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Abstract: COVID-19 is caused by severe acute respiratory syndrome virus type 2 (SARS-CoV-2),
which can infect both humans and animals. SARS-CoV-2 originated from bats and can affect various
species capable of crossing the species barrier due to active mutation. Although reports on reverse
zoonosis (human-to-animal transmission) of SARS-CoV-2 remain limited, reverse zoonosis has been
reported in many species such as cats, tigers, minks, etc. Therefore, transmission to more animals
cannot be ruled out. Moreover, the wide distribution of SARS-CoV-2 in the human population could
result in an increased risk of reverse zoonosis. To counteract reverse zoonosis, we developed the first
COVID-19 subunit vaccines for dogs, which are representative companion animals, and the vaccine
includes the SARS-CoV-2 recombinant protein of whole S1 protein and the receptor-binding domain
(RBD). A subunit vaccine is a vaccine developed by purifying only the protein region that induces an
immune response instead of the whole pathogen. This type of vaccine is safer than the whole virus
vaccine because there is no risk of infection and proliferation through back-mutation of the virus.
Vaccines were administered to beagles twice at an interval of 3 weeks subcutaneously and antibody
formation rates were assessed in serum. We identified a titer, comparable to that of vaccinated people,
shown to be sufficient to protect against SARS-CoV-2. Therefore, the vaccination of companion
animals, such as dogs, may prevent reverse zoonosis by protecting animals from SARS-CoV-2; thus,
reverse zoonosis of COVID-19 is preventable.

Keywords: SARS-CoV-2; COVID-19; Coronavirus; vaccine; subunit vaccine; canine; reverse zoonosis;
reverse transmission

1. Introduction

Since the outbreak of coronavirus in 2019, our lives have taken on a new phase.
According to the World Health Organization (WHO), as of 17 March 2022, there were
460,280,168 confirmed cases and 6,050,018 deaths. This phase has been predicted because
there was a similar situation with several viral zoonotic epidemics. In recent years, impor-
tant viral infectious diseases have provided clues suggesting that the COVID-19 pandemic
includes SARS in 2002–2004, MERS in 2015, which belongs to the same Coronavirus, and
pH1N1 influenza in 2009, a representative zoonotic viral infectious disease that does not
belong to Coronavirus. Those three diseases are common in the sense that they were caused
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by RNA viruses that frequently mutate and have a variety of susceptible animal species.
All these diseases infect non-human animals first and then spread to humans.

We should note the potential of reverse zoonosis because there were several reports
about animal confirmed cases. Coronavirus is a representative virus that has numerous
animal species as hosts. It can cause various types of diseases even within the same animal
species. The intensity and site of pathogenicity vary according to the cell tropism of the
viruses. In the case of dogs, there are some Coronaviruses that cause enteritis (canine coro-
navirus) or respiratory disease (canine respiratory coronavirus) [1,2]. Coronaviruses occur
in various species including feline coronavirus (FCoV), feline infectious peritonitis virus
(FIP), bovine coronavirus (BCoV), porcine epidemic diarrhea virus (PED), transmissible
gastroenteritis virus (TGE), infectious bronchitis virus (IBV), etc. [2–7]. These differences
between species and pathogenicity are derived from at least a few parts of sequences [8].
In the case of COVID-19, it is thought that the original host was a bat that passed it onto
humans. Moreover, there is about 96% identicality in gene sequences between the viruses
in humans and their natural host: the bat [9].

Since SARS-CoV-2 belongs to the RNA virus, it has a high possibility of mutation
and the ability to cross species barriers that could result in reverse zoonosis [10]. Reverse
zoonosis comprises transmission from humans to animals. Although rare, cases of reverse
zoonosis against SARS-CoV-2 have been reported in various animal species such as dogs,
cats, tigers, and minks [11–14].

If reverse zoonosis occurs, it is not only a matter of newly born susceptible species.
When viruses infect two or more animal species and move through various environments,
there is a possibility that the animal will act as a reservoir and increase the rate of mutations
as in the case of swine with influenza A virus, which acts as a mixing vessel [15–18].
SARS-CoV-2 transmits between species and could evoke a co-infection with other strains
of Coronaviruses in a specific host. This could increase the rate of mutation while the
virus tries to adapt to various new environments [19,20] and recombinants can occur in the
process of replication of two types of viruses in the same cell [21–23]. The Coronavirus is
well known as a virus that has a very high probability of recombination [24–28]. Even if
quarantine against COVID-19 in humans is successful, if infection through various species
occurs, it could open a new avenue for virus mutation and reinfection. Therefore, we need
to control transmissions not only between human-to-human transmission but also human-
to-animal transmission. Companion animals share lifestyles with humans while living
on the narrow interspecies surface. For these reasons, companion animals are exposed to
reverse zoonosis, and countermeasures are required, such as companion animal vaccines.

Coronaviruses use spike (S) proteins to enter cells binding with the cell’s ACE2
(angiotensin-converting enzyme 2) receptors [29–31]. Spike protein is composed of two
proteins: S1 and S2. Mainly, S1 protein helps in binding and attachment to host cell
receptors, and S2 protein mediates fusion to the cell membrane [32–35]. Spike proteins
induce spike-specific cellular response, and CD+8 T cell responses have been observed in
the early period [36]. In particular, the receptor-binding domain (RBD) in S1 protein plays
a crucial role in successful entry into the host cell, and it is the most dominant antigenic site
for inducing SARS-CoV-2-neutralizing antibodies containing the majority of neutralizing
epitopes [37]. Therefore, the S protein is a key part in the induction of T-cell responses, as
well as protective immunity.

For these reasons, the spike protein is considered a major target protein for vaccine
and therapeutic drug development [38]. The World Health Organization (WHO) approved
the use of NVX-CoV2373, which is the subunit vaccine that is currently used in humans
worldwide. The vaccine uses the SARS-CoV-2 S protein antigen and shows 89.7% effective-
ness in participants [39]. The Pfizer-BioNTech (BNT162b2 vaccine) and Moderna vaccines
(mRNA-1273 vaccine), approved the use by US Food and Drug Administration (USFDA)
and show over 90% effectiveness in people 16 years of age and older, also encode the
SARS-CoV-2 S protein [40]. Therefore, we developed a subunit vaccine for companion
animals using spike proteins and evaluated its efficacy in the target animals.
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Additionally, we figured out that this subunit vaccine does not have a cross-protective
ability against other human coronaviruses. Coronaviruses that are prevalent as respiratory
diseases in humans include 229E and OC43 viruses [41,42]. Both 229E and OC43 viruses
are respiratory viruses in humans, but according to phylogenetic classifications, the 229E
virus is an alphacoronavirus and the OC43 virus is a betacoronavirus such as SARS-CoV-2.
In particular, the OC43 virus is reported as a virus that has a high S protein sequence
similarity with the Coronavirus detected in dogs infected with respiratory disease [43]. We
also tested the potential for cross-protection against OC43 and 229E viruses against the
COVID-19 vaccine.

2. Materials and Methods
2.1. Animals

Ten female beagles aged 4–6 months, who received all canine parvovirus, canine dis-
temper virus, canine adenovirus, canine parainfluenza virus, and rabies vaccines (Nobivac
Madison, WI. United States) were purchased from Saeronbio [44,45]. They were housed
in an isolated cage within the BSL-2 facility at Chonnam National University (Gwangju,
Korea) for the study. All animal experiments complied with the current laws of Korea.
Animal care and treatment were conducted in accordance with the guidelines established
by the Chonnam National University Institutional Animal Care and Use Committee (CNU
IACUC-YB-R-2021-98).

2.2. Antigen

S1 protein and RBD protein recombinant plasmids were prepared using the pcDNA™3.3-
TOPO® vector (ThermoFisher, Waltham, MA. United States. Cat No. K8300-01). The vector
was injected into the Chinese Hamster Ovary (CHO) cell to express the protein. After culturing
the transformed CHO cells, the supernatant is collected, filtered, and purified by column
loading (GE healthcare, AKTA prime plus). After purification, the protein is identified by
SDS-PAGE and Western Blotting. The purified antigen is used as the vaccine antigen after
checking the concentration using Nanodrop (ThermoFisher, Waltham, MA. United States.
AZY2017596) (Figure 1).
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Figure 1. S1 protein and RBD protein recombinant plasmids were prepared using the pcDNA™3.3-
TOPO® vector (ThermoFisher, Waltham, MA. United States. Cat No. K8300-01). Chinese Hamster
Ovary(CHO) cells were used for protein expression. After culturing the transformed CHO cells, the
supernatant is collected, filtered, and puri-fied by column loading (GE healthcare, AKTA prime plus).

2.3. Vaccination

A vaccine antigen consists of SARS-CoV-2 spike 1 (S1) protein and the receptor-binding
domain (RBD) protein manufactured by CTCVAC Co., Ltd, Hongcheon, Korea. (CTCVAC
FCoV-19, lot# CCVa-2101), and the method is described in Figure 1. The vaccine contains
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an adjuvant of 10% Montanide gel (PR02, Seppic) or stimulant of monophosphoryl lipid
A (MPL, TLR4 agonist; Sigma-Aldrich, Darmstadt, Germany.). MPL mixed with DW
containing 0.2% trimethylamine was heated at 70 ◦C for 30 s, then sonicated for 30 s, and
these steps were repeated twice (Table 1).

Table 1. Materials used in the construction of vaccines are in the table. S1 protein and RBD protein
were used as antigens, Montanide gel as an adjuvant, and MPL as a stimulant in the ratio as above.

Per Dose

Antigen S1 (Spike Protein 1) 60 µg
RBD (Receptor binding domain) 60 µg

Adjuvant Montanide gel (PR02) 10%(vol)
Stimulant MPL (Sigma) 50 µg

Test vaccine formulation and vaccination schedules are shown below in Tables 1 and 2
and Figure 2.

Table 2. Experimental design for immunization in beagle dogs offered by COVID-19 subunit vaccines.
Vaccines used for Group 1 were composed of SARS-CoV-2′s S1, RBD protein, and adjuvants. Vaccines
used for Group 2 were composed of SARS-CoV-2′s S1, RBD protein, and adjuvants and stimulants
were added. Vaccines or PBS were inoculated by subcutaneous route.

Group Immunization Route Vaccine Number of Dogs

Group 1 S.C FCoV-19 4
Group 2 S.C FCoV-19+stl 1 3

Unvaccinated S.C PBS 3
1 FCoV-19 vaccines containing stimulants.
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Figure 2. Vaccination schedule for Beagles. Beagles were moored for a week before the experiment. 
Vaccines were inoculated on day 0, 21, and 35. Blood samplings were performed before vaccination. 
Body temperature, body weight, and clinical symptoms were measured. The red circles mean the 
blood sampling date. The purple circles mean the date of checking body temperature, weights, and 
symptoms for clinical monitoring. All experiments and monitoring were performed by four veteri-
narians. 

Figure 2. Vaccination schedule for Beagles. Beagles were moored for a week before the experi-
ment. Vaccines were inoculated on day 0, 21, and 35. Blood samplings were performed before
vaccination. Body temperature, body weight, and clinical symptoms were measured. The red circles
mean the blood sampling date. The purple circles mean the date of checking body temperature,
weights, and symptoms for clinical monitoring. All experiments and monitoring were performed by
four veterinarians.

2.4. Cells and Viruses

Human colon adenocarcinoma cells (HCT-8, KCLB, KCLB No. 10,244), human lung
fibroblast cells (MRC-5, KCLB, KCLB No. 10,171), and African green monkey kidney
epithelial cells (VERO C1008, ATCC, CRL-1586) were obtained from the Korean Cell Line
Bank (KCLB) and American Type Culture Collection (ATCC), respectively. The cells were
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grown at 37 ◦C in air enriched with 5% CO2(carbon dioxide) and Dulbecco’s modified
Eagle’s medium (DMEM, CORNING 10-013-CV) or Roswell Park memorial institute 1640
(RPMI, WELGENE LM011-51) medium supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin (100 units/mL)-streptomycin (100 µg/mL)-2mM L-glutamine. OC43,
229E, and SARS-CoV-2 viruses were grown in HCT-8, MRC-5, and Vero cells respectively.

2.5. Groups

Beagles were divided into a negative control group and two experimental groups.
Experimental group 1 was administered with a vaccine-containing adjuvant. Experimental
group 2 was administered with a vaccine containing both the adjuvant and stimulant.
In the negative control group, PBS was used instead of the vaccines. Each vaccine was
injected through the subcutaneous (S.C) route on the first day, and the second injection was
performed 3 weeks later in the same manner (Table 2). Blood collection was performed
on the day of first and secondary vaccination and 2 weeks after secondary vaccination.
Bodyweight and body temperature were measured by four veterinarians observing general
clinical signs and local side effects during the experiment (Figure 2).

2.6. SN Test

For the serum neutralization test, fresh serum was collected from dogs. The serum
was stored at −70 ◦C. Cells were prepared in 96-well plates at a dilution of 1×105/mL
with a cell culture medium. All test sera were heated at 56 ◦C for 30 min and were diluted
2-fold serially in flat-bottom 96-well microtiter plates using PBS as diluents. In each diluted
sera, viruses were added with a 1:1 ratio after dilution to 100TCID50/well. After mixing,
plates were incubated at 37 ◦C for 1 h. Moreover, the mixed sera were dispensed on the
prepared corresponding cells. Then, incubation was performed with 5% CO2 and 33 ◦C
(OC43, 229E) or 37 ◦C (SARS-CoV-2) temperature in an incubator for 3–5 days. When the
virus titer reaches 100TCID50/well, the neutralizing ability is measured by observing the
cytopathogenic effect (CPE) [46–49]. The experiment was performed in duplicates.

3. Results
3.1. Side Effects of Vaccination

There was no specific side effect after vaccination. No systemic side effects such as
fever, neurological symptoms, anorexia, and lethargy were observed. No local side effects
such as swelling, redness, itching, granuloma, and suppuration were observed. The normal
body temperature range for dogs is 38–39 ◦C, and in the cases of young dogs, the range
of body temperature could be slightly wider or higher [50]. No abnormal change in body
temperature was observed during this experiment (Figure 3a).

Beagle grows rapidly up to 4–6 months, and the growth rate gradually decreases,
reaching the size of an adult dog at 12 months old. During this experiment, the growth
rate was about 10–15% per month following the general growth curve and no abnormal
weight loss was observed [50]. No abnormal change in body weight was observed during
this experiment (Figure 3b).
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Figure 3. (a) Three groups’ temperatures of the day post-vaccination. Group1 (•), Group2 (�), and
Negative Group (N) showed the same patterns of body temperature. They were all within the normal
range. As a result of temperature measurements, there was no side effect of the vaccines. (b) Three
groups’ body weights of the day post-vaccination. Group1 (•), Group2 (�), and Negative Group
(N) showed the same patterns of growth rate. They were all within the normal range. As a result of
bodyweight measurements, there was no side effect of the vaccines.

3.2. SN Test

From the results of the serum neutralization test, significant antibody values began
to appear 2 weeks after the second vaccination for COVID-19. Much higher amounts
of neutralizing antibodies were found in Group 2 in which stimulants were added. We
identified a titer shown to be sufficient in protecting against SARS-CoV-2, comparable to
that of vaccinated people. According to the previous study, average serum neutralization
titers were 80 for paucisymptomatic patients, 160 for symptomatic patients, 40 for primary
vaccinees, and 160 for secondary vaccinees [51]. Group 2 was found to have higher titers
than the vaccinated people in both the first and second vaccinations. Both Groups 1
and 2 were found to have higher titers than the symptomatic patients when the second
vaccination was completed (Table 3, Figure 4).

Table 3. Comparison table of serum virus neutralization test titer between the tested group, commer-
cially available vaccine group, and paucisymptomatic or symptomatic patient group. Group 2 was
found to have higher titers than the vaccinated people in both the first and second vaccination. Both
Groups 1 and 2 were found to have higher titers than the symptomatic patients when the second
vaccination was completed.

Paucisymptomatic
Patients

Symptomatic
Patients

Vaccinated
People Group 1 Group 2 Negative

SN titer 1:80 1:160
SN titer (1st) 40 10 47 10
SN titer (2nd) 160 226 833 10
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symptomatic patients had an SN titer of up to 160.

In the SN test, we judged the presence of virus in the wells with the presence of
CPE in the cells, and the micrographs are as follows (Figure 5). In the experiment to
observe the cross-protective ability against OC43 and 229E viruses, CPE was observed in
all experimental groups in which the antibody and viruses were reacted. Therefore, it was
judged that there was no cross-protective ability.
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tion was not shown. 

4. Discussion 
In both vaccinated groups, antibody-forming rates significantly increased after the 

second vaccination over the level of neutralizing antibody expressed in the vaccinated or 
infected person. The group containing the stimulant showed 6-times higher antibody-
forming rates than the group without the stimulant, because the stimulant induces the 
immune responses of the monocytes and enhances innate immunity [52]. The induction 
of antibody-forming rate in this vaccine that used S protein and RBD is consistent with 
the results of previous studies showing that the S protein and especially RBD play a major 
role in the induction of cellular immunity [53,54]. 

The RBD regions of SARS-CoV-2 and SARS-CoV share about 70% sequences [55], so 
there is a report that cross-protection against SARS-CoV was successful with mRNA vac-
cine using RBD of SARS-CoV-2 [54]. Therefore, we tested the possibility of cross-protec-
tion against OC43 and 229E viruses, which infect humans generally and routinely than 
compared to the pandemic virus-like SARS-CoV. As a result, the antibody induced 
through the RBD and S1 proteins of SARS-CoV-2 had no cross-protective ability against 
OC43 and 229E viruses, and it was consistent with the results of previous studies con-
ducted in humans [56]. 

Although no virus infection test was performed, the protective ability against infec-
tion can be sufficiently predicted by measuring the neutralizing antibody value through 
the SN test. If this animal subunit vaccine is vaccinated in companion animals, it is ex-
pected to help reduce the possibility of reverse zoonosis. It is necessary to confirm these 
conjectures by conducting additional experiments in various companion animals and live-
stock breeds such as cats, minks, and pigs in the future. 

Author Contributions: E.G. and W.N. design the study. Y.W. and J.H. (Jeonghee Han) developed 
the vaccine. E.G., J.H. (Jaehyun Hwang), S.M., and W.N. performed the animal experiments. M.Y., 
K.L., and D.S. performed the experiments in ABSL-3 facility. E.G. conceived the manuscript with 

Figure 5. Micrographs of cells in normal state and cells with cytopathic effects due to viral infection.
There are micrographs of SARS-CoV-2/Vero (a–d), OC43/HCT-8 (e–h), and 229E/MRC-5 (i–l) in
order. There are high magnification micrographs (200×) of normal state (a,e,i) and cytopathic effect
(c,g,k) cells. There are low magnification micrographs (40×) of normal state (b,f,j) and cytopathic
effect (d,h,l) cells. In the SN test conducted additionally using OC43 and 229E viruses, cross-protection
was not shown.

4. Discussion

In both vaccinated groups, antibody-forming rates significantly increased after the
second vaccination over the level of neutralizing antibody expressed in the vaccinated
or infected person. The group containing the stimulant showed 6-times higher antibody-
forming rates than the group without the stimulant, because the stimulant induces the
immune responses of the monocytes and enhances innate immunity [52]. The induction of
antibody-forming rate in this vaccine that used S protein and RBD is consistent with the
results of previous studies showing that the S protein and especially RBD play a major role
in the induction of cellular immunity [53,54].

The RBD regions of SARS-CoV-2 and SARS-CoV share about 70% sequences [55],
so there is a report that cross-protection against SARS-CoV was successful with mRNA
vaccine using RBD of SARS-CoV-2 [54]. Therefore, we tested the possibility of cross-
protection against OC43 and 229E viruses, which infect humans generally and routinely
than compared to the pandemic virus-like SARS-CoV. As a result, the antibody induced
through the RBD and S1 proteins of SARS-CoV-2 had no cross-protective ability against
OC43 and 229E viruses, and it was consistent with the results of previous studies conducted
in humans [56].

Although no virus infection test was performed, the protective ability against infection
can be sufficiently predicted by measuring the neutralizing antibody value through the SN
test. If this animal subunit vaccine is vaccinated in companion animals, it is expected to
help reduce the possibility of reverse zoonosis. It is necessary to confirm these conjectures
by conducting additional experiments in various companion animals and livestock breeds
such as cats, minks, and pigs in the future.
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