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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional level and
play critical roles in a variety of physiological and pathological processes. In this report, miR-141 was identified to repress
HBV expression by screening a small miRNA expressing library and synthetic miR-141 mimics could also significantly
suppress HBV expression and replication in HepG2 cells. Bioinformatic analysis and experiment assays indicate that
peroxisome proliferator-activated receptor alpha (PPARA) was the target of hsa-miR-141 during this process. Furthermore,
knockdown of PPARA by small interfering RNA (siRNA) inhibited HBV replication similar to levels observed for miR-141.
Promoter functional analysis indicated that repression of HBV replication by miR-141 mimics or siRNA was mediated by
interfering with the HBV promoter functions, consistent with previous studies demonstrating that PPARA regulated HBV
gene expression through interactions with HBV promoter regulatory elements. Our results suggest that miR-141 suppressed
HBV replication by reducing HBV promoter activities by down-regulating PPARA. This study provides new insights into the
molecular mechanisms associated with HBV-host interactions. Furthermore, this information may facilitate the development
of novel anti-HBV therapeutic strategies.
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Introduction

Structurally, microRNAs (miRNAs) are small noncoding RNAs

with 18–25 nucleotides in length which are processed from short

stem-loop precursors encoded by plant, animal and viral

gemomes. The growing miRNA database (http://www.mirbase.

org) currently contains ,2100 human miRNAs [1]. Bioinformatic

analyses have suggested that miRNAs could regulate a number of

genes and each mRNA could also be regulated by several miRNAs

[2]. It is estimated that more than 30% of human genes are

regulated by miRNAs [3]. miRNAs have been shown to play

significant roles in a variety of physiological processes including

organ development, cell differentiation, apoptosis and metabolism

by either mediating translational arrest or degrading target

transcripts [4–6].

Recent data has indicated that host miRNAs could be involved

in host–virus interactions, and therefore could have a significant

impact on the virus life-cycle [7]. Lecellier et al. [8] demonstrated

for the first time that miR-32 possessed antiviral properties.

Specifically, miR-32 was shown to inhibit primate foamy virus

type 1 (PFV-1) mRNA translation and also restricted virus

accumulation in cultured cells. In addition, miR-24 and miR-93

were found to target vesicular stomatitis virus (VSV) and protect

mice against VSV infection [9]. In contrast, Jopling et al. reported

that miR-122 was necessary for hepatitis C virus (HCV)

replication by binding of miRNAs to the 59 end of the viral

genome [10]. HBV is a strict intracellular pathogen that infects

primary hepatocytes and is the prototypic Hepadnaviridae family

virus. HBV must utilize host cellular components and machinery

as a means of completing replication and mediating pathogenesis.

Therefore, we hypothesized whether hsa-miRNAs and HBV

interactions could affect HBV replication.

This study screened a hsa-miRNA expression library and

identified several miRNAs with the potential of interfering with

HBV replication. Among the candidate miRNAs, miR-141 was

further analysized by considering its good inhibition rate of HBV

replication. Results presented in this report demonstrated that

miRNA-141 inhibited HBV replication by reducing the transcrip-

tional ability of HBV promoters by targeting the transcription

factor peroxisome proliferator-activated receptor alpha (PPARA).

Results

Primary screening of HBV-replication related miRNAs
In order to identify miRNAs with the capacity of regulating

HBV replication, 64 miRNAs functionally related to cell

differentiation, viral infection and cancer were selected from a

miRNA expression library. miRNA expression plasmids were co-

transfected in triplicate into HepG2 cells with the pHBV1.3

plasmid. Cell culture supernatants were collected 48 h post

transfection and screened for the presence of HBsAg by ELISA.

Using this screening method, we identified miR-141, miR-125a

and miR-125b could inhibit HBsAg expression in HepG2 cells,

whereas miR-98 had the opposite effect (Fig. 1). Based on the
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screening results and for the consideration of finding effective

cellular anti-HBV miRNA, we subsequently selected miR-141 for

the following HBV replication inhibition research.

miR-141 mediated inhibition of HBV expression and
replication

miR-141 was further examined to confirm its ability to interfere

with HBV replication by co-transfecting miR-141 mimics or miR-

141 inhibitor into HepG2 cells with pHBV1.3 plasmid. HBsAg/

HBeAg expression levels in cell culture supernatants were

analyzed by ELISA and viral DNA isolated and analyzed by

quantitative PCR (qPCR). These analyses confirmed that miR-

141 could repress HBV replication effectively, and that miR-141

inhibitor transfection resulted in a pronounced increase in

HBsAg/HBeAg expression had no significant effect on HBV

DNA replication (Fig. 2). Both of these positive and negative

activities indicated that miR-141 could repress HBV replication.

We next characterized the effect of miR-141 transfection related

side-effects on host cells using the Cell Counting Kit-8 (CCK-8)

and flow cytometry (FCM) to analyze cell viability and cell cycle

progression, respectively. CCK-8 analysis showed that miR-141

mimics, as well as miR-141 inhibitor, had no significant effect on

cell viability compared to negative control or mock treated cells

(Fig. 3A, B). Flow cytometric analysis also showed that no

significant differences in cell cycle progression could be observed

between these experimental groups (Fig. 3C, D). These results

validated the hypothesis that miR-141 could repress HBV

replication without harming host cells.

PPARA is a target of miR-141 in HBV-replication
repression

The results from the target gene prediction program TargetS-

can (www.targetscan.org) [3,11,12] revealed that PPARA (a key

liver-enriched transcription factor required for HBV pregenomic

RNA synthesis and viral replication) might be a candidate miR-

141 gene target. Moreover, no putative target site for hsa-miR-141

was found in the HBV genome by the computational analysis. As

shown in Fig. 4A, sequence analysis revealed that there were 4

candidate miR-141 binding sites in the PPARA mRNA 39-

untranslated region (UTRs) suggesting that PPARA was probably

a miR-141 target gene.

The location of the first miR-141 binding site (binding site 1) is

relatively distant from binding sites 2, 3 and 4 in the PPARA 39-

UTR. Binding site 1 and binding sites 2, 3 and 4 were cloned into

the pGL3M vector separately as a means of identifying the miR-

141 binding site(s). The pGL3M-UTR vectors were then co-

transfected with miR-141 mimics (or the negative control) into

HEK293T cells. Luciferase assay results indicated that miR-141

significantly reduced the luciferase activity of the reporter plasmid

containing binding sites 2, 3, and 4 but had no effect on the

plasmid containing binding site 1 only (Fig. 4B). These results

suggested that miR-141 targeted binding site 2, 3 or 4 of the

PPARA 39-UTR. Subsequently, different deletants of PPARA 39-

UTR containing only one of binding site 2, 3 or 4 were cloned into

the pGL3M vector. Luciferase results indicated that miR-141

significantly reduced the luciferase activity of the 3 plasmids when

2 binding sites were deleted but had no effect on plasmid missing

all the 3 binding sites (Fig. 4B). These results demonstrated that

miR-141 regulated PPARA expression by targeting PPARA 39-

UTR binding sites 2, 3 and 4 (with no significant differences in

their binding ability to miR-141).

To analyze interactions between miR-141 and PPARA in

hepatocytes, miR-141 mimics was transfected into HepG2 cells

and PPARA expression levels were detected by semi-quantitative

RT-PCR and Western blot analyses. These results showed that

miR-141 mimics markedly reduced both PPARA mRNA and

protein levels compared to levels observed in the negative control

miR-C transfected or mock treated cells (Fig. 4C, D). These results

above indicated that miR-141 could regulate the expression of

PPARA.

Verification of PPARA function in HBV replication
Although the importance of PPARA-RXR heterodimers in

HBV replication has been reported previously [13–15], we

confirmed these observations using our cell transfection model

by silencing PPARA. HepG2 cells were transfected with PPARA-

specific siRNAs only or with the pHBV1.3 plasmid. PPARA

expression levels were determined by semi-quantitative RT-PCR

and Western blot analyses and the HBsAg/HBeAg levels in cell

culture supernatants, as well as viral DNA loads within cells, were

determined as described above. Results indicated that transfection

of PPARA-specific siRNAs led to a significant decrease in PPARA

levels (Fig. 5A, B) and that reductions in PPARA levels resulted in

Figure 1. Screening for miRNAs involved in HBV expression. The negative control pcDNA3.0 plasmid and 64 miRNA expressing plasmids
were co-transfected with the pHBV1.3 vector, respectively. The level of HBsAg in cell culture supernatants was detected by ELISA 48 h post
transfection. The value in the negative control group was set at 1.0.
doi:10.1371/journal.pone.0034165.g001
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a significant inhibition of HBV replication in HepG2 cells

(Fig. 5C–E).

miR-141 inhibits HBV replication by repressing HBV
promoters

Previous studies indicated that nuclear receptor PPARA

activated HBV gene expression by interacting with HBV

promoters [16–18]. We further verified the relationship between

miR-141 and PPARA by carrying out promoter functional assays.

The 4 HBV promoter fragments (ENI/Xp, ENII/Cp, Sp1, and

Sp2) were cloned into the pGLuc-basic luciferase reporter vector,

respectively, and then co-transfected into HepG2 cells in the

presence of miR-141 mimics or PPARA-specific siRNAs.

Luminescence results demonstrated that miR-141 and siRNAs

significantly reduced Gaussia luciferase expression compared to

the negative control in the 4 promoter functional assays (Fig. 6).

Discussion

MicroRNAs are important small non-coding RNAs that

primarily mediate post-transcriptional gene regulation. Increasing

evidence suggests that there are complex interactions between

cellular miRNAs and viral genes, suggesting that important

regulatory networks exist between the virus, host miRNAs, and

their respective target genes [8–10,19–21]. In this report, we

studied the effects of cellular miRNAs on HBV replication and

found that miR-141 possessed antiviral properties.

Figure 2. Effect of transfection with miR-141 mimics. Transfection of HepG2 cells with miR-141 mimics represses HBV expression and
replication. By contrast, transfection with miR-141 inhibitor had the opposite effect. HepG2 cells were co-transfected with miR-141 mimics or miR-141
inhibitor together with the pHBV1.3 vector and analyzed for HBV protein expression. Oligonucleotides with scrambled sequences were used as
negative controls (miR-C or anti-miR-C, respectively). HBsAg and HBeAg ELISA assays were used to screen culture supernatants 24, 48 and 72 h after
co-transfection with (A) miR-141 mimics and the pHBV1.3 vector or (B) miR-141 inhibitor and the pHBV1.3 vector. (C) qPCR detection of HBV DNA in
HepG2 cells 72 h after co-transfection with the miR-141 mimics or miR-141 inhibitor together with pHBV1.3. The histograms show the relative HBsAg,
HBeAg and HBV DNA levels compared to the negative control group.
doi:10.1371/journal.pone.0034165.g002

MicroRNA-141 Regulates HBV Replication

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e34165



Recent data suggested that the cellular miRNAs could regulate

HBV propagation directly or indirectly by targeting cellular

factors. Potenza et al. demonstrated that hsa-miR-125a-5p

interacted with HBV sequences and repressed HBsAg expression

[22]. Our primary screening of HBV replication-related miRNAs

showed similar results, indicating that a pri-miR-125a expression

vector could repress HBsAg synthesis in HepG2 cells. Although

miR-125a-5p was shown to repress HBsAg expression by targeting

HBV sequences directly, interactions between host cell proteins

and miR-125a-5p could not be excluded. On the other hand, Lu

et al. recently demonstrated that miR-1 enhanced HBV core

promoter activity by increasing the expression levels of the

farnesoid X receptor alpha (FXRA), an essential HBV cellular

transcription factor [23]. In the present study, exogenous

expression of miR-141 could significantly inhibit HBV expression

and DNA replication, whereas miR-141 inhibitor transfection had

the opposite effects on HBsAg/HBeAg expression. Though the

regulation of HBV replication by miR-141 inhibitor is less effective

than miR-141 mimics, it is possible due to the relative low

expression level of miR-141 in HepG2 cells (Information S1).

These data suggest that miR-141 could suppress HBV transcrip-

tion and replication.

HBV contains a 3.2 kb partially double-stranded DNA genome

with four promoters (the core, pre-S1, pre-S2/S, and X promoters)

and two enhancer regions (ENI and ENII) involved in viral

transcription regulation [24,25], and transcriptional regulation

Figure 3. Transfection of miR-141 mimics or miR-141 inhibitor has no significant influence on HepG2 cell viability or cell cycle
progression. HepG2 cells were transfected with miR-141 mimics or miR-141 inhibitor only and analyzed 72 h post transfection. Scrambled
oligonucleotides were used as negative controls (miR-C or anti-miR-C, respectively). (A) HepG2 cell viability was measured using the CCK-8 assay. Data
are expressed as fold change relative to mock treated cells. (B) HepG2 cell cycle analysis was performed by flow cytometry. Percent cells in each phase
of the cell cycle are shown.
doi:10.1371/journal.pone.0034165.g003
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plays a central role in control of HBV replication [26]. HBV

promoter and enhancer activities are regulated by a number of

transcription factors [27]. For example, the core promoter, pre-S1

promoter, X promoter, ENI and ENII all contain a PPARA

binding site and these regions were found to be transactivated in

the presence of RXRA and PPARA [17]. Tang and McLachlan

also demonstrated that nuclear hormone receptors (NRs),

including HNF4, RXRA and PPARA, were essential liver-

enriched transcription factors associated with HBV pregenomic

RNA synthesis and viral replication in nonhepatic cell lines [14].

Since pregenomic RNA encodes both polymerase and core

protein (and serves as the template for viral DNA synthesis), it is

likely that PPARA plays a critical role in HBV biogenesis.

The peroxisome proliferator-activated receptors (PPARs) that

consist of PPARa, PPARb, and PPARc are ligand-activated

transcription factors that belong to the nuclear hormone receptor

superfamily [28,29]. PPARs serve as lipid metabolism regulators

and influence cellular proliferation, differentiation and apoptosis

[30,31]. The luciferase reporter assay showed that miR-141

suppressed reporter activity significantly via 3 binding sites in the

PPARA 39-UTR. PPARA mRNA and protein levels were both

reduced by miR-141 mimics transfection. This suggested that

miR-141 would be an effective regulator of HBV replication by

interfering with PPARA expression. Furthermore, our results

showed that PPARA knockdown by miR-141 mimics or siRNA

exerted a negative effect on HBV replication and reduced the

HBV promoter transcription activities. This was consistent with

previous findings regarding PPARA functional activity, suggesting

that inhibition of HBV replication by miRNA-141 was mainly

mediated via PPARA repression. Therefore, overexpression of

miR-141 may be an effective strategy for diminishing HBV

replication.

Figure 4. PPARA is the target of miR-141. (A) Four possible miR-141 target sites on the PPARA 39-UTR were predicted by TargetScan software. (B)
Putative miR-141 target sites 2, 3, and 4 in the PPARA 39-UTR were functional in a dual-luciferase reporter assay. miR-141 mimics or a miRNA control
were co-transfected with the luciferase reporter vector containing wild-type binding site 1 or binding sites 2, 3, and 4 of the PPARA 39-UTR or
different PPARA 39-UTR deletion constructs containing only one binding site, respectively. Luciferase activity was determined 48 h after transfection.
The histogram shows the normalized Firefly/Renilla luciferase activities as relative values compared to the miR-C negative control. Regulation
mediated by miR-141 mimics on PPARA mRNA and protein expression were analyzed, respectively, by (C) semi-quantitative RT-PCR or (D) Western
blot. GAPDH and b-actin were used as internal controls, respectively. The ratio of the PPARA to GAPDH or b-actin band intensities are shown. The
value of mock transfected cells was set at 1.0. (Lane M, molecular weight standards).
doi:10.1371/journal.pone.0034165.g004
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In conclusion, our data suggested that miR-141 down regulated

HBV expression and replication by targeting cellular nuclear

factor PPARA, and that PPARA could be a promising host-

oriented drug target for the development of novel HBV therapy.

Considering the importance and complexity of miRNAs in virus-

host regulatory networks, further systematic studies will be

necessary to fully unravel the role of miRNAs in viral replication.

This would not only increase our knowledge regarding HBV

pathogenesis mechanisms but also help in the development of

novel antiviral therapeutic approaches.

Materials and Methods

Reagents
hsa-miR-141 29-O-methyl (29-OMe) mimic oligonucleotides,

hsa-miR-141 inhibitor, PPARA-specific siRNAs and unrelated

sequence negative controls were purchased from Genepharma

(Shanghai, China). Sense and antisense PPARA siRNAs sequences

were: siRNA-1, 59-CCAAUGGCAUCCAGAACAA dTdT and

59-UUGUUCUGGAUGCCAUUGG dTdT; siRNA-2, 59-

GCAAUGGACCAUGUAACAA dTdT and 59-UUGUUA-

CAUGGUCCAUUGC dTdT, respectively. DNA oligonucleo-

tides were synthesized by Sangon Biotech (Shanghai, China). An

expression library of 64 miRNAs was obtain from Xiaofei Zheng

(Beijing Institute of Radiation Medicine) as described previously

[32]. The HBV replication-competent vector pHBV1.3 containing

1.3 copies of the HBV genome (ayw subtype, GenBank accession

number: V01460) was provided by Dr. Hua Tang (Chongqing

Medical University, Chongqing, China).

Cell culture and transfection
HepG2 and HEK293T cells (obtained from the American Type

Culture Collection, Manassas, VA) were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, GIBCO) containing 10% fetal

Figure 5. Silencing of PPARA by siRNA represses HBV replication in HepG2 cells. The levels of PPARA mRNA and protein in HepG2 cells
48 h post transfection with PPARA specific siRNA were analyzed, respectively, by (A) semi-quantitative RT-PCR or (B) Western blot. GAPDH and b-actin
were used as internal controls, respectively. The ratio of the band intensities were determined as described above (Lane M, molecular weight
standards). The levels of (C) HBsAg and (D) HBeAg were determined 24, 48 and 72 h post transfection. (E) HBV DNA concentrations were determined
72 h post transfection. Relative levels were normalized as a percentage of the negative control siRNA-C.
doi:10.1371/journal.pone.0034165.g005
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bovine serum (FBS, Hyclone), 100 U/ml penicillin and 100 mg/ml

streptomycin and maintained at 37uC in a humidified 5% CO2

atmosphere. Plasmids, miRNAs and siRNAs were co-transfected

into cells at the indicated concentrations using Lipofectamine 2000

(Invitrogen, Carlsbad, CA) following the manufacturer’s protocol

24 h after plating.

HBV replication analysis
Cell culture media was changed and collected at 24, 48 and 72 h

post transfection and centrifugated at 5006g for 5 min to remove

debris before analysis. Supernatant HBsAg and HBeAg levels were

determined using ELISA kits (Kehua Biotech, Shanghai, China).

HBV DNA from intracellular core particles was extracted at 72 h

post transfection as described previously [33]. Cells were lysed with

0.2 ml 0.5% Nonidet P-40 in 50 mM Tris-HCl and 1 mM EDTA

(pH 8.0) for 10 min. Lysates were centrifuged at 1,0006g for 1 min

to remove nuclei and the supernatants centrifuged for an additional

5 min at 14,0006g to clear cellular debris. Supernatants were then

readjusted to 5 mM CaCl2 and digested with 800 units/ml

micrococcal nuclease (New England Biolabs, Ipswich, MA) for

2 h at 37uC to eliminate residual plasmid DNA and unencapsidated

HBV RNA. After nuclease inactivation using EDTA (10 mM), viral

DNA was extracted using the Column Viral DNAout kit (TIANDZ,

China) following the manufacturer’s protocol and quantified by

real-time PCR as described previously [34].

Western blot analysis
Total HepG2 cellular proteins were prepared in RIPA buffer

(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% SDS, 1% NP-40)

containing a protease inhibitor cocktail (Roche Molecular Bio-

chemicals, Mannheim, Germany). Polyacrylamide gel electropho-

resis (PAGE) and protein transfer to Hybond polyvinylidene

difluoride membranes (Amersham, Arlington Heights, IL, USA)

were carried out following standard protocols. Monoclonal

antibody against PPARA (sc-130640, Santa Cruz, USA) and b-

actin (sc-1616-R, Santa Cruz) were used for immunodetection

according to the manufacturer’s instructions. Protein bands were

visualized by autoradiogram using ECL Plus Western blot detection

reagents (GE Healthcare Life Sciences) and quantified using Gel

Pro Analyzer software v4.0 (Media Cybernetics, Bethesda, MD).

RNA extraction and semi-quantitative RT-PCR
Total RNA was extracted using TRIzol Reagent (Invitrogen) as

recommended by the manufacturer. Semi-quantitative RT-PCR

using a 2-step method was used to determine PPARA mRNA

expression levels. Reverse transcription was performed following

the SuperScriptTM III Reverse Transcriptase (Invitrogen) proto-

col. PCR was performed for PPARA amplification using the

following conditions: 94uC for 4 min followed by 29 cycles at 94uC
for 20 s, 55uC for 20 s, and 72uC for 40 s with a final extension at

72uC for 5 min and for GAPDH amplification using the following

conditions: 94uC for 4 min followed by 27 cycles at 94uC for 20 s,

55uC for 20 s, and 72uC for 40 s with the final extension at 72uC
for 5 min. DNA products were analyzed by 1.0% agarose gel

electrophoresis and visualized following ethidium bromide staining

under UV light and band intensities measured by scanning with

Gel Doc 1000 (Bio-Rad, Hercules, CA). The products were

quantified by densitometry, and GAPDH mRNA levels used for

normalization. The primers used for PPARA and GAPDH

amplification were: PPARA-F, 59-CCTCTCAGGAAAGGC-

CAGTA-39, PPARA-R, 59-TCCACAGCAAATGATAGCAG-

39, GAPDH-F, 59-GTCAAGCTCATTTCCTGGTATG-39 and

GAPDH-R, 59-CTTCCTCTTGTGCTCTTGCTG-39.

Luciferase reporter assays
During the miRNA-target validation test, the 39-UTRs contain-

ing the miR-141 predicted target sites were amplified by PCR from

HepG2 cell genomic DNA and cloned into a modified pGL3-

control plasmid (pGL3M) as described previously [32]. HEK293T

cells were co-transfected with 200 ng of pGL3M-UTR constructs

and 10 pmol miRNA mimics or a negative control per well in 24-

well plates using the LipofectamineTM 2000 transfection reagent.

pRL-CMV (Promega, Madison, WI) was co-transfected as a

normalization control. Luciferase activity assays were performed

48 h post transfection using the Dual-Luciferase Reporter Assay

System (Promega).

During promoter functional analysis using dual-luciferase

promoter assays, PCR fragments containing HBV promoters

(ENI/Xp, nt 957–1354; ENII/Cp, nt 1627–1878; Sp1, nt 2704–

2823; Sp2, nt 2978–3207) [35] were cloned into the pGLuc-Basic

vector (New England Biolabs) upstream of the secretory Gaussia

princeps luciferase, respectively. HepG2 cells were co-transfected

with 500 ng of pGLuc-promoter constructs and 20 pmol miRNA

mimics or PPARA specific siRNAs per well in 24-well plates using

LipofectamineTM 2000 transfection reagent with pRL-CMV as a

normalization control. Dual-luciferase assays were carried out

48 h post transfection according to the manufacturer’s protocol

(New England Biolabs).

Figure 6. The influence of miR-141 on the activity of HBV ENI/Xp, ENII/Cp, Sp1 and Sp2 promoters. Gaussia and Renilla luciferase
activities were determined 48 h post transfection. The data normalized to Renilla luciferase activity were expressed as the percentage of the negative
control. miR-141 mimics and siRNA used the same oligonucleotide for the negative control.
doi:10.1371/journal.pone.0034165.g006
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Cell viability and cell cycle analysis
HepG2 cells were transfected with miR-141 mimics or miR-141

inhibitor only. Cell viability was determined using the Cell

Counting Kit-8 kit (Dojindo, Kumamoto, Japan) 72 h after

transfection. For cell cycle analysis, cells were harvested,

combined, washed once in phosphate-buffered saline (PBS), and

then fixed in 70% ethanol overnight 72 h after transfection.

Staining for DNA content was performed with 50 mg/ml

propidium iodide and 1 mg/ml RNase A at 37uC for 30 min.

Stained cells were analyzed for cell cycle distribution on a

FACScalibur flow cytometer (Becton Dickinson, USA).

Statistical analysis
The data presented are expressed as mean 6 standard deviation

(SD) and statistical significance was determined by the Student’s t

test or one-way ANOVA. P-values are indicated by asterisks

(***P,0.001, **P,0.01, *P,0.05).

Supporting Information

Information S1 The expression level of miR-141 was
relative low in HepG2 cells. Total RNA was extracted from

the cultured cells using Trizol Reagent (Invitrogen) and the

expression levels of small RNAs were confirmed by quantitative

RT-PCR using miRNA Real-Time PCR Assay kit (CW Biotech,

China) according to the manufacturer’s protocol. The expression

level of miR-141 was relative low compared with miR-24 which is

expressed constitutively in HepG2 cells. The forward primer of

RNAs amplification was RNA specific as shown in the table, and

the reverse primer was a universal primer containing in the kit.

The U6 snRNA expression level was used for normalization.
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