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Abstract
Recent evidence indicates that humans can learn entirely new information during sleep. To elucidate the neural dynamics
underlying sleep-learning, we investigated brain activity during auditory–olfactory discriminatory associative learning in
human sleep. We found that learning-related delta and sigma neural changes are involved in early acquisition stages, when
new associations are being formed. In contrast, learning-related theta activity emerged in later stages of the learning
process, after tone–odor associations were already established. These findings suggest that learning new associations
during sleep is signaled by a dynamic interplay between slow-waves, sigma, and theta activity.
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Introduction
The possibility to learn during sleep has intrigued humanity for
over a century. In his 1911 science fiction novel “Ralph 124C 41+”,
Hugo Gernsback described the Hypnobioscope, a device that trans-
mits words directly to the sleeping brain such that they would be
fully remembered in the next morning. However, decades of sci-
entific efforts to teach sleeping humans new verbal information
have been largely unsuccessful (for review Peigneux et al. 2001).
Recently, the question of learning during sleep was revisited,
and by applying simple forms of learning, such as associative
and perceptual learning, it has been found that humans (Arzi
et al. 2012, 2014; Ruch et al. 2014; Andrillon and Kouider 2016;
Andrillon et al. 2017; Züst et al. 2019) and animals (De Lavilléon
et al. 2015) can learn entirely new information during sleep. Yet,
the brain mechanisms enabling learning of novel information

during sleep are still unknown. Here, we aimed to identify brain
processes supporting discriminatory associative learning during
sleep.

We hypothesized that main brain sleep signals associated
with consolidation and reactivation of information learned in
awake state (Diekelmann and Born 2010; Oudiette and Paller
2013): slow-waves (delta: 0.5–4 Hz) (Marshall et al. 2006; Rasch
et al. 2007; Antony et al. 2012), theta (4–7 Hz) (Schreiner and
Rasch 2015; Schreiner et al. 2015, 2018) and spindles (sigma: 11–
16 Hz) (Schabus et al. 2004; Tamminen et al. 2011; Laventure et al.
2016; Cairney et al. 2018), will be associated with learning novel
associations during sleep. To test this hypothesis, we analyzed
electroencephalograph (EEG) activity recorded during auditory–
olfactory partial reinforcement conditioning in nonrapid eye
movement (NREM) sleep (Fig. 1a–d). On reinforced trials, each
tone (400 or 1200 Hz) was paired with either a pleasant or an
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unpleasant odor. Tone–odor pairings were counter balanced
across participants. On nonreinforced trials, either tone was
presented without an ensuing odor, enabling the measure of
learning-related neural correlates without the interference
of odor. Stimuli were presented in blocks, each consisted of
four reinforced trials and two nonreinforced trials (for detailed
experimental design see Materials and Methods, Supplementary
Fig. 1 and Supplementary Table 1). The conditioned response
was the tone-induced sniff response, a behavioral change in
nasal airflow in response to tone–odor pairings. Invariably,
unpleasant odors drove smaller sniffs than pleasant odors (Arzi
et al. 2012). Sleeping participants that learned these tone–odor
associations subsequently showed modulated sniffs in response
to tones alone, in accordance with the odor valence associated
with the tone during sleep (behavioral data published in Arzi
et al. 2012). We found that learning-related delta and sigma
activity are involved at early acquisition stages of the learning
procedure, while learning-related theta activity emerges only
after the discrimination is established, suggesting that timely
modulation of slow-waves, sigma and theta rhythms during
learning in sleep, may prompt the encoding and stabilization of
new associative memories.

Materials and Methods
The data used here were collected as part of a study that
examined whether humans can learn new associations during
sleep and was published independently (Arzi et al. 2012). Thus,
detailed information about participants, experimental design,
data acquisition, and behavioral results can be found in the
original article.

Participants

Forty-three healthy participants (mean age = 25.2 ± 3.2 years, 17
females) gave informed consent to procedures approved by the
Weizmann Institute Ethics Committee. Participant exclusion
criteria included use of medication, history of sleep disorders
and nasal insults, or insufficient sleeping time. Out of these, 28
participants were presented with the auditory–olfactory condi-
tioning during both NREM and REM sleep and 15 participants
during NREM sleep only. Participants were unaware of specific
experimental aims and conditions.

Stimuli

Pleasant (shampoo or deodorant) and unpleasant (rotten fish or
carrion) odorants were presented in a nasal mask by computer-
controlled air dilution olfactometer from an adjacent room
(stimulus duration = 3 s, constant flow = 6 L/min). Tones (400,
800, and 1200 Hz, duration = 1 s, at a nonarousing 40 dB) were
presented by a loudspeaker ∼ 2 m from participants’ heads.

Procedures

Participants arrived at the sleep laboratory at a self-selected
time, based on their usual sleep pattern, typically at 11:00 PM.
After fitting of the polysomnography devices (Iber et al. 2007),
subjects were left alone in the darkened room to be observed
from the neighboring control room via infrared video cam-
era. The experimenters observed the real-time polysomnogra-
phy reading and, after they determined that the subject had
entered the desirable sleep stage, they initiated the experi-
mental protocol. The conditioned and unconditioned stimuli

were partially reinforced at a ratio of 2:1; on reinforced trials
(two-thirds of trials), each 1-s auditory-conditioned stimulus
(either 1200 or 400 Hz) was triggered by inhalation and paired
with a 3-s olfactory unconditioned stimulus (either pleasant
or unpleasant). On nonreinforced trials (one-third of trials), a
tone triggered by inhalation was generated without an odorant
(tone alone). Stimuli were generated in blocks of six trials (two
reinforced trials with pleasant odor, two with unpleasant odor,
and two nonreinforced trials, one of each tone, randomized
between blocks, Inter-trial interval 25–40 s). Tone–odor contin-
gencies were counterbalanced across participants. The condi-
tioned response was measured by the sniff response magnitude
elicited during tone-alone trials. During wakefulness, the sniff
response can be conditioned to a tone such that different tones
can drive different sniffs (Resnik et al. 2011). Therefore, the sniff
response was chosen to be the conditioned response in this
experiment. In the NREM and REM group (28 participants), in
a night without arousals/wakes within a window of 30 s from
tone onset, five blocks were presented in NREM sleep, then the
procedure was halted up to stable REM sleep, at which point an
additional five blocks were presented. In NREM-only, the proce-
dure was triggered during NREM sleep only (15 participants). If
an arousal/wake was detected in the ongoing polysomnographic
recording, the experiment was immediately stopped until stable
sleep was resumed and continued up to a maximum of 18 blocks.
Thus, the distribution between NREM and REM depended on
each participant’s sleep structure. Since the experiment was
halted following arousal or wake, different participants had
different numbers of trials (mean = 62.9 ± 19.3 trials) and varying
training intervals between blocks imposed by individual sleep
structure. About half an hour after spontaneous morning wake,
conditioned response was tested in a retention procedure: three
auditory stimuli, 1200 Hz and 400 Hz that were presented during
the night, and a new 800-Hz tone (eight repetitions each), were
sequentially presented while nasal respiration was recorded.
Retention procedure data from two subjects was lost due to
technical problems.

Polysomnography

Sleep was recorded by standard polysomnography (Iber et al.
2007). EEG (obtained from C3 and C4, referenced to opposite
mastoid), electro-oculogram (placed 1 cm above or below and
laterally of each eye, referenced to opposite mastoid), elec-
tromyogram (located bilaterally adjacent to the submentalis mus-
cles), and respiration were simultaneously recorded (Power-Lab
16SP and Octal Bio Amp ML138, ADInstruments) at 1 kHz. Nasal
respiration was measured using a spirometer (ML141, ADInstru-
ments) and high-sensitivity pneumotachometer (#4719, Hans
Rudolph) in line with the vent ports of the nasal mask.

Nasal Airflow Analysis

Nasal inhalation volume in the retention session was normal-
ized by dividing the sniff volume for each tone by the baseline
nasal inhalation volume (average volume of 15 nasal inhala-
tions preceding retention procedure onset). Participants’ nor-
malized sniff volume differing by 3 standard deviation (SD) were
excluded (one participant).

EEG Analysis

EEG activity was recorded from C3 and C4 electrodes. Trials
with EEG artifacts within a 5.5-s window before tone onset or
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Figure 1. Auditory–olfactory discriminatory learning paradigm. (a) Experimental design: stimuli were generated in blocks of six trials: two reinforced trials with pleasant

odour (pink), two reinforced trials with unpleasant odour (grey) and two non-reinforced trials (tone alone), one of each tone (see methods). T, tone; O, Odour. (b) On
reinforced trials, each auditory stimulus (1,200 Hz or 400 Hz) was paired with either a pleasant (shampoo or deodorant) or unpleasant (rotten fish or carrion) odour.
(c) On non-reinforced trials, either tone was presented alone. (d) Structure of the retention session performed during the subsequent morning where three auditory

stimuli [1,200 Hz, 400 Hz and a novel 800-Hz tone (green), eight repetitions each] were presented without odours. (e) Normalized sniff response across continuous
repetitions of a tone alone previously paired during sleep with a pleasant odour (CSp, pink) and continuous repetitions of a tone alone previously paired during sleep
with unpleasant odour (CSu, grey) during the first five non-reinforced presentation of each CS during sleep, or first arousal, whichever came first. (f) Normalized sniff
response during the retention session for CSp (pink bar), novel tone (800Hz, green bar), and for CSu (grey bar). nvu: normalized sniff volume units [sniff volume divided

by the baseline nasal inhalation (see Methods)]. The data used here was collected as part of a study that examined whether humans can learn new associations during
sleep and was published independently (Arzi et al. 2012).
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5-s after tone onset were excluded. EEG spectral analysis in
the 0.5–40 Hz frequency range for all nonreinforced trials that
met study criteria was conducted using Hilbert transform on
a 10.5-s window using customized MATLAB scripts, with time-
frequency resolution of 0.5 Hz bin per 1 ms. The data were
filtered using Hamming window sinc finite impulse response
filter implemented in EEGLAB. The filter order/transition band
width is 25% of lower bandpass edge but not lower than 2 Hz
where possible. Specifically, Hilbert transform was conducted on
a longer time window to avoid edge artifact, and the time points
before and after the 10.5-s window of interest were trimmed.
The power in each trial was then z-scored. Nonreinforced trials
from each participant were averaged across the two electrodes
and then averaged across trials to create a single time-frequency
representation per participant, and per condition for the early-
training phase (averaged across the nonreinforced trials in the
first five blocks) and late-training phase (averaged across the
nonreinforced trials in the sixth to the last blocks) during NREM
sleep.

Inclusion/exclusion Criteria

An independent experienced sleep technician, blind to experi-
mental conditions and to stimulus onset/offset times, scored the
data offline according to American Academy of Sleep Medicine
criteria (Iber et al. 2007). We then used these blindly obtained
scorings to include participants and/or trials. We included only
EEG artifact-free trials without wake or arousal within 30 s of
tone onset presented during NREM sleep. Importantly, trials
presented in REM sleep in the ‘NREM and REM’ group were not
included in the analysis. To avoid a bias of the results by indi-
vidual trials, we included in the analysis only participants with
a minimum of 10 EEG-clean and arousals-free nonreinforced
trials. Out of the 43 participants, five participants had less than
10 EEG-clean and arousals-free nonreinforced trials. Excluding
these five participants, data from 38 participants remained for
the EEG power analysis. In addition, two participants lacked
the retention paradigm (morning testing) due to technical error
and one participant’s sniff response was an outlier (>3 SD).
Excluding these three participants, data from 35 participants
remained for the regression analyses presented in the Sup-
plementary Materials. Total number of included nonreinforced
trials in NREM sleep per learning phase and condition were
153 trials for tone alone previously paired with an unpleasant
odor (CSu) and 170 trials for tone alone previously paired with a
pleasant odor (CSp) in early-training, and 146 trials for CSu and
133 for CSp for late-training. The average number of included
trials per participant was 4.03 ± 0.94 for CSu and 4.47 ± 0.98
for CSp in early-training, and 3.8 ± 2.9 for CSu and 3.5 ± 2.7 for
CSp in late-training. The average number of trials was similar
between early- and late-training phases; however, the variance
was larger in the late-training due to individual differences in
sleep architecture between participants.

Statistical Analysis

A permutation-based statistical test of time-frequency data was
applied using FieldTrip (Oostenveld et al. 2011) and customized
scripts. Time-frequency representation of each condition (CSu
and CSp) and learning phase (early and late) in NREM sleep
were submitted to a cluster-based nonparametric permutation
test (Maris and Oostenveld 2007) to determine in which time-
frequency points in a 5-s window from tone onset there was a
significant (α = 0.05) change from baseline (−5500 to −500 ms

pre-tone onset; Fig. 2a–d). In addition, the power envelope in
each frequency band of interest (delta [0.5–4 Hz], theta [4–7 Hz],
and sigma [11–16 Hz]) was calculated for each condition sepa-
rately (CSu and CSp) and submitted to cluster-based nonpara-
metric permutation test to determine in which time points in
a 5-s window from tone onset there was a significant increase
from baseline per condition per learning phase. To determine
whether there was a significant difference in power between
CSu and CSp, nonreinforced trials were averaged across con-
ditions (CSu and CSp) and learning phases (early and late).
Then the averaged signal was submitted to cluster-based non-
parametric permutation test to identify the time points where
increase in power following the conditioned stimuli was signif-
icantly greater than baseline. A significant cluster was found
in each one of the three frequency bands: delta (13–2184 ms,
Pcluster < 0.001), theta (1–850 ms, Pcluster < 0.001), and sigma (727–
1553 ms, Pcluster < 0.001). The cluster-based nonparametric per-
mutation test between CSu and CSp in each learning phase was
applied on the time window defined by the above-mentioned
clusters in each frequency band. Multiple regression and corre-
lation analyses were performed using Matlab and open-source
statistical software JASP (JASP Team [2017], version 0.8.3.1). Non-
parametric effect size was calculated by the following formula
r = z/sqrt (n) (Rosenthal et al. 1994).

Results
First, we verified that the behavioral results observed in the cur-
rent examined NREM sleep dataset (see Materials and Methods)
were similar to those reported before (The data were collected
as part of a previous study published independently; Arzi et al.
2012). In order to investigate learning dynamics during discrim-
inatory associative learning in NREM sleep, we first examined
the behavioral sniff response dynamics. We extracted the sniff
volume during NREM sleep for a tone alone previously paired
during sleep with an unplesant odor (CSu) and for a tone alone
previously paired during sleep with a pleasant odor (CSp) up to
the fifth nonreinforced trial of each condition or first arousal,
whichever came first (see Materials and Methods). One can see
a gradual increase in CSp-CSu sniff volume difference across
trials (Fig. 1e). Moreover, the CSp-CSu sniff volume difference
was significantly larger in the 4th—5th block in comparison to
the 1st—2nd block (P < 0.05), similarly to what was previously
shown in a subset of the dataset (Arzi et al. 2012). These findings
suggest that the new tone–odor discriminatory associations
were learned within the first five blocks. Therefore, we analyzed
the effects of training during sleep in early- (first five blocks;
where discriminatory paired associations were acquired) and
late-training (sixth to the last block (M = 5.5 ± 3.2 SD), where
paired associations were well established). The following morn-
ing, during a test session, we observed that sniff response was
larger for CSu than for CSp (t35 = 2.86, P = 0.015; excluding out-
lier: t34 = 2.75, P = 0.017), suggesting the new associations learned
during sleep were stored as memories readily retrievable upon
awake (Fig. 1f ).

Then, to elucidate discriminatory associative learning-
related brain dynamics during sleep, we analyzed brain activity
during nonreinforced CSu and CSp trials during NREM sleep
for early- and late-training phases separately. Analysis of delta
frequency band showed that during both early- and late-
training, CSu elicited higher delta power in comparison to
CSp (early-training: cluster1 396–1096 ms, P = 0.013, effect size
r = 0.60; cluster2 1551–2320 ms, P = 0.011, effect size r = 0.43;
Fig. 2a,c,e; late-training: cluster 888–1418 ms, P = 0.028, effect
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Figure 2. Learning-related electrophysiological activity in non-reinforced trials during NREM sleep. (a–d) Time–frequency decomposition of the EEG signal averaged

across C3 and C4 electrodes in non-reinforced trials during NREM sleep time-locked to: (a–b) tone previously paired during sleep with an unpleasant odor (CSu) during
(a) early-training phase, or (b) late-training phase; (c–d) tone previously paired during sleep with a pleasant odor (CSp) during (c) early-training phase, or (d) late-training
phase. Areas inside black contours indicate significant deviations from zero compared to baseline (cluster permutation t-test, Pcluster < 0.05), each dotted vertical line

represents tone onset, tone duration was 1 sec. EEG delta power during (e) early-training and (f) late-training for CSu (dark red) and CSp (light red). EEG theta power
during (g) early-training and (h) late-training for CSu (dark green) and CSp (light green). EEG sigma power during (i) early-training and (j) late-training for CSu (dark
blue) and CSp (light blue). Horizontal lines in the color of the curve represent significant deviation from zero compared to baseline. Horizontal black lines represent
significant difference between CSu and CSp (cluster permutation test, Pcluster < 0.05).
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size r = 0.42; Fig.2b,d,f ), suggesting a learning-related delta
modulation. Interestingly, the discriminatory neural response
was different between the two training phases. While in
the early-training phase, two clusters were revealed, in the
late-training phase only one cluster was found. While there was
overlapping between the first cluster in early-training and the
cluster in late-training, the second cluster from early-training
uncovered a prolonged learning-related differential response
that was not observed in the late-training phase. Furthermore,
the differential response between CSu and CSp in early and late-
training was similar in the first 1500 ms bout (no cluster) but was
larger in early-training compared to late-training in the second
1500 ms bout from tone onset (1959–2273 ms, Pcluster = 0.05,
effect size r = 0.31). These findings indicate a modulation of
delta activity between early- and late-training, suggesting this
neural correlate could signal the acquisition of new associative
memory traces.

Similar analysis of theta frequency band revealed an oppo-
site response pattern to the one observed in delta. No cluster
was found in theta power when comparing CSu and CSp in
early-training (Fig. 2a,c,g), while late-training CSu elicited higher
theta power (cluster 94–311 ms, P = 0.026, effect size r = 0.36;
Fig. 2b,d,h) compared to CSp. Moreover, the differential neural
response between CSu and CSp was larger in late-training when
compared with early-training (cluster = 1–156, ms, P = 0.05, effect
size r = 0.37). These findings suggest that learning-related theta
modulations emerge when new associations are well-trained or
already established.

Analysis of sigma frequency band showed that CSu trials
induced higher power than CSp homologous events in early-
training (cluster 1080–1321 ms, P = 0.032, effect size r = 0.32;
Fig. 2a,c,i), but not in late-training (no cluster) (Fig. 2b,d,j).
However, we did not find reliable differences between early- and
late-training in CSu and CSp differential response (no cluster).
Thus, modulation in sigma power may underlie acquisition of
associative memories in early learning stages but may not have
a distinct contribution to early- versus late-training stages.

Discussion
Here, we aimed to elucidate the brain activity supporting dis-
criminatory associative learning in sleep. Using EEG recordings
during auditory–olfactory conditioning, we uncovered learning-
related delta, sigma, and theta power modulation in NREM sleep.
Moreover, in the course of discriminatory associative learning,
learning-related delta and sigma activity are modulated at early
acquisition stages, while theta activity modulation emerges only
after stimuli discrimination is well established. These effects
were evident despite the variability in training history intro-
duced by individual differences in sleep architecture (Supple-
mentary Table 1 and Supplementary Fig. 1).

During the discriminatory associative learning procedure,
sleeping participants learned to implicitly discriminate between
tones predicting odors with different valence. This process
involves learning two independent contingencies between
specific tones and odors and results in the ability to discriminate
between the expected value of each tone. During the early-
training phase, spanning the first five training blocks, the new
tone–odor associations were readily acquired as indicated by
the behavioral sniff response (Fig. 1e). However, as contingency
learning and discrimination occur during the same time frame,
and discrimination is an integral part of the learning, the
observed learning-related EEG power may reflect either or
both of these processes. If a specific brain activity correlate

is involved in contingency encoding, it should be more apparent
when prediction error is high (i.e., during early-training phase).
On the contrary, if the same brain activity correlate indicates
stimuli discrimination, it should be increasingly recruited or
stay constant as training progress from early to late trials. Thus,
learning-related delta power modulation observed in cluster1
in both early- and late-training suggests an involvement of
slow waves in the discrimination process occurring all along
training. Modulation of delta power in cluster2 and sigma
power observed specifically in early-training implies a role
of these brain correlates in acquisition of new associations
during sleep. Notably, the contribution of sleep depth to learning
cannot be fully dissociated from training phase. In late-training,
trials distribution was even between N2 and N3; however, in
early-training, the vast majority of trials were presented in N3
(Supplementary Materials and Supplementary Table 2), implying
that sleep depth may interact with different stages of the
learning process. Altogether, these findings suggest that slow-
waves and spindles activity is part of the required conditions for
encoding of novel associations in sleep.

To date, only a few studies investigate the neural activity
underlying sleep-learning (Peigneux et al. 2001; Ruch et al. 2014;
Andrillon and Kouider 2016; Andrillon et al. 2017; Farthouat et al.
2018; Züst et al. 2019). The observed learning-related delta power
modulation in this study is in line with recent findings showing
that successful verbal associative learning during NREM sleep
is bound to slow-wave peaks (Ruch et al. 2014; Züst et al. 2019)
and that unsuccessful retrieval of auditory perceptual learning
during NREM sleep is associated with decreased delta power
(Andrillon et al. 2017). In addition, the absence of theta mod-
ulation by learning during early-training stage is in agreement
with findings of low theta activity during vocabulary encoding
in NREM sleep (Züst et al. 2019) and could imply that theta
activity does not signal encoding of new associations in NREM
sleep. That said, perceptual learning during REM sleep was
found to increase theta power (Andrillon et al. 2017). On the
other hand, learning-related theta activity in later phases of
the training procedure, after the new associations were formed,
may be involved in strengthening already-established memo-
ries. For sigma, a more complex picture emerges. We observed
learning-related modulation in early-training, however not in
late-training and found no interaction between learning phases.
Other studies, found no relationship between sigma activity and
associative learning retrieval (Züst et al. 2019), and marginal
modulation during perceptual learning (Andrillon et al. 2017).
Taken together, these findings suggest that the same brain
rhythm may have different roles during different learning pro-
cesses and sleep stages.

Delta, sigma, and theta activity are key players in memory
reactivation and consolidation of information learned before
sleep (Diekelmann and Born 2010; Oudiette and Paller 2013).
Slow-waves have been associated with and causally related to
memory consolidation (Marshall et al. 2006; Rasch et al. 2007;
Antony et al. 2012); spindles have a role in integrating new
memories and existing knowledge, and in memory consolida-
tion (Diekelmann and Born 2010; Tamminen et al. 2011; Antony
et al. 2012, 2019; Oudiette and Paller 2013; Cairney et al. 2018);
theta is involved in memory consolidation and reactivation of
information learned while awake (Schreiner and Rasch 2015;
Schreiner et al. 2015, 2018). Unlike during sleep-learning the
involvement of these brain oscillations in memory formation,
consolidation, and retrieval is well-established (Diekelmann and
Born 2010; Hanslmayr et al. 2016; Antony et al. 2019). How-
ever, whether consolidation, targeted memory reactivation, and
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sleep-learning share similar brain mechanism is still an open
question.

Understanding the brain process underlying acquisition,
consolidation and retrieval of new information presented during
sleep constitutes an important step in the course of identifying
what and how is possible to learn during sleep (Simon and
Emmons 1956; Wood et al. 1992; Arzi et al. 2012, 2014; Ruch et al.
2014; Andrillon and Kouider 2016; Andrillon et al. 2017; Farthouat
et al. 2018; Züst et al. 2019). Here, we start to elucidate part
of these processes showing that encoding of a discriminatory
associative memory during sleep is associated with a dynamic
interplay between learning-related slow-waves, sigma and theta
activity. Timely modulation of these brain rhythms occurring
during learning in sleep may determine the acquisition and
storage of new associative memories.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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