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Summary 
Purified CD4 + lymph node T cells were sorted into two populations on the basis of their 
expression of CD45RB (CD45RB hi and CD45RB 1~ and injected into congenic severe combined 
immunodeficient (SCID) mice. After a period of time that was dependent on the number of 
cells injected, the SCID mice that received CD45RBhi/CD4 + T cells developed a wasting disease 
that was not seen in SCID mice that received the CD4+/CD45RB 1~ cells or whole lymph node 
cells. At death, SCID mice that received the CD4 +/CD45RB hi cells had increased spleen and 
lymph node cellularity compared with normal SCID mice and SCID mice that received the 
CD4+/CD45RB 1~ T cells. The spleen and lymph node contained CD4 + cells and neither CD8 + 
nor surface immunoglobulin M-positive cells, plus a population of cells that did not express 
any of those markers. At necropsy, the SCID mice that received the CD4 +/CD45RB hi cells 
had significant hyperplasia of the intestinal mucosa with significant lymphoid cell accumulation 
in the lamina propria. Interestingly, mice that received mixtures of whole lymph node or purified 
CD4 * cells with CD4 +/CD45RB ~ cells did not develop weight loss, indicating that the unsepa- 
rated CD4 + population contained cells that were capable of regulating the reactivity of the 
CD4 +/CD45RB hi cells. 

utoaggressive immunological reactivity can be driven by 
CD4 § thymus-derived lymphocytes. For instance, it 

has been demonstrated that experimental autoimmune en- 
cephalomyelitis and diabetes can be induced in normal animals 
by injecting them with CD4 + T cell clones or lines derived 
from animals with autoimmune disease of that particular tissue 
(1-5). Also, T cell reactivity to self-antigens can be demon- 
strated in normal animals by immunizing them with a closely 
related antigen in a unique way or by depleting them of a 
regulatory population (6-8). These data indicate that T cells 
with specificity for self-antigens exist normally, but that their 
reactivity is controlled by immunoregulatory mechanisms. 

It is well appreciated that thymus-derived lymphocytes can 
be categorized according to the cell surface antigens they ex- 
press. This has allowed the classification ofdass I or II MHC- 
recognizing T cells based on their expression of CD8 or CD4 
(9). Also, recent data indicate that virgin and memory T cells 
can be distinguished by their expression of other cell surface 
markers such as CD44 or CD45 (10-12). The ability to as- 

sociate T cell function with the expression of a unique array 
of cell surface determinants is useful in studying the func- 
tion of these populations in isolation as well as in defined 
combinations. For instance, Powrie and Mason (13) have sepa- 
rated CD4 + T cells based on their expression of CD45R 
and injected the resultant subpopulations into congenic, 
athymic (nude) animals. They found that nude rats injected 
with congenic CD45Rhi/CD4 + T cells developed wasting 
disease characterized by inflammatory infiltrates in many 
organs. Rats injected with unfractionated CD4 + cells (a 
mixture of CD45R hi and CD45R l~ cells) did not develop 
wasting disease, suggestive of an immunoregulatory mecha- 
nism that acted to prevent the development of autoimmune 
disease. 

Here we describe similar findings as a result of injecting 
CD4 +/CD45RB hi and CD4 +/CD45RB 1~ T cells into con- 
genic SCID mice. In SCID mice that received the CD4 + / 
CD45RB ~ cells, severe intestinal lesions developed that were 
not observed in the mice that received the CD4 +/CD45RB l~ 
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cells. In addition, SCID mice that received unseparated 
CD4 + cells or a mixture of CD4 + T cells and CD4+/  
CD45RB ~ T cells developed no intestinal lesions. Thus, this 
model system allows the assessment of a unique autoreac- 
tivity in one T cell subpopulation as well as the study of 
the immunoregulatory processes that control such reactivity. 

body weight data are presented as "percent initial body weight,' 
which is the weight of the mouse at the time indicated divided 
by the weight of the mouse on the day of transfer. The data presented 
are from individual experiments, unless otherwise indicated, that 
have been repeated at least three times with similar results. Statistical 
significance between the groups was assessed using the Student's 
t test. 

Materials and Methods 
Mice. Normal C,B-17 and congenic C.B-17 (sc/d/sc/d) mice were 

obtained from Taconic Farms, Inc. (Germantown, NY) (14). The 
mice were maintained in specific pathogen-free conditions and fed 
autoclaved food and water. The animals used in these studies were 
female and between 7 and 18 wk of age. 

mAbs and Imraunofluorescent Staining. The mAbs used in this 
study were: CD4-PE (clone GK1.5); CD8-FITC (clone 53.8.16) 
(both obtained from Becton Dickinson & Co., Sunnyvale, CA); 
CD45RB-FITC (done 23.G.2) (15); and B220-FITC (clone RA3- 
6B2), (both obtained from PharMingen, San Diego, CA). Goat 
anti-mouse IgM-PE was obtained from Southern Biotechnology 
Co. (Birmingham, AL). For immunofluorescent staining, cells were 
incubated with the directly conjugated mAbs in a staining buffer 
containing anti-FcR3~II (2.4G2 mAb) and 0.5% normal mouse sera 
(to minimize Fc receptor-mediated binding) for 30 min at 4~ 
The cells were washed twice and analyzed. Cells stained with FITC- 
or PE-conjugated mouse or rat IgG2 (PharMingen, San Diego, CA) 
were used as negative controls. For assessment of B cells numbers, 
cells were incubated with 1% normal goat serum for 15 min, 
washed, and incubated with the PE-conjugated goat anti-mouse 
IgM sera. The cells were washed and incubated for 15 min with 
1% normal mouse serum, and washed and incubated for 30 min 
with FITC-B220 mAb. 

Flow Cytometry. Immunofluorescent analysis was performed on 
a FACScan | flow cytometer (Becton Dickinson & Co.). Negative 
controls consisting of cell preparations stained with FITC- and PE- 
conjugated rat IgG2a were used to set background gates. Cells 
stained with single-color reagents were used to set the appropriate 
compensation levels. For analysis, at least 10,000 events were ana- 
lyzed. Cell sorting was performed on a FACStar Plus | (Becton Dick- 
inson & Co.). 

Preparation of CD4+ /CD45RB + Cells. Lymph nodes (axillary, 
inguinal, and mesenteric) from normal C.B-17 mice were dissected 
and teased into a cell suspension. After washing, the cells were 
incubated in a mixture of culture superuatants from the following 
hybridomas: 83-12-5 (anti-Lyt-2.2; a gift from Dr. J. Bluestone, 
University of Chicago, Chicago, IL) and 25-9-17 (anti-I-Aa; Amer- 
ican Type Culture Collection, Rockville, MD) for 30 min at 4~ 
After washing, the cells were incubated with rabbit complement 
(diluted 1:15, 1 ml/107 cells; Pel-Freeze Biologicals, Rogers, AR) 
for 30 rain at 37~ After washing, viable cells were purified on 
a discontinuous density gradient (Lympholyte-M; Cedarlane Labora- 
tories, Hornsby, Ontario, Canada). The cells were stained with 
anti-CD4 and anti-CD45RB mAbs as described above. 

Histology. Small pieces of tissue were fixed in phosphate-buffered 
10% formalin. The tissue was embedded in paraf~n, sectioned, and 
stained with hematoxylin/eosin. 

Experimental Design. Sorted or whole populations of lymph 
node CD4 + T cells were washed, resuspended in cold PBS, 
counted, and injected intravenously via the retro-orbital sinus in 
lightly anesthetized C.B-17 SCID mice. The recipient mice were 
between 6 and 8 wk of age. The mice were individually marked 
and weighed. Body weights were measured weekly thereafter. The 

Results 

CD45RB h~ but Not CD45RB ~ CD4 + T Cells Induce Wast- 
ing Disease When Injected into Congenic C.B-17 SCID 
Mice. Purified CD4 + lymph node T ceils were sorted ac- 
cording to their expression of CD45RB (Fig. 1) and injected 
into congenic SCID mice, and their body weights were mea- 
sured weekly. In Fig. 2, it can be seen that SCID mice that 
received 2 x 10 s whole CD4 + cells or CD4 + cells expres- 
sing low levels of CD45RB continued to gain weight over 
the course of the experiment, whereas the SCID mice that 
received an identical number of CD45RB hi cells developed 
a wasting syndrome after a latent period of 20-30 d. The 
weight loss was progressive, irreversible, and eventually resulted 
in the death of the animal (data not shown). The weight 
loss was associated with noticeable diarrhea in the SCID mice 
that received the CD4+/CD45RB hi T cells. The relation- 
ship between the number of CD45RB hi cells and the devel- 
opment of the wasting disease was determined by injecting 
different numbers of CD4+/CD45RB hi cells into SCID 
mice. As can be seen in Fig. 3, there was a direct relationship 
between the number of CD4+/CD45RB hi T cells trans- 
ferred and the period of time until the development of weight 
loss. Injection of 106 cells resulted in the development of dis- 
ease 3 wk after transfer, while injection of 2 x 10 s ceils in- 
duced weight loss starting ~5 wk after transfer. Even injec- 
tion with as few as 40,000 calls resulted in significant weight 
loss 7 wk after transfer. 
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Figure 1. Immunofluorescent profiles of lymph node T cells stained 
with anti-CD4 and anti-CD45RB and the sorted subpopulations. CD4 + 
lymph node T cells from C.B-17 mice were prepared as described in Materials 
and Methods, stained with anti-CD4 and anti-CD45RB mAbs, and sorted 
into the depicted subpopulations. 
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Figure  2. Body weights of C.B-17 SCID mice injected with congenic 
CD45R.B hi or CD45RBWCD4 § T cells or unsorted CD4 + T cells. The 
CD4 + T cells were prepared as described and sorted into CD45RB~ or 
CD45RB l~ subpopulations. 2 • 105 cells were injected intravenously into 
C.B-17 SCID mice. The CD4 + population consisted of stained (anti-CD4 
and anti-CD45RB mAbs) but unsorted CD4 + T cells. There were three 
mice per group. The initial body weights averaged 17.6 g. The differ- 
ence in body weight between the SC1D mice that received the CD4 + / 
CD45RB hi cells and CD45RB I~ cells was significant ~ < 0.05) on days 
38, 45, and 52. 

Analysis of SCID Mice That Received CD4 +/CD45RB hi or 
CD4+/CD45RB t~ T Cells. The cellularity and phenotypic 
composition of the spleen and lymph nodes of the SCID mice 
that received congenic transfers of CD4+/CD45RB hi or 
CD45KB 1~ T cells was determined. SCID mice that received 
either 2 x 10 s CD4 +/CD45RB hi or CD4 +/CD45RB 1~ 

were killed 6 wk after transfer. At this time the body weight 
of SCID mice that received the CD45IL8 hl cells averaged 
87% of their initial body weight, while the body weight 
of SCID mice that received the CD45RB 1~ cells averaged 
108% of the initial body weight (data not shown). The cel- 
lularity and phenotype of the spleens and lymph nodes of 
these animals are shown in Table 1. Here it can be seen that 
SCID mice that received the CD45RB hi cells had increased 
splenic and lymph node cellularity as compared with SCID 
mice that had received the CD45RB 1~ cells and normal 
SCID mice. The cell numbers presented are from pooled lymph 
nodes (axillary, inguinal, and mesenteric), but in other ex- 
periments where lymph node cellularity was assessed indi- 
vidually, the mesenteric lymph node accounted for >80% 
of the total lymph node cellularity. The lymph node cellularity 
from unmanipulated SCID mice is negligible in our colony. 
Also, in our study of mice, which received different popula- 
tions of CD4 + cells, thymic cellularity was never increased 
over that of unmanipulated SCID mice (data not shown). 
Phenotypically, there were significant numbers of CD4 + 
cells in the SCID mice that received either the CD4+/ 
CD45RB hi or CD45RB 1~ cells, and the percentages were 
always greater in the mice that received the CD4 + / CD45- 
RB hi cells. In these mice there were negligible numbers of 
CD8 + or surface (s)IgM + cells. Representative histograms 
depicting the CD4/CD8 profiles from the lymph node cells 
of these mice are shown in Fig. 4. The identity of the re- 
maining cells, which were the majority of the spleen and a 
significant proportion of the lymph nodes, has not yet been 
determined. Also, it is of interest to note that although equal 
numbers (2 x 10 s) of CD4 +/CD45RB hi or CD4 +/ 
CD45RB 1~ cells were transferred into the SCID mice in the 
experiments shown in Table 1, the total number of CD4 + 
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Figure  3. Body weights of C.B- 
17 SCID mice injected with various 
numbers of congenic CD4 § / 
CD45RB ~ cells or unsorted CD4 § 
T cells. The CD4 § T cells were 
prepared as described and the 
CD45R.B hi subpopulation was 
purified by sorting. C.B-17 SCID 
mice were injected intravenously 
with the indicated number of 
CD4+/CD45RB hi T cells or 10~ 
purified, stained, but unsorted 
CD4 + T cells. There were four 
mice per group. The initial body 
weight of the SCID mice averaged 
18.2 g. Compared with the mice 
that received the CD4 + cells, the 
body weights of the mice that re- 
ceived 10 ~ CD45RB hi cells were 
significandy different on days 15-51. 
For the mice that received 0.2 x 
106 cells the differences were 
significant on days 43 and 51. For 
the mice that received 0.04 x 106 
cells the difference was significant 
on day 51 only. 
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Figure 4. CD4 and CD8 immunofluorescent profiles 
in C.B-17 SCID mice that had received congenic 
CD451LB hl or CD45KB l~ CD4 + T cells. C.B-17 SCID 
mice were injected with 2 x 105 sorted CD45KB m or 
CD45KB lo CD4 + T cells. After 6 wk, the mice were 
killed. The data are representative histograms. 

calls recovered from the spleens and lymph nodes of these 
mice indicated that the CD4 § cells had expanded signi- 
ficantly (Table 2). The number of CD4 + cells recovered 
from the mice that received the CD45KB hi cells was about 
fivefold greater than that recovered from the mice that re- 
ceived the CD45KB l~ cells and ,~40-fold greater than the 
number originally injected (2 x 105). Over many experi- 
ments, the number of CD4 + cells harvested from the SCID 
mice that received the CD4 +/CD45R.B m T cells was always 
greater than the number harvested from the mice that re- 
ceived the CD4+/CD45P, B l~ T cells. The CD45KB pheno- 
type of these cells was also determined (Fig. 5). Here it can 
be seen that the CD4 § cells from the lymph nodes of the 
SCID mice were invariably CD45KB l~ regardless of their 
phenotype at the time of transfer. This was also true of the 
CD4 + cells present in the spleen (data not shown). Also, 
these cells were CD3+/TCK od/$ +, IL-2K-, and MEL- 
14 l~ There were no cells positive for expression of TCK 3~/~ 
in the spleen or lymph nodes of these mice (data not shown). 

Injection of CD4 +/CD45RB hi T Cells Mixed with Unfrac- 
tionated CD4 + Cells Prevents the Development of Wasting Dis- 
ease. The previous observation that SCID mice that were 

injected with stained but unsorted CD4 + cells did not de- 
velop wasting disease (Figs. 2 and 3) suggested that the 
CD45ILB 1~ cells were exerting a regulatory influence on the 
CD45RB hi ceUs that prevented the development of wasting 
disease. This was further assessed by injecting equal numbers 
of sorted CD4 +/CD45ILB hl cells and purified, unstained 
CD4 + cells. As can be seen in Fig. 6, SCID mice that were 
injected with CD4 +/CD45R.B hi ceils developed the typical 
wasting disease, however, the SCID mice that received the 
same number of CD4 +/CD45KB hi cells mixed with an 
equal number of purified, unstained CD4 + cells did not de- 
velop wasting disease. 

Histopathology of Tissues from SCID Mice Injected with 
CD4+/CD45RB hi T Cells. To determine the cause of 
the wasting disease in SCID mice that received CD4+/ 
CD45P, B hi calls, the mice were killed after statistically sig- 
nificant weight loss developed and histological evaluation of 
tissue sections from lung, liver, kidney, spleen, and large and 
small intestine was performed. Of these tissues only the in- 
testines had demonstrable lesions (Fig. 7). At gross examina- 
tion, both the small and large intestine were diffusdy thick- 
ened and semirigid in the SCID mice that received the 

Table 1. Cellularity and Phenotype of C.B.-17 SCID Mice Injected with CD4+/CD45RB hi or CD45RB ~ Congenic T Cells 

Spleen Lymph node 

Cellularity CD4 + CD8 + sIgM + Cellularity CD4 + CD8 + sIgM + 

x lO -6 % % % • -6 % % % 

C.B-17 112.4 (5.3) 14.3 (2.3) 4.6 (1.8) 65.3 (4.6) 36.9 (3.7) 48.2 (2.9) 14.1 (2.1) 29.8 (2.6) 

C.B-17 SCID 9.6 (1.8) <0.1 <0.1 <0.1 ND ND ND ND 

CD45RBm'-*SCID 57.2 (8.7) 8.6 (3.7) <0.1 <0.1 3.9 (1.2) 69.3 (7.1) <0.1 <0.1 

CD45RBI~ 18.3 (3.2) 3.5 (0.8) <0.1 <0.1 1.8 (0.9) 48.7 (3.1) <0.1 <0.1 

The data represent the arithmetic average (SEM) of the indicated groups of mice. The data are pooled from two experiments with a total of six 
animals per group. Animals were assessed individually. Immunofluorescent staining and flow cytometry were done as described. 
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Figure 5. CD4 and CD45RB immunofluorescent 
profiles of lymph node cells from control C.B-17 or C.B- 
17 SCID mice that had been injected with congenic 
CD45RB hi or CD45RB[o/CD4 + T cells. The data are 
derived from the same experiment as shown in Fig. 4. 
The data are representative histograms. 

CD4+/CD45RB hi cells. Microscopic examination of the 
small intestine revealed normal villous structures, but mul- 
tifocal accumulations of moderate numbers of lymphocytes 
and macrophages in the lamina propria and, rarely, in the 
submucosa. The large intestine was markedly hyperplastic 
due to a four to five times increase in mucosal thickness rela- 
tive to the control. This was attributable to a combination 
of increased numbers of intestinal epithelial cells and sup- 
porting stromal elements as well as diffuse dense accumula- 
tions of lymphocytes and macrophages (along with dusters 
of neutrophils) within the lamina propria. Also, contributing 
to this change was mild hyperplasia of the muscularis mucosa 
and increased prominence of the submucosa due to accumu- 
lation of mixed inflammatory cells and dilated lymphatics. 
The overall increase in thickness and density of the intestinal 
wall resulted in a significant narrowing of the intestinal lumen. 
Sections from the intestines of the SCID mice that received 
either CD4+/CD45RB l~ cells or a mix of whole CD4 + T 
cells and sorted CD4 +/CD45RB hi cells revealed generally 
similar but substantially less severe histological lesions. 

Discuss ion  

The data presented here described distinct functional capa- 
bilities between subpopulations of CD4 + T cells separated 
on the basis of their expression of CD45RB. Thus, CD4 + / 
CD45RB hi T cells, when transferred into a congenic SCID 

Tab le  2. Total Number of CD4*T Cells in SCID Mice That 
Were Injected with CD4 +/CD45RB hi or CD45RB t~ T Cells 

CD4 + cells 

Spleen Lymph node Total 

x lO-6 

CD45RBhi"~SCID 4.92 2.71 7.63 

CD45RBI~ 0.63 0.88 1.51 

The values are the absolute numbers of CD4* T cells as calculated from 
the data in Table 1 by multiplying the average percent positive cells by 
the average cellularity and dividing by 100. 

host, induce a wasting disease with a variable latency period 
that is dependent on the number of cells transferred. Neither 
identical numbers of whole lymph node cells nor purified 
CD4+/CD45RB l~ cells induced weight loss. The number 
of CD4 + cells recovered from the SCID mice that had re- 
ceived either CD4 +/CD45RB ~ or CD45RB I~ cells was sig- 
nificantly greater than the number injected, suggesting that 
they had undergone significant expansion. This number does 
not include lymphocytes from the intestinal mucosa, where 
histologically significant numbers appear to be present. The 
calls recovered from SCID mice that had been injected with 
either CD4 + / C D 4 5 R B  hi or CD45RB l~ T cells were invari- 
ably CD45RB l~ This indicates that the initial CD45RB hi 
cells decreased their expression of CD45RB. This is consis- 
tent with an existing state of activation and expansion in the 
mice since it has been shown that the levels of CD45RB de- 
crease upon activation (11, 16). We have not definitively proven 
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Figure 6. Body weights of SCID mice that were injected with 
CD4 +/CD45RB hl cells, CD4 + cells, or a mixture of the two popuhtions. 
SCID mice were injected with 2 x 10 s purified CD4 +/CD45P,.B hi cells, 
2 x 10 s purified, unstained CD4 + calls, or a mixture of equal numbers 
of CD4+/CD45RB hi calls and purified, unstained CD4 + cells (2 x 10 s 
each for a total of 4 x I0 s cells per animal). There were four mice per 
group. The average body weight of the SCID mice on day 0 was 17.8 
g. The differences in body weight between the SCID mice that received 
the CD45RB hl cells and the purified CD4 + cells or the mixture were 
statistically significant (p < 0.05) on day 42 through the termination of 
the experiment. 
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Figure 7. Intestinal tissue from normal SCID 
mice or SCID mice that were injected with 
CD4 +/CD45RB ~ cells. Photomicrographs are of 
representative sections from small and large intes- 
tines of normal SCID mice and SCID mice injected 
with CD4+/CD45RB hi cells 6 wk earlier. The 
magnifications are shown. 

that the CD4 § cells harvested after transfer into the SCID 
mice are all of donor origin. However, we believe that a 
significant component of host origin is unlikely because: (a) 
the SCID mice in our colony have a very low incidence of 
leakiness (17); (b) expansion of host cells would have to be 
specifically in the CD4 + population since there were neg- 
ligible numbers of CD8 + and slgM + cells in the mice; and 
(c) at no time point was there any evidence of thymic repopu- 
lation. 

The transfer of CD4/CD45RB hs cells into congenic SCID 
mice resulted in a significant hyperplasia of the intestinal epi- 
thelium that was seen to a much lesser extent when either 
CD4 § 1~ cells or normal lymph node cells were 
transferred into the SCID mice. The intestinal mucosa in the 
mice that received CD4+/CD45RB 1~ or CD4 + cells was 
slightly affected and this may explain the occasional, slight, 
but temporary decrease in the body weight of these mice (for 
instance, Fig. 2, day 24; Fig. 3, day 30). Thus, the mecha- 
nism that counteracts the stimulation of significant intestinal 
epithelial cell growth may allow or even require some level 
of autoreactivity. 

The epithelial lining of the intestinal tract is normally in 
a continual state of renewal that is characterized by a high 
rate of cell turnover. However, the growth of intestinal epi- 
thelial cells can change in response to different stimuli such 

as inflammation or food deprivation (reviewed in reference 
18). The drastic hyperplasia seen in the SCID mice that re- 
ceived the CD45RB~/CD4 + T cells would lead to the pos- 
tulate that these cells are somehow driving the increased 
proliferation of the intestinal epithelial cells. It has been shown 
that T cell-derived products can stimulate intestinal epithe- 
lial cell proliferation (19) and, indeed, T cell activation in 
graft-vs.-host reaction in mice leads to significant changes 
in the intestinal epithelium that include an initial period of 
epithelial hyperplasia followed by a destructive enteropathy 
characterized by villous atrophy (20, 21). These results fur- 
ther demonstrate that activated T cells can induce patholog- 
ical changes in the intestinal mucosa. It is also of interest 
to note that in the SCID mice that received the CD4 § / 
CD45RB hi cells, the histological changes that we have ob- 
served are characterized by epithelial and crypt hyperplasia. 
We have not observed a destructive enteropathy that is char- 
acteristic of graft-vs.-host disease and inflammatory bowel 
disease. 

It is not known if the lesions we have observed in these 
mice are an expression of an autoimmune disease, that is, an 
immune response to a self-antigen, or an immune reaction 
to environmental antigens. Since the pathology we observed 
is limited to an area continually in contact with antigen (e.g., 
intestinal bacteria), it is possible that the T cell reactivity is 
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driven by these antigens. The gut-associated lymphoid tissue 
is a complex mixture of different cells types and unique tissue 
architecture (22, 23). Normally, lymphoid cells contained 
within the intestinal epithelial layer, the lamina propria, and 
peyer's patches function to maintain the integrity of the gut 
epithelial barrier and to respond to pathogens and parasites 
that might be present within the intestinal lumen. In the 
SCID mouse, intestinal epithelial lymphocytes have been de- 
scribed, but these cells are negative for CD3 expression as 
well as V3~7 mRNA (24). Thus, in SCID mice the contin- 
gent of lymphoid elements present in the gut is not similar 
to that in normal mice and it is not known what effect this 
has on the integrity of the epithelial barrier. Evidence exists 
that in mice treated with immunosuppressive agents the rate 
of bacterial translocation is increased (25). Others have shown 
that suppressing immune function (by antithymocyte Ig treat- 
ment) in mice leads to increased survival of bacteria that had 
translocated to the mesenteric lymph node (26). This was 
decreased by treating the mice with IL-2. Also, the number 
of TCIL ex/fl + T cells present in the intestinal epithelial 
layer of germ-free animals was increased after bacterial coloni- 
zation of the gut, suggesting a positive role of these cells 
in maintaining the epithelial barrier (27). Thus, the absence 
of the normal array of gut-associated lymphoid tissue in the 
SCID mouse may result in greater levels of bacterial trans- 
location or survival. Consequently, the introduction of 
CD4 +/CD45R.B hi cells may lead to an augmented, unregu- 
lated reaction toward higher levels of luminal-derived bac- 
teria or bacterial products. Cytokines produced by these T 
cells might then stimulate intestinal epithelial hyperplasia. 

Also, it is known that infection of mice with Citrobacter 
freundi induces colonic epithelial hyperplasia, indicating that 
an abnormal or altered intestinal bacterial flora can induce 
similar histological changes (28). Characterization of intes- 
tinal bacteria from these mice failed to reveal the presence 
of C. freundi. In addition, the colony in which these mice 
were housed has consistently tested negative for C. freundi. 
Thus, the exact stimulus for the changes seen in the SCID 
mice that received the CD4 +/CD45RB hi cells is unknown, 
however, it does not appear to be associated with a unique 
infectious agent. 

These studies also revealed an immunoregulatory process 
in that whole CD4 § cells when cotransferred in equal 
numbers with the CD45RB hi cells prevented the develop- 
ment of the wasting disease. It is possible that the im- 
munoregulatory population is contained in the CD45RB l~ 
population since the transfer of stained, but unsorted, CD4 + 
T cells, which can be considered a mixture of CD45RB hi 
and CD45RB 1~ cells, did not induce wasting disease. This 

would be consistent with the findings of Powrie and Mason 
(13) who found that the transfer of unseparated CD4 + T 
cells did not induce autoimmune disease. 

The ability of one T cell population to modulate the au- 
toreactivity of a second population has been observed in other 
systems as well. For instance, the development of multiorgan 
autoimmunity in adult mice that were neonatally thymec- 
tomized can be prevented by the transfer of normal adult T 
cells (29). The transfer of normal CD4 + cells has been 
shown to inhibit the development of diabetes in NOD mice 
and BB rats (30-32). PVG.RT1 u rats developed diabetes after 
thymectomy and repeated low dose "y irradiation, and dis- 
ease development could be inhibited by injecting the rats with 
congenic CD4 +/CD45RC lo T cells (33). Also, the develop- 
ment of fatal autoimmune disease in irradiated, bone 
marrow-reconstituted rats given cyclosporine could be pre- 
vented by the cotransfer of lymphoid cells from normal donors 
(34). To date, the mechanism of protection conferred by the 
administration of normal cells in these different systems is 
unknown, and though it is not clear if the pathology de- 
scribed here in the SCID mice receiving CD4 § hi 
cells represents reactivity to an autoantigen, it is clear that 
whole CD4 + cells can counteract this reactivity. 

Since it is known that CD4 § ~ and CD45RB l~ 
T cells produce different cytokines after stimulation, it is pos- 
sible that pathology and the immunoregulation seen in the 
experiments shown here reflect a difference in the types or 
amounts of cytokines produced by the different T cell sub- 
populations (11, 12). For instance, upon activation, the 
CD45RB hi cells could produce cytokines that stimulate ep- 
ithelial cell hyperplasia and, in the absence of counter- 
regulation, results in compromised intestinal function with 
consequent diarrhea and weight loss. In contrast, the im- 
munoregulatory population might produce a distinct profile 
of cytokines that either negates the stimulatory effect of those 
produced by the CD45RB hi cells on the intestinal epithelial 
cells or prevents the CD45RB h~ cells from producing those 
cytokines. Studies to determine the types of cytokines pro- 
duced in the lymph node, lamina propria, and intestinal epi- 
thelial lymphocytes from SCID mice that received the var- 
ious T cell subpopulations are in progress. 

In summary, the results presented here, in which the transfer 
of congenic CD4 § hi into SCID mice produced a 
wasting syndrome characterized by severe hyperplasia of the 
intestinal epithelial cells, and the prevention of the syndrome 
by cotransferring whole CD4 + cells, describe a unique 
system for the investigation of intestinal immunity and im- 
mune regulation. 
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