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Abstract
Background: Experimentally verified protein-protein interactions (PPI) cannot be easily retrieved by researchers unless
they are stored in PPI databases. The curation of such databases can be made faster by ranking newly-published articles'
relevance to PPI, a task which we approach here by designing a machine-learning-based PPI classifier. All classifiers require
labeled data, and the more labeled data available, the more reliable they become. Although many PPI databases with large
numbers of labeled articles are available, incorporating these databases into the base training data may actually reduce
classification performance since the supplementary databases may not annotate exactly the same PPI types as the base
training data. Our first goal in this paper is to find a method of selecting likely positive data from such supplementary
databases. Only extracting likely positive data, however, will bias the classification model unless sufficient negative data
is also added. Unfortunately, negative data is very hard to obtain because there are no resources that compile such
information. Therefore, our second aim is to select such negative data from unlabeled PubMed data. Thirdly, we explore
how to exploit these likely positive and negative data. And lastly, we look at the somewhat unrelated question of which
term-weighting scheme is most effective for identifying PPI-related articles.

Results: To evaluate the performance of our PPI text classifier, we conducted experiments based on the BioCreAtIvE-
II IAS dataset. Our results show that adding likely-labeled data generally increases AUC by 3~6%, indicating better ranking
ability. Our experiments also show that our newly-proposed term-weighting scheme has the highest AUC among all
common weighting schemes. Our final model achieves an F-measure and AUC 2.9% and 5.0% higher than those of the
top-ranking system in the IAS challenge.

Conclusion: Our experiments demonstrate the effectiveness of integrating unlabeled and likely labeled data to augment
a PPI text classification system. Our mixed model is suitable for ranking purposes whereas our hierarchical model is
better for filtering. In addition, our results indicate that supervised weighting schemes outperform unsupervised ones.
Our newly-proposed weighting scheme, TFBRF, which considers documents that do not contain the target word, avoids
some of the biases found in traditional weighting schemes. Our experiment results show TFBRF to be the most effective
among several other top weighting schemes.
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Background
Most biological processes, including metabolism and sig-
nal transduction, involve large numbers of proteins and
are usually regulated through protein-protein interactions
(PPI). It is therefore important to understand not only the
functional roles of the involved individual proteins but
also the overall organization of each biological process
[1].

Several experimental methods can be employed to deter-
mine whether a protein interacts with another protein.
Experimental results are published and then stored in pro-
tein-protein interaction databases such as BIND [2] and
DIP [3]. These PPI databases are now essential for biolo-
gists to design their experiments or verify their results
since they provide a global and systematic view of the
large and complex interaction networks in various organ-
isms.

Initially, the results were mainly verified and added to the
databases manually. Since 1990, the development of
large-scale and high-throughput experimental technolo-
gies such as immunoprecipitation and the yeast two-
hybrid model has boosted the output of new experimen-
tal PPI data exponentially [4]. It becomes impossible to
perform the relying curation task on the formidable
number of existing and emerging publications if it relies
solely on human effort. Therefore, information retrieval
and extraction tools are being developed to help curators.
These tools should be able to examine enormous volumes
of unstructured texts to extract potential PPI information.
They usually adopt one of two general approaches: (1)
extracting PPI information directly from the literature [5-
9]; (2) finding articles relevant to PPI first, and then
extracting the relevant information from them.

The second approach is more efficient than the first. It
extracts fewer false positive PPIs because the total number
of biomedical articles is very large and most of them are
not directly relevant to PPI. Therefore, in this paper, we
focus on the first step of the second approach: finding arti-
cles relevant to PPI.

Most methods in this approach formulate the article-find-
ing step as a text classification (TC) task, in which articles
relevant to PPI are denoted as positive instances while
irrelevant ones are denoted negative. We refer to this task
as the PPI-TC task from now on. One advantage of this
formulation is that the methods commonly used in gen-
eral TC systems can be modified and applied to the prob-
lem of identifying PPI-relevant articles.

In general TC tasks, machine-learning approaches are
state-of-the-art. Support vector machines [10] or Bayesian
approaches [11] are two popular examples. These

approaches can achieve very high accuracy but they also
require a sufficient number of training data, including
both positive and negative instances.

In PPI-TC, the definition of 'PPI-relevant' varies with the
database for which we curate. Most PPI databases define
their standard according to Gene Ontology, a taxonomy
that classifies all kinds of protein-protein interactions.
Each PPI database may only annotate a subset of PPI
types; therefore, only some of these types will overlap
with a different PPI database. In PPI databases, each exist-
ing PPI record is associated with its literature source
(PMID). Figure 1 shows a PPI record of the MINT [12]
database. It shows that the article with PubMed
ID:11238927 contains information about the interaction
between P19525 and O75569, where P19525 and
O75569 are the primary accession numbers of two pro-
teins in the UniProt database. These articles can be treated
as PPI-relevant and as true positive data. However, to
employ mainstream machine-learning algorithms and
improve their efficacy in PPI-TC, there are still two major
challenges. The first is how to exploit the articles recorded
in other PPI databases. Since other databases may par-
tially annotate the same PPI types as the target database,
articles recorded in them can be treated as likely-positive
data. If more effective training data are included, the fea-
ture space will be enlarged and the number of unseen
dimensions reduced. Considering these articles may
increase the generality of the original model. The second
challenge is a consequence of the first: To use likely-posi-
tive data we must collect corresponding likely-negative
data or the ratio of positive to negative data will become
unbalanced.

In this paper, our primary goal is to develop a method for
the selection and exploitation of likely-positive and likely-
negative data. In addition, since term-weighting is an
important issue in general TC tasks and usually depends
on the corpus and domain, we also investigate the second-
ary issue of which scheme is best suited to PPI-TC. PPI-TC
systems have two possible uses for database curators. One
is merely as filters to remove irrelevant articles. The other
is to rank articles according to their relevance to PPI. We
will first describe our experience of building our PPI-TC
system in the "System overview" section. We will then use
different evaluation metrics to measure system perform-
ance and discuss different configurations in the remaining
sections.

System overview
Figure 2 shows an overview of our PPI-TC system. This
system comprises the following components; those
shown as boldface in the figure are the aims of this paper:
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A PPI record in the MINT databaseFigure 1
A PPI record in the MINT database.

An overview of our protein-protein interaction text classification systemFigure 2
An overview of our protein-protein interaction text classification system.
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Step 1: Dataset preparation
We use the training (true positive and true negative; anno-
tated 'TP+TN' in Figure 2) and likely positive ('LP' in Fig-
ure 2) datasets from BioCreAtIvE-II interaction abstract
subtask [13] and the unlabeled datasets ('U' in Figure 2)
from PubMed. The treatment applied on LP and U will be
described in Step3. The preparation of these datasets is
detailed in the Datasets subsection of the Methods sec-
tion. The size of each dataset is shown in Table 1.

Their source databases are depicted in Figure 2. For each
abstract, we remove all punctuation marks, numbers and
stop words in the pre-processing step.

Step 2: Feature extraction and term weighting
The most typical feature representation in TC systems is
bag-of-word (BoW) features, in which a term in document
is converted into a feature vector. This feature vector is cal-
culated by a term-weighting function. Then the classifica-
tion of these feature vectors can be modeled with existing
classifiers such as support vector machines (SVM).

It is very important for SVM-based TC to select a suitable
term-weighting function to construct the feature vector
because SVM models are sensitive to the data scale, i.e.
they are dominated by some very wide dimensions. A fea-
sible term-weighting function emphasizes informative or
discriminating words by allowing their feature values to
occupy a larger range, increasing their influence in the sta-
tistical model. In addition to the simplest binary feature,
which only indicates the existence of a word in a docu-
ment, there are currently numerous term-weighting
schemes that utilize term frequency (TF), inverse docu-
ment frequency (IDF) or statistical metrics information.
Lan et al. [14] pointed out that the popularly-used TF-IDF
method has not performed uniformly well with respect to
different data corpora. The traditional IDF factor and its
variants were introduced to improve the discriminating
power of terms in the traditional information-retrieval
field. However, in text categorization, this may not be the
case. Hence, they proposed a new supervised weighting
scheme, TFRF, to improve the term's discriminating
power. Another popular supervised weighting scheme
BM25 [15] has been shown to be efficient in recent studies
and tasks on IR [16]. We have not seen any previous

attempt to apply BM25 to TC, perhaps because it was orig-
inally designed for applications with input query, such as
searching or question answering.

Inspired by the idea of Lan et al. and by BM25, we propose
a new supervised weighting scheme, TFBRF, which avoids
some biases in PPI-TC problem. The details of TFBRF will
be illustrated in the "Methods" section. We will compare
it with other popular general-TC term weighting schemes
mentioned above in "Result" section.

Step 3: Selecting likely-positive and negative data
The base training set (from BioCreAtIvE-II IAS) contains
only limited numbers of TP and TN data. To increase the
generality of the classification model, more external
resources should be introduced, such as the LP provided
by BioCreAtIvE-II and external unlabelled dataset pro-
posed by this work. For likely positive dataset, one impor-
tant resource is other PPI databases; abundant PPI articles
are recorded in various such databases. However, most of
them only annotate a selection of all the PPI types defined
in Gene Ontology. Therefore, some annotations may
match the criteria of the target PPI database while others
may not. This means that abstracts annotated in that data-
base can only be treated as likely-positive examples, some
of which may need to be filtered out.

Another problem is that there are no negative data or even
likely-negative data in any curation. Because most
machine-learning-based classifiers tend to explicitly or
implicitly record the prior distribution of positive/nega-
tive labels in the training data, we will obtain a model
with a bias toward positive prediction if only those
instances in the PPI databases are used. An imbalance in
training data can cause serious problems. However, a large
proportion of the biomedical literature is negative, which
is exactly the opposite. More likely-negative (LN)
instances should be incorporated to balance the training
data, and this can be carried out in a manner similar to fil-
tering out LP instances. Here, we introduce the external
unlabelled dataset to deal with this problem.

Since there may be noisy examples in the LP and unla-
beled data, we have to select reliable instances from them
in order to use these data to augment our classifier. The
detailed filtration is described in the "Method" section.
We list the selected instances including 'selected likely
positive' and 'selected likely negative' instances in Table 2.

Step 4: Exploiting likely-positive and negative data
The next step is to integrate the selected likely data into the
training set to build the final model. Here, we employ and
compare two integration strategies: 1) directly mixing the
selected likely data with the original training data, called
a 'mixed model'; or 2) building an ancillary model with

Table 1: Datasets used in our experiment

Dataset Size (# of abstracts)

Training True positive (TP) 3,536
True negative (TN) 1,959
Likely-positive (LP) 18,930

Unlabeled (U) 105,000
Test Positive 338

Negative 339
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these likely data and encoding their prediction as features
in the final model, called a 'hierarchical model'. The
details of these two strategies can be found in the "Meth-
ods" section.

Evaluation metrics
In this paper, we employ the official evaluation metrics of
BioCreAtIvE II, which assess not only the accuracy of clas-
sification but also the quality of ranking of relevant
abstracts.

Evaluation metrics for classification
The classification metrics examine the prediction out-
come from the perspective of binary classification. The
value terms used in the following formulas are defined as
follows: True Positive (TP) represents the number of cor-
rectly classified relevant instances, False Positive (FP) the
number of incorrectly classified irrelevant instances, True
Negative (TN) the number of correctly classified irrelevant
instances, and finally, False Negative (FN) the number of
incorrectly classified relevant instances.

The classification metrics used in our experiments were
precision, recall and F-measure. The F-measure is a har-
monic average of precision and recall. These three metrics
are defined as follows:

Evaluation metrics for ranking
Curation of PPI databases requires a classifier to output a
ranked list of all testing instances based on the likelihood
that they will be in the positive class, as opposed to only
a binary decision. The curators can then either specify a
cutoff to filter out some articles on the basis of their expe-
rience, or give higher priority to more highly ranked
instances.

The ranking metric used in our experiments is AUC, the
area under the receiver operating characteristic curve
(ROC curve). The ROC curve is a graph of the fraction of
true positives (TPR, true positive rate) vs. the fraction of

false positives (FPR, false positive rate) for a classification
system given various cutoffs for output likelihoods, where

When the cutoff is lowered, more instances are considered
positive. Hence, both TPR and FPR are increased since
their numerators become larger but their denominator,
denoting the total number of positive instances, remains
constant. The more positive instances are ranked above
the negative ones by the classification system, the faster
TPR grows in relation to FPR as the cutoff descends. Con-
sequently, higher AUC values indicate more reliable rank-
ing results.

Difference between F-Measure and AUC
F-Measure measures a classifier's best classification per-
formance. On the other hand, AUC measures the proba-
bility of a threshold classifier that it rates a randomly
chosen positive sample higher than a randomly chosen
negative sample. [17,18] AUC is more suitable for appli-
cations that require ranking as it provides a measure of
classifier performance that is independent of a cutoff
threshold. Therefore, F-Measure tends to measure the clas-
sifier's performance on a specific threshold while AUC
tends to measure a classifier's overall ranking ability. The
importance of F-Measure and AUC depends on the appli-
cation. For filtering, F-Measure is more important. For
ranking, AUC is more suitable.

Results
Exploiting likely-positive and negative data
In this section, we examine the performance improve-
ment brought by exploiting unlabeled and likely labeled
data. We use the initial model, which is only trained on
TP+TN data (see Figure 2), as the baseline configuration.
To exploit unlabeled data and likely labeled data, we con-
struct two different models – the mixed model and the
hierarchical model. The construction procedures of these
two models are detailed in the "Methods" section.

Figures 3 and 4 compares the F-Measures and AUC scores
of the three models. In order to focus on a comparison of
how to exploit likely-positive and negative data, we only
use the most common weighting schemes: Binary, BM25
and TFIDF. These figures show that irrespective of the
weighting scheme used, the hierarchical model generally
has higher F-measures while the mixed model has higher
AUCs. Also, regardless the weighting scheme, the initial
model always has the worst AUC value, meaning that its
ranking quality is also the worst. These results suggest that
exploiting LP*+LN* data can refine the ranking quality
effectively, which is critical for database curation.
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Table 2: The selected likely datasets

Dataset Size (# of abstracts)

Selected Likely-positive (LP*) 8862
Selected Likely-negative (LN*) 10000
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Employing variant term weighing schemes
In this section, we demonstrate the efficacy of the BM25
weighting scheme by comparing it with others. We also
compare it with BioCreAtIvE's rank 1 system[13]. As
shown in Figure 5, BM25 outperforms other weighting
schemes in terms of F-measure within the hierarchical
model. However, in terms of AUC (see Figure 6), TFBRF
generally performs best. Therefore, we can conclude that
if the classification model only serves as a filter, the hier-
archical model with BM25 is the best choice. However, to
be used as an assistant tool to help database curators, the
mixed model with TFBRF is most appropriate.

Another notable result is that TFIDF, which is considered
an effective term-weighting scheme in many TC and IR

systems [19,20] does not significantly outperform others
in this PPI-TC task. This is not surprising. There are many
infrequent terms in the biomedical literature such as the
names of chemical compounds, species and some pro-
teins. These proper nouns appear rarely in publications,
which gives them undue emphasis in the TFIDF weight-
ing. However, these proper nouns, especially non-protein
names, are not directly related to PPI, raising the risk of
over-fitting.

Discussion
TFRF vs. TFBRF
Traditional term weighting schemes such as TFRF ignore
term frequencies other than target terms in positive or
negative documents and emphasize terms that are more
frequent in the positive than the negative documents

Impact of adding likely data on different term weighting schemes (AUC)Figure 6
Impact of adding likely data on different term weighting 
schemes (AUC). The rank 1 setting denotes the highest AUC 
among all participants in BioCreAtIvE-II IAS.

Impact of adding likely data on different term weighting schemes (AUC)Figure 4
Impact of adding likely data on different term weighting 
schemes (AUC).

Impact of adding likely data on different term weighting schemes (F-measure)Figure 3
Impact of adding likely data on different term weighting 
schemes (F-measure).

Impact of applying different term weighting schemes (F-meas-ure)Figure 5
Impact of applying different term weighting schemes (F-meas-
ure). The rank 1 setting denotes the highest F-measure 
among all participants in BioCreAtIvE-II IAS.
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because of their hypothesis that those ignored terms are
always much greater; that is, the proportion of positive
instances in the training set is very small. However, this is
not the case in our PPI-TC problem. We have a large
number of reliable and likely positive training instances,
and a nearly equivalent number of negative instances.
Hence, we create a new weighting function that considers
all four values. This new function is called balanced relative
frequency (BRF) because it is similar to the relative fre-
quency (RF) of Lan et al. In our formula, BRF takes into
account the number of documents that do not contain the
target word while RF does not. Detailed formulas are
described in the "Method" section.

Mixed vs. hierarchical models
As we described in the previous section, mixed models are
suitable for ranking purposes whereas hierarchical models
are better for filtering. Here, we discuss the reason why
these two models have divergent behaviors.

For the SVMs of linear kernels, the hierarchical model is
indeed equivalent to finding two separating hyperplanes:

such that the criteria of the SVMs are optimized, where the
former is trained with LP* and LN* and the latter is
trained with TP and TN. Notice that the notions of the
intercepts can be simplified by merging the term b into the
weight vector w and appending a constant, say -1, to the
feature vector x. We can see that the strategy of using the
ancillary model's output as an additional feature is an
effective way to increase its influence.

Unlike in the hierarchical model, in the mixed model, all
instances, whether from the true datasets or the noisy
ones, are mixed together to train a separating hyperplane.
In other words, the training errors on the noisy datasets
are taken into consideration, so the hyperplane is more
robust than that of the hierarchical model, leading to
higher overall ranking ability. However, its F-measure is
lower due a bias for positive data, which results from the
asymmetry in the filtration thresholds applied in selecting
likely negative and positive instances.

Conclusion
The main purpose of this paper is to find a useful strategy
for integrating likely positive data from multiple PPI data-
bases with likely negative data from unlabeled sources.
Our secondary intent is to compare term-weighing
schemes and select that most suitable for converting doc-
uments into feature vectors. Both these issues are essential
for constructing an effective PPI text classifier, which is
crucial for curating databases because a good ranking can

effectively reduce the total number of articles that should
be reviewed given the same number of relevant articles
curated.

In targeting an annotation standard of a specific PPI data-
base, all other resources can be regarded as likely-positive.
In this case, the complicated dataset integration problem
can be converted into an easy filtration. Also, we can
extract abundant likely-negative instances from unlimited
unlabeled data to balance the training data. We demon-
strate that the mixed model is suitable for ranking pur-
poses whereas the hierarchical model is appropriate for
filtering.

Different term-weighting schemes can have very different
impacts on the same text classification algorithm. Being
aware of the potential weakness of unsupervised term-
weighting schemes such as TFIDF, we turn to some popu-
lar supervised weighting schemes and derived a novel one,
TFBRF. The experimental results suggest that TFBRF and
its predecessor, BM25, are favorable for ranking and filter-
ing, respectively. This may be because they consider not
only the frequencies and class labels of the documents
containing the target word, but also those documents that
do not contain it.

With these two strategies, our system has higher F-score
and AUC than the rank 1 system of these metrics in the
BioCreAtIvE-II IAS challenge, which suggests that our sys-
tem can serve as an efficient preprocessing tool for curat-
ing modern PPI databases.

Methods
In the following sections, we first introduce the machine-
learning model used in our system: support vector
machines. Secondly, we illustrate all the weighting
schemes used in our experiments. Thirdly, we describe
how our system filters out ineffective likely-positive data
and selects effective likely-negative data from unlabeled
data. Finally, we explain how we exploit the selected
likely-positive and negative data.

Support vector machines
The support vector machine (SVM) model is one of the
best known ML models that can handle sparse high
dimension data, which has been proved useful for text
classification [20]. It tries to find a maximal-margin sepa-
rating hyperplane <w, ϕ(x)> - b = 0 to separate the training
instances, i.e.,
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where x(i) is the ith training instance which is mapped into
a high-dimension space by ϕ(·), yi ∈ {1, -1} is its label,
ξ(i) denotes its training error, and C is the cost factor (pen-
alty of the misclassified data). The mapping function ϕ(·)
and the cost factor C are the main parameters of a SVM
model.

When classifying an instance x, the decision function f(x)
indicates that x is "above" or "below" the hyperplane. [21]
shows that the f(x) can be converted into an equivalent
dual form which can be more easily computed:

where K(x(i), x) = <ϕ(x(i)), ϕ(x)> is the kernel function and
α(i) can be thought of as w's transformation.

In our experiment, we choose the following linear kernel
according to our preliminary experiment results:

K(x(i), x(j)) = <x(i), x(j)>

Which is equivalent to

ϕ(x(i)) = x(i)

Finally, the cost factor C is chosen to be 1, which is fairly
suitable for most problems.

Term weighting
In the BoW feature representation, a document d is usu-
ally represented as a term vector v, in which each dimen-
sion vi corresponds to a term ti. vi is calculated by a term-
weighting function, which is very important for SVM-
based TC because SVM models are sensitive to the data
scale

In Table 3, we list the symbols representing the number of
positive and negative documents that contain and do not
contain term ti.

With this table, we defined usually term weighting
schemes as follows:

BM25 [15] is a popular supervised weighting scheme
which has been shown to be efficient in recent studies and
tasks on IR. We adopt it to TC due to it was originally
designed for applications with input query, such as
searching or question answering, For BM25, in this paper,
the query frequency QF(·) is always set to 1, so the first
term in the equation is canceled. The main reason we are
interested in this scheme is its last term, log((w/y)·(x/z)),
which places no emphasis on either positive or negative
classes but exploits class label information to examine the
discriminating power of ti. Another characteristic of BM25
is its second term, which (relative to other schemes) de-
emphasizes the frequency of ti.

In addition to above weighting schemes, we propose a
new supervised weighting scheme, TFBRF, as follows:

Datasets
The protein interaction article subtask (IAS) in BioCreA-
tIvE II [13] is the most important benchmark for PPI-TC.
The training set comprises three parts: true positive (TP),
true negative (TN) and likely-positive (LP), as shown in
Table 1. The TP (PPI-relevant) data were derived from the
content of the IntAct [22] and MINT [12] databases,
which are not organism-specific. TN data were also pro-
vided by MINT and IntAct database curators. The LP data
comprise a collection of PubMed identifiers of articles
that have been used to annotate protein interactions by
other interaction databases (namely BIND [2], HPRD
[17], MPACT [23] and GRID [24]). Note that this addi-
tional collection is a NOISY data set and thus not part of
the ordinary TP collection, as these databases might have
different annotation standards from MINT and IntAct
(e.g. regarding the curation of genetic interactions). The
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test set is a balanced dataset, which contains 338 and 339
abstracts for TP and TN respectively.

We randomly selected 105,000 abstracts as our unlabeled
dataset from the dataset used in the adhoc retrieval sub-
task of Genomic TREC 2004. It consisted of 10-year (from
1994 to 2003) published MEDLINE abstracts (4,591,008
records).

Selecting likely-positive and negative instances
The limited training set contains only limited numbers of
true-positive (TP) and true-negative (TN) data. To increase
the generality of the classification model, we make use of
the LP dataset from BioCreAtIvE-II IAS. However, most of
the LP only annotate a selection of all the PPI types
defined in Gene Ontology. This means that abstracts
annotated in that database can only be treated as likely-
positive examples, some of which may need to be filtered
out. Another problem is that there are no negative data or
even likely-negative data in any curation.

Liu et al. [25] provide a survey of these bootstrapping
techniques, which iteratively tag unlabeled examples and
add those with high confidence to the training set.

In the filtering process, two criteria must be considered:
reliability and informativeness. We only retain sufficiently
reliable instances, or the remainder will confuse the final
model.

The informativeness of an instance is also important. We
do not need additional instances if they are absolutely
positive or negative. Deciding their labels is trivial for our
initial classification model. In the terminology of SVM,
they are not support vectors since they contribute nothing
to the decision boundary in training. In testing, their out-
put values by SVM are always greater than 1 or less than -
1, which means they are distant from the separating
hyperplane. Therefore, we can discard such uninformative
instances to reduce the size of the training set without
diminishing performance.

Following these criteria, we now illustrate our filtration
process. The flowchart of the whole procedure is shown in
Figure 2. We use the initial model trained with TP+TN to
label the LP data we collected. Those abstracts in the orig-
inal LP with an SVM output in [γ+, 1] are retained. The
dataset after filtering out irrelevant instances in LP is
referred to as 'selected likely-positive data' (LP*).

The construction of selected likely-negative (LN*) data is
similar. We collect 50 k unlabeled abstracts from the
PubMed biomedical literature database and classify them
by our initial model. The articles with an SVM output in [-
1, γ-] are collected into the LN* dataset.

The two thresholds γ+ and γ- are empirically determined to
be 0 and -0.9, respectively. We use a looser threshold to
filter LP data because of our prior knowledge of their reli-
ability: after all, they have been recorded as PPI-relevant in
some databases.

Exploiting likely-positive and negative data
The final issue is how to utilize these filtered instances.
Here we propose two different strategies. One is to incor-
porate LP* into TP and LN* into LN directly and use the
expanded TP and TN to train a new classification model,
called a mixed model. The other is use LP* and LN* to
construct another model and incorporate its output into
the underlying model. This is called a hierarchical model.

In the mixed model, as shown in Figure 7, the likely data
are directly added back into the training set. This will
enlarge the vocabulary and feature space, and thus
increase the generality as long as the added data are relia-
ble.

The hierarchical model is illustrated in Figure 8. The likely
data (LP* + LN*) are used to train another SVM model,
the ancillary model, which is completely independent of
the original training set. Subsequently, we use the ancil-
lary model to predict TP and TN instances, though their
labels are already known, and these predicted values are
scaled by a factor κ and encoded as additional features in
the final model. In this manner, the final model can
assign a suitable weight to the output of the ancillary
model based on its accuracy in predicting the training set,
which is assumed to be close to the accuracy in predicting
the test set. The scaling factor κ can be regarded as a prior
confidence in the ancillary model.

The flowchart of constructing the mixed modelFigure 7
The flowchart of constructing the mixed model.
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