be invited to participate. An advertisement will be sent via email to local rugby clubs

and the university rugby teams. Those interested will then be given a Participant Information

Sheet (PIS) and a letter concerning the study with consent form. Inclusion and exclusion crite-

ria are detailed in Table 1. In brief, all participants must be�18 years, have minimal cognitive

impairment (Short-Blessed test 0 and 8), have fluency in English. Those excluded from partici-

pating in the study include anyone with a medical history that could grossly impact balance;

stroke, severe TBI, amputation, vestibular pathology, alcohol addiction or substance abuse.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

�18 years.

Have minimal cognitive impairment, defined as a score

between 0 and 8 on the Short-Blessed test for cognitive

function.

English as a first language or fluency.

Those that have a mTBI/Concussion during the season

must have a diagnosis of mTBI from a healthcare

professional (physiotherapist or medic) based upon

standard criteria or identified head injury from their

contact sport governing body.

Medical history of a neurological illness that could

grossly affect balance or coordination (such as. stroke,

greater than mild TBI, lower-extremity amputation,

recent lower extremity or spine orthopaedic injury

requiring a profile).

Be a pregnant female

Have history of peripheral vestibular pathology or eye

movement deficits.

Be unable to abstain from medication/alcohol 24 hours

in advance of testing

https://doi.org/10.1371/journal.pone.0261616.t001
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Primary outcomes

The primary outcomes of this study are the proportion of players who have altered free-living,

quality-based gait/walking patterns (e.g., gait speed), defined as micro gait characteristics mea-

sured by a digital inertial sensor-based wearable. Secondary outcomes are related to the change

in free-living turning characteristics and clinical based visual data. Possible predictors for

altered free-living micro gait patterns will include baseline assessment and acute SRC

timeframe.

Sample size calculation

The sample size calculation is based sample sizes from previous paper examining multimodal

assessment, ~200 [18,35]. To determine the appropriate sample size (SS) for estimating the

proportion of players we used the following formula (Eq 1) as previously described.

SS ¼ ðZ � scoreÞ2 � proportion� ð1 � proportionÞ=ðmargin of errorÞ2 ð1Þ

For a confidence level of 95%, α is 0.05 and the corresponding Z-value is 1.96. The sample

proportion is unknown. We chose the number 0.50 (50%) because it takes the maximum

spread into account. Consensus about the margin of error was achieved by joint discussion of

the research group; a margin error of 0.075 (7.5%) was accepted. For a population size of 200

and a confidence level of 95%, α is 0.05 and the corresponding z-value is 1.96. Therefore, in

total, 200 patients will be enrolled in the study to reach the necessary sample size.

Participant stratification

All participants (male�100, female�100) who respond to the advertisement will complete

baseline testing during pre-season and post-season. In-house university assessment will allow

a clear pathway for concussed university players to be referred for post-SRC assessment. Local

and amateur players who responded to the initial advertisement and sustain a SRC during the

season can a) self-refer themselves (player) or b) be referred with consent by other personnel

(physiotherapist, clinician, coaches,) into the study for testing. Testing availability for amateur

players will be expanded (after 4:30pm Monday to Friday) to accommodate amateur player

work/education commitments. Those diagnosed with SRC will be asked to attend a laboratory

session with a subsequent free-living assessment at the following time frames post injury;

within 72 hours post, 7–14 days post, once returned to play and post season. The overall sched-

ule and time commitment for trial participants is depicted in Fig 1. (A more generic flow dia-

gram depicting the schedule is presented in supporting material, S1 Fig).

Anthropometric measures and screening

Test: Visual acuity (VA) eye chart and contrast sensitivity. VA is used to estimate

degree of visual impairments in participants and will be measured binocularly using a standard

eye chart. Participants will be asked to be seated or standing 4m from the chart. Participants

will then be instructed to read aloud, starting from the top left and moving down the chart.

The test is terminated if the participant makes two consecutive errors. Assessment will be done

for right and then left eyes.

Test: Height, weight and leg length. Height (Bodysense Smart Scale, Eufy, USA) and

weight (Seca 217, Seca Deutschland, Hamburg, Germany) will be measured for each partici-

pant. Participants leg length or sensor distance to ground will be measured [36], by a trained

researcher/physiotherapist from posterior iliac spine to medial malleolus and used to inform

inertial wearable algorithm analysis.
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Data collection: In the lab (traditional/reference assessments)

Test: Sports Concussion Assessment Tool 5th edition, SCAT5. Estimated time: (10–15
minutes). The SCAT5 [37] is one of the most widely used assessment tools in aiding diagnosis

and assessment measuring symptom scores [37], aspects of cognitive function (Standardised

Assessment of Concussion [38] and balance function (modified balance error scoring system

[39] via a pen and paper SCAT5 forms, Table 2.

Symptom: The test measures aspects of symptom score and severity recorded across 22

symptoms self-reported by the player. A higher score indicates a more severe or worsened

symptom profile (out of 132).

Fig 1. SPIRIT diagram, overall schedule and time commitment for trial participants.

https://doi.org/10.1371/journal.pone.0261616.g001
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Cognition: The standardised assessment of concussion, is a mental status assessment previ-

ously developed [38] but now incorporated in the SCAT5 assessing individuals across immedi-

ate memory, concentration and delayed recall and recorded via the SCAT5 form.

Balance: The modified Balance Error Scoring System (mBESS) test [39] is an assessment

protocol used to assess impairments in SRC [40]. The mBESS test assesses balance, postural

stability across six different positions (double leg stance, single-leg stance, tandem stance) and

tandem gait walking over 2.5–3 meters). Participants will be asked to maintain eyes closed,

with hands placed on the iliac crest for each test’s duration (20 seconds). These tests are

observed, and the number of errors counted. Errors are movements indicating a loss of balance

or position such as; removing hands from iliac crest, stepping out with contralateral foot,

stumbling or lifting forefoot or heel. The mBESS is assessed subjectively by the medical profes-

sional using a stopwatch and recorded using pen and paper. A higher error count indicating

worse performance.

Test: Vestibular ocular motor screen (VOMS). Estimated Time: (5–10 minutes). The

VOMS test includes a baseline measurement after which participants later verbally rate

changes in headache, dizziness and nausea symptoms compared with their immediate baseline

state on a scale from 0 (none) to 10 (severe) to determine if each of the tests provokes symp-

toms [41]. The test then measures impairments via this self-report across five sections (smooth

pursuit, saccades, convergence, vestibular ocular reflex test and visual motion sensitivity test),

Table 3. Testing will be conducted on a standard height of chair (45cm) at a distance of 90-

100cm away from the stimuli.

Test: Two-minute walk test. Estimated Time: (5–10 minutes). Participants will be asked

to complete two-minutes of continuous walking [42,43] at self-selected, normal walking speed

over 8m with 180˚ turns, single and dual-task (Table 3). Cognitive measurement to determine

dual task will be conducted prior to any walking. The dual-task will involve the backwards

digit span [44], which will be set to the maximal amount of numbers recalled in sitting. The

first walking trial will be single task walking. Secondly for dual task, the participant will hear a

series of numbers while walking and repeat the numbers in backwards order while walking.

Participants will be instructed to concentrate on both tasks equally.

Test: High Level Mobility Assessment Tool, HiMAT. Estimated Time: (5–15 minutes).
HiMAT is a standardised outcome measure used to quantify motor performance in indi-

viduals with high-level balance and mobility deficits [45]. The HiMAT is scored over 13

items derived from expert clinicians’ opinions and from existing multi-dimensional mobil-

ity scales. which includes tasks such as: backwards tandem walking, Walk over obstacle,

Up/downstairs.

Table 2. Sports Concussion Assessment Tool, 5th version (SCAT5).

Assessment Domain Component tests Outcome Measures Method of assessment

Symptom Concussion Symptom Scale Symptom severity (out of 22)

Symptom total (out of 132)

Self-reported by player

Cognitive Standardised Assessment of Concussion (SAC) Orientation (out of 5)

Immediate memory (out of 15 30)

Concentration (out of 5)

Delayed recall (out of 5 or 10)

Auditory/verbal assessment recorded on pen and paper

Neurological Passive cervical movement Pain (yes or no) Subjectively assessed

Finger nose test Able to complete (yes or no) Subjectively assessed

Visual Horizontal Nystagmus Double vision (yes or no) Subjectively assessed

Balance Tandem Gait Able to complete (yes or no) Subjectively assessed

Modified Balance Error Scoring System (mBESS) Total number of errors Subjectively count number of errors

https://doi.org/10.1371/journal.pone.0261616.t002
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Digital technologies

We will use traditional approaches but overlay those approaches with digital technologies to

provide more objective outcome measures.

Digital neurocognitive tests. Conducted with the Brain Gauge Pro, Cortical Metrics,

Chapel Hill, NC, USA (www.corticalmetrics.com). Testing takes approximately 8 minutes and

is completed with participants sitting at a laptop [46,47]. Two computer mouse probes on the

device provide a stimulus through vibration (25-50Hz) for participants index (D2) and third

(D3) fingers. Participants are asked to respond by pressing their D2 and D3 according to

Table 3. Laboratory testing: Multimodal approach for sports related concussion assessment.

Assessment

Domain

Test Digital Approach Digital Technology Primary Outcome Measures Time

Commitment

Cognitive Reaction Time Computerised

neurocognitive testing

Brain Gauge. Cortical Metrics,

USA1
Reaction Time & reaction time

variability (milliseconds)

10–15 minutes

Amplitude Discrimination Simultaneous and sequential

amplitude discrimination

(microns)

Balance SCAT 55

(Modified Balance Error

Scoring System)

Wearable

Inertial Measurement

Units

MoveMonitor, McRoberts, UK2 Postural stability characteristics

Sway (speed at which the centre-

of-pressure moves)

Root mean square (average

variance signal captured)

Jerk (the rate of change of

acceleration from signal)

10–15 minutes

Gait & Turning SCAT 55

Lab: (Tandem Walk)

Wearable

Inertial Measurement

Units

MoveMonitor, McRoberts, UK2 Gait characteristics

Mean stance time (seconds, s)

Mean step time (s)

Mean stride time (s)

Mean swing time (s)

Mean stride length (cm)

Mean stride velocity (cms-1)

Turning characteristics

Number of turns per hour (n)

Turn Angle(˚)

Turn Duration(seconds)

Turn Velocity (˚/seconds)

10–15 minutes

Lab: Two Minute Walk Test

High Level Mobility

Assessment Tool (HiMAT)

Visual SCAT 55

(Horizontal Nystagmus test)

Mobile Eye Tracker Pupil Labs, Core Eye Tracker,

Germany3

Tobii Pro Glasses 24 (100Hz,

Tobii Technology Inc., VA, USA)

Visual characteristics

Mean and variability of fixations,

saccades and smooth pursuit

10–15 minutes

Visual Oculomotor Screen

Questionnaires Neck Disability Index Mobile application/

secure questionnaire

PC or

Tablet

Symptom Severity and symptom

number

20–30 minutes

Lower Extremity Function

Scale

Symptom Severity and symptom

number

International Physical

Activity Questionnaire

Self-reported activity levels

Dizziness Handicap

Inventory

Symptom Severity and symptom

number

Neurosymptom Inventory

Index

Symptom Severity and symptom

number

1 https://www.corticalmetrics.com/.
2 https://www.mcroberts.nl/products/movemonitor/.
3 https://pupil-labs.com/products/core/.
4 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/.
5 https://bjsm.bmj.com/content/bjsports/early/2017/04/26/bjsports-2017-097506SCAT5.full.pdf.

https://doi.org/10.1371/journal.pone.0261616.t003
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specific tests. Outcomes calculated by the technology are reaction time (RT) measured in milli-

seconds, sequential, simultaneous amplitude discrimination (measured in microns) and reac-

tion time variability.

Wearable eye-tracking. Conducted with the wearable eye tracker (Pupil Labs, Core Eye

Tracker, Berlin, Germany. 160×51mm, high speed 120hz and 200hz https://pupil-labs.com/

products/core/) and Tobii Pro Glasses 2 (100Hz, Tobii Technology Inc., VA, USA www.

tobiipro.com/product-listing/tobii-pro-glasses-2/) which have shown to have good accuracy

and showed the least error accuracy error overall in comparison with three other models of

wearable eye-trackers [48]. The wearable eye-tracker in this protocol will be compared to a

subjective test (VOMS), which has been clinically adopted in neurological assessment and will

be used a reference standard [41,49,50].

Inertial wearable. The MoveMonitor (McRoberts, Netherlands; 106.6×58×11.5mm, 55g

www.mcroberts.nl/products/movemonitor) comprises an accelerometer (+/- 100Hz) and

gyroscope (+/- 8g) tri-axial sensors and is worn on the fifth lumbar vertebrae (L5), attached

with an elastic strap. The wearable has been used extensively for functional and mobility moni-

toring in neurological disorders and is considered a valid technology which can capture data

in controlled/lab/clinic and free-living environments [51–54]. This will be used to compare

against traditional methods of balance, gait and turning assessment in the mBESS and walking

tasks (lab and free-living assessment).

Instrumentation: Using digital technologies during traditional assessments

VOMS and eye tracking. Due to the test’s subjective outcomes (provocation of non-spe-

cific symptoms), the VOMS cannot be used in isolation to diagnose SRC. Wearable eye track-

ers may provide an objective method of instrumenting traditional subjective tests like the

VOMS and yield enhanced metrics on fixations, saccades and smooth pursuit [55,56]. We will

use the Pupil Labs, Core eye tracker or Tobii Pro Glasses 2 while comparing the traditional

VOMS test results across three main movements, fixations, saccades and smooth pursuits.

Data is wirelessly transferred to Pupil Labs/Tobi proprietary software and stored locally. Data

will then be stored on a secure Further analysis of these will be made using a custom-made

MATLAB1 (MathWorks Inc, Massachusetts, USA) algorithm as previously described [49,57].

Balance, gait and turning. By instrumented digital approaches such as use of inertial sen-

sor-based wearables, detection of subtle deficits may be detected. Indeed, the instrumentation

of the balance error scoring system (BESS) has been shown to have superior diagnostic classifi-

cation compared to traditional balance tests in concussion/mTBI [58]. Data will be download

to PC or laptop via USB and uploaded to a secure database or file storage and analysed. Move-

ment bouts will calculated for lab and free-living balance, gait and turning characteristics

using bespoke MATLAB1 algorithms [59,60]. Free-living data will be initially processed using

two separate custom-made and validated MATLAB1 algorithms to estimate free-living bal-

ance (e.g., jerk, sway), gait (e.g. mean step time, stance time variability) and turning (e.g., peak

velocity, turn duration) characteristics [60–63].

Differences in gait between single and dual task will be examined rather than dual task cost.

Absolute dual-task differences between groups (healthy vs concussed) will be examined to

investigate if objectively measured dual-task walking could be a useful assessment for concus-

sion, which will be compared to the use of single-task gait outcomes.

Data collection: Beyond the lab

At present wearable laboratory-based motor assessment in SRC only offers a snapshot assess-

ment. Little research has focussed on participants motor assessment outside of the laboratory
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at episodic intervals of assessment. To overcome this limitation, testing could be better utilised

through constant remote evaluation in free-living environments. This would mitigate the need

for the clinician to be present and would allow a higher frequency of testing within the players

own environment [64]. Although testing in the latter would be conducted in less controlled

conditions, there is considerable value in conducting testing in remote, real-world/free-living

as s/he would be within habitual conditions [25,65,66].

Test: Free-living gait and turning assessment (7 days). After laboratory testing partici-

pants will wear the MoveMonitor (L5) continuously for 7-days (weekdays and weekend to

examine daily habitual fluctuations). Participants will be instructed how to take off and reat-

tach the device for general hygiene purposes and return the device at their next laboratory

visit. Free-living balance, gait and turning data will be segmented from raw (sample level) data

and analysed to generate clinically relevant spatial and temporal outcomes to examine habitual

motor and behavioural characteristics as previously described, Table 4 [59,60]. Application

and evaluation of conceptual models previously described [66–68] will be applied to provide

better insight to habitual player recovery, which may better inform RTP.

Test: Concussion symptom checklist, SCAT5. Technology: Mobile application/secure
questionnaire. Participants will complete symptom assessment daily throughout their RTP, via

a secure mobile application or questionnaire. This will be from the concussion symptom scale

as part of the SCAT5 [37].

Digital outcomes (primary)

Cognitive characteristics. Reaction time tests how quickly participants can respond to

stimuli. Reaction time variability is a measure of how quickly participants fatigue or concen-

trate [46,47]. Amplitude discrimination tests how well participants brain can differentiate

between similar stimuli. These will be tested across all participants and tracked across different

time points of recovery.

Balance (postural), gait and turning characteristics. The inertial balance, gait and turn-

ing characteristics will be estimations from the MoveMonitor. The balance (postural control

tasks, BESS) include root mean square (m/s2), (root mean square of signal), Jerk (m2/s5), (first

derivative of acceleration signal) and Sway (area, mm2/s5). Gait characteristics include step

Table 4. Data collection: Beyond the lab.

Assessment Domain Digital Approach Digital Technology Primary Outcome Measures Time

Balance, gait & turning Wearable

Inertial Measurement Units

MoveMonitor, McRoberts, UK Balance

Root mean square (m/s2),

Jerk (m2/s5),

Sway (area, mm2/s5)

Gait

Mean stance time (seconds, s)

Mean step time (s)

Mean stride time (s)

Mean swing time (s)

Mean stride length (cm)

Turning

Number of turns per hour (n)

Turn Angle (˚)

Turn Duration (seconds)

Turn Velocity (˚/seconds)

7 days

Symptom

(SCAT5 Symptom)

Mobile application/secure questionnaire PC or

Tablet

Symptom severity (out of 22)

Symptom total (out of 132)

5–10 minutes

SCAT5: Sports Concussion Assessment Tool 5.

https://doi.org/10.1371/journal.pone.0261616.t004
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time (s), stride time (s), swing time (s), stance time (s), step length (m), step velocity (ms-1).

Those comprehensive gait measures will be assess upon division into four original domains

(pace, rhythm, variability and turning) based on the previously described model [68,69]. Turn-

ing characteristics include number of turns per hour (n), turn angle (˚), turn duration (s) and

turn velocity (˚/s), Table 4.

Visual characteristics. As outlined in the visual oculomotor screening test, we will be

comparing traditional VOMS versus the eye-trackers calculations for; (1) smooth pursuit, (2)

horizontal and vertical saccades, (3) near point of convergence (NPC) distance, (4) horizontal

vestibular ocular reflex (VOR), and (5) visual motion sensitivity (VMS) from the visual oculo-

motor screen.

Secondary outcomes

Questionnaire #1: Neck disability index. Estimated Time: (5minutes). The neck disability

index (NDI) is a patient recorded functional status questionnaire [70] with 10 items (pain, per-

sonal care, lifting, reading, headaches, concentration, work, driving, sleeping and recreation).

The NDI a commonly used self-reporting measure for neck pain which will be monitored

across the study. This will be given to participants at each testing session and used to compare

specific neck pain responses at baseline and at various stages in recovery from SRC.

Questionnaire #2: Lower extremity function scale. Estimated Time: (5minutes). The

lower extremity functional scale (LEFS) is a questionnaire containing 20 questions about a per-

son’s ability to perform everyday tasks [71]. Clinicians can use the LEFS as a measure of

patients’ initial function, ongoing progress and outcome, as well as to set functional goals. The

LEFS can be used to evaluate the functional impairment of a patient with a disorder of one or

both lower extremities and can be used to monitor the patient injuries progress over time.

This will be used to account for injuries that may negatively impact gait and influence any

changes measured.

Questionnaire #3 dizziness handicap inventory. The dizziness handicap inventory

(DHI) is a 25 item self-report questionnaire designed to assess perceived dizziness affecting

function [72]. The DHI will be used as secondary outcomes and compared between healthy

and concussed individuals.

Questionnaire #4 neurosymptom inventory index. The Neurobehavioral Symptom

Inventory (NSI) is a self-reported evaluation tool [73] frequently completed after a mild trau-

matic brain injury (mTBI). This will be used to monitor and measure post-concussion symp-

tom changes over time and between healthy and non-concussed individuals.

Questionnaire #5 international physical activity questionnaire–short form. The devel-

opment of an international measure for physical activity commenced in Geneva in 1998 and

was followed by extensive reliability and validity testing undertaken across 12 countries [74].

This will be used as a reference standard to compare the participants self-reported activity

levels.

Statistical analysis

This is an exploratory study consisting of two groups. To the authors knowledge, there has yet

to be a comprehensive free-living analysis of participants with SRC in rugby union. However,

there have been analyses of non-sporting concussion/mTBI. Previous non-sporting studies

have used datasets of 30–100 individuals [59]. Therefore, our anticipated dataset size of ~200

individuals, will provide greater statistical power to quantify between-group differences and

detect small differences in visual, motor and symptom metrics. The multimodal battery of

assessment used in this study will compare metrics between wearable systems and against
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traditional assessment methods. Data will be analysed in SPSS (v23, IBM) and R studio (R.

RStudio, Boston, MA, USA). All data will be checked for normality distributed with Shapiro-

Wilks tests before conducting parametric tests. Independent t-tests will be performed compar-

ing demographic information between concussion and non-concussed groups. Anonymised

data will be made available on reasonable request.

Primary analyses. The study aims will be explored with the analysis below.

1. Investigate use of multimodal digital-based wearables to capture objective data relevant to
cognitive, balance, gait, turning and visual metrics in those with SRC compared to a tradi-
tional assessment method.

Paired sample t-tests will be used to assess differences in group means for laboratory-based

gait and balance assessment (mBESS, HiMAT, Two-minute walk -test, single and dual-

task) and visual (VOMS) between healthy and SRC groups. To examine differences in SRC

laboratory and free-living mobility across multiple recovery time points we will used multi-

variate analysis of covariance (MANOVA). To determine which features of each assessment

domain (visual, motor, symptom) is best to distinguish SRC from healthy we will use

receiver operating characteristic (ROC) and area under the curve (AUC).

2. Investigate free-living mobility (gait characteristics) in those with sports-related concussion
(SRC)
Between groups (concussed or non-concussed) differences in macro/micro gait and turning

characteristics will be analysed with covariance (gender and age) for pre and post-season,

free-living motor assessment and linear mixed models to further examine concussed player

time-points and recovery.

Secondary analyses

1. Explore the interaction and sex differences between cognitive, motor, visual and symptom
characteristics, collected by wearables & questionnaires in those with SRC.

We will use Pearson’s correlation analysis heatmap to explore the relationship between

mobility, visual and self-reported symptoms in mTBI/SRC and across sex. Thus, this com-

ponent of the interaction analysis will be data-driven, rather than hypothesis-driven. Statis-

tical significance will be determined at p< 0.05 unless otherwise stated. Principal

Component Analysis will be used to compare those with SRC history and no SRC concus-

sion history across cognitive, visual and motor impairments. To assess and deduce if there

are distinct groupings or clustering in the various cognitive, visual and motor

characteristics.

2. Consider practical and technical considerations of digital multimodal protocols in SRC.

Feedback will be collected from participants on usability of wearables during laboratory

and free-living assessment using the system usability scale [75]. This will be analysed and

compared across groups and time points in recovery.

Discussion

Here we provide a protocol for multimodal objective SRC assessment, with a focus on wear-

able technologies. At present there is no gold standard or proposed method for SRC assess-

ment, currently impairments are often viewed in isolation and not interconnected. This

protocol will allow consideration of the combined and interactive impact of SRC on gait, cog-

nition and vision and symptom recognition using wearables to collect objective data in
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university rugby union. This multimodal assessment paradigm distinguishes therefore itself

from other work in the field. To the authors knowledge, no research has examined free-living

gait in SRC among university rugby players. Furthermore, there hasn’t been attempts explore

visual and motor impairments concurrently in laboratory and free-living environments.

Therefore, the development and synthesis of this multimodal protocol would provide an

important step in quantitively monitoring SRC motor and visual impairments and begin pre-

liminary analyses of multimodal assessment in SRC.

This protocol does carry some limitations. Firstly, there are several equivalent technologies

that could be deployed or tested across each component test (cognitive, motor and visual).

However, given the lack of multimodal protocols in SRC, we feel the proposed manuscript

provides a starting point to work on and develop in future research. Secondly, although we

aim to have participants with SRC assessed within 72 hours of injury, this may not be feasible

in all cases. Likewise follow up once returned to play, may not be always feasible if there are

chronic issues associated with return to play and extended time lapse post injury. These limita-

tions and solutions may become apparent when practically tested.

Conclusion

Current SRC assessment focusses on impairments viewed in isolation, ignoring the intercon-

nected nature and spectrum of SRC. As such, reliance on traditional methods of assessment

and monitoring in SRC is limiting our understanding. Multimodal digital technologies can

measure and monitor impairments non-invasively more informed assessments [25] in neuro-

logical injury [26]. By implementing a multimodal digital approach, a more objective and

robust health profile could prevail. Additionally, with an increased frequency of testing, a

greater insight into SRC progression and recovery may be possible. This combination of data

(cognitive, gait and visual assessment) may uncover mechanistic interactions, showing trends

between different impairments to infer new recovery patterns. Here the proposed multimodal

protocol for digital assessment in SRC, could be used in conjunction and enhance the current

sports concussion assessment tool approaches and may provide an important first step towards

clinical deployment.
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