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The primary focus in the network-centric analysis of cellular metabolism by systems biol-
ogy approaches is to identify the active metabolic network for the condition of interest.
Two major approaches are available for the discovery of the condition-specific metabolic
networks. One approach starts from genome-scale metabolic networks, which cover all
possible reactions known to occur in the related organism in a condition-independent man-
ner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate
the active network.The other approach starts from the condition-specific metabolome data,
and processes the data with statistical or optimization-based methods to extract informa-
tion content of the data such that the active network is inferred.These approaches, termed
bottom-up and top-down, respectively, are currently employed independently. However,
considering that both approaches have the same goal, they can both benefit from each
other paving the way for the novel integrative analysis methods of metabolome data-
and flux-analysis approaches in the post-genomic era. This study reviews the strengths of
constraint-based analysis and network inference methods reported in the metabolic sys-
tems biology field; then elaborates on the potential paths to reconcile the two approaches
to shed better light on how the metabolism functions.

Keywords: constraint-based models, metabolic network inference, active metabolic state, metabolome, network
biology, reverse engineering, flux-balance analysis

INTRODUCTION
Metabolic network is the outmost layer of cellular activity from
the genome. The genome of a cell is a comprehensive and con-
densed information base, defining a boundary for the biochemical
capacity of the cell. The processing of genetic information passes
through several layers of fabrication and regulation before reach-
ing their end products. This is from information to the function,
from genotype to phenotype. Metabolic enzymes count for a sig-
nificant percentage of the end products of genes, and their activity
sets the physiology of the cell. Since metabolic network activ-
ity is the major representative of cell functionality, it is of great
importance to gain as much knowledge as possible on the active
metabolic network at a specific cellular state.

Systems-based approach to molecular biology has contributed
to an increased knowledge of metabolic pathways for an increasing
number of organisms, and led to almost complete metabolic net-
works for a number of major organisms, from yeast to human.
Such static networks are available in a condition-independent
manner through web-based databases such as KEGG or Meta-
Cyc (Altman et al., 2013), or reconstructed in a format suitable
for simulation by several researchers at genome scale (Oberhardt
et al., 2009; Kim et al., 2012). There are several mathematical
approaches to process such networks to come up with condition-
specific networks, the most common one being the Flux-Balance
Analysis (FBA) framework (Orth et al., 2010). This is a bottom-up
direction toward the active network since already-known “parts,”

interactions, are used as inputs (Bruggeman and Westerhoff, 2007;
Petranovic and Nielsen, 2008).

In parallel to the developments on the knowledge of meta-
bolic networks, techniques to measure metabolite levels at high
throughput, termed metabolomics, have arisen (Kell, 2004; Dunn
et al., 2005). Quantitative or semi-quantitative metabolome data,
although one of the most challenging compared to other omic
sciences, have come a long way in a decade, from the detec-
tion and quantification of about 50 metabolites (Devantier et al.,
2005) to more than 1000 metabolites (Psychogios et al., 2011).
Metabolome data are a snapshot of the condition-specific status of
the investigated organisms. Reverse-engineering metabolome data
to discover the underlying network structure is the goal behind
metabolic network inference approaches (Srividhya et al., 2007;
Çakır et al., 2009). The information content of metabolome data
is revealed by processing it with correlation or optimization-based
methods (Weckwerth et al., 2004; Hendrickx et al., 2011; Öksüz
et al., 2013). Such an approach to discover metabolic network
structure is termed top-down approach since the parts, inter-
actions, are not known a priori, and predicted from the whole
set of available biomolecules (Bruggeman and Westerhoff, 2007;
Petranovic and Nielsen, 2008).

In this review, we will cover the basic developments in
bottom-up and top-down approaches to discover active meta-
bolic network, and then ponder over the possible ways of rec-
onciling these two approaches for a better prediction of active
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Çakır and Khatibipour Metabolic network discovery methods

FIGURE 1 | Comparative demonstration of bottom-up and top-down approaches to discover active metabolic network. The white box in the figure
defines different levels of network structure information.

network structure. Figure 1 illustrates the two alternative network
discovery approaches.

BOTTOM-UP APPROACHES TO DISCOVER
CONDITION-SPECIFIC METABOLIC NETWORKS
Different methods and algorithms have been used for the discov-
ery and characterization of active metabolic networks at differ-
ent states of cells and culture environments. In the bottom-up
approach, everything starts from an already available network of
biochemical transformations that cover all possible scenarios in
the distribution of metabolic fluxes, and sets an upper bound for
the existence of reactions in the active metabolic network. Such
a network is termed a static metabolic network. A static meta-
bolic network can be provided either by a previously reconstructed
genome-scale stoichiometric model or by a collection of all reac-
tions whose existence in the organism of interest has been certified
in literature and databases. Most popular among such databases
are KEGG (Kanehisa et al., 2014), MetaCyc (Caspi et al., 2014), and
Reactome (Croft et al., 2014). Other efforts with more curated

databases such as Rhea (Alcántara et al., 2012) and MetRxn
(Kumar et al., 2012) are also available. A genome-scale stoichio-
metric model is reconstructed based on the annotation of all
genes in the genome of one organism to their end products and
then to the corresponding reactions, leading to a list of gene-
protein-reaction rules (Thiele and Palsson, 2010). In this way, the
minimum information content of a genome-scale model is (i) a
list of reactions, and (ii) a list of gene-protein-reaction rules. The
presence of gene-protein-reaction rules in stoichiometric models
has enabled the opportunity for transcriptome and proteome data
to be incorporated into the discovery methods of active metabolic
networks (Blazier and Papin, 2012).

Given a genome-scale reaction network, the aim is to find the
active reaction network at a specific condition or for a specific cell
type in a multicellular organism (Box 1). The core of all such dis-
covery approaches is a stoichiometric matrix. Each row of the stoi-
chiometric matrix represents a metabolite and each column stands
for a reaction, the corresponding element being the stoichiometric
coefficient of that metabolite in that reaction. The relationship
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Box 1 Different levels of Metabolic Network Structure Infor-
mation.

Our understanding of an active metabolic network can be sorted
into several stages of information.

(i) At the lowest level of information, we want to know what the
structure of the network is, representing it with an undirected
(or directed, if the reversibility information is available) graph
in which each node stands for a metabolite and each edge
stands for a biochemical transformation. Alternative to the
retrieval from the metabolic reaction databases, the structure
of the network – both directed and undirected – can also be
estimated to some extent by analyzing and reverse engineer-
ing the metabolome data without the use of a priori database
information on the reactions.

(ii) At a higher level, the information on the stoichiometry of reac-
tions can be incorporated, leading to a directed stoichiometric
biochemical network.

(iii) Having the stoichiometric structure of the network, we can
characterize the metabolic state in more detail by quantify-
ing the metabolic fluxes. In most cases, rather than a unique
flux distribution, constraints are set on flux values to shrink
the solution space. Such modeling approaches are known
as Constraint-Based Modeling. This level of understanding
the active metabolic network (structure+flux distribution) has
been the area of focus in the research community for more
than a decade. In most cases, the information provided at
this level has been satisfactory for engineering research to
design more efficient cell factories, and also, recently, for med-
ical research to distinguish significant differences between
healthy and disease states.

(iv) There are, however, certain limitations at the above level
although it provides a network activity structure weighted
with fluxes. The dynamic behavior of the system cannot be
captured, and the predictability power of such models is ham-
pered mainly because they are not considering the role of
regulatory mechanisms in controlling the rate of biochemi-
cal reactions. In some cases, the regulation of reaction rates
plays such a dominant role that it would be hard to make any
prediction by just considering the flux-based network activ-
ity structure. Here come the kinetic models into the picture,
which take enzymatic regulations and metabolite concentra-
tions into account for a dynamic and better prediction of
network structure.

between the reaction rates in the network and the dynamic
change in the concentration of metabolites is represented as given
below:

dC

dt
= S× v (1)

where S is the stoichiometric matrix, C is the vector of intracellular
metabolite concentrations, and v is a column vector of metabolic
reaction rates (fluxes) to be determined. Under the assumption of
steady state, the concentration of each intracellular metabolite is
not going to change with time, meaning the sum of rate of reac-
tions producing that metabolite is equivalent to the sum of rate
of reactions consuming that metabolite (metabolic fluxes around
each metabolite are balanced). This is represented mathematically

as follows:

S× v = 0 (2)

This is an algebraic system of linear equations with all fluxes
being zero as a trivial solution. In order to escape from the trivial
solution, the value of at least one of the fluxes must be set to a non-
zero value, that flux usually being an exchange flux between the
intracellular and extracellular environment since the experimental
measurement of exchange fluxes is relatively easier. The system is
almost always underdetermined with a large solution space, mainly
because of the existence of branch points in the metabolic network.
There are both experimental and computational approaches to
estimate a condition-specific network for such a system.

The experimental approach is based on stable-isotope (mostly
13C carbon) labeling of the major carbon source, and then tracing
the propagation of the labeled carbon atoms down to protein-
bound amino acids at isotopic steady state by using mass spec-
trometry or NMR spectroscopy (Wiechert et al., 2001; Sauer, 2006;
Mueller and Heinzle, 2013). The qualitative isotopic labeling infor-
mation is then used as an input to two alternative methods. In one
method, termed isotopomer modeling, a total flux distribution
is estimated based on the experimental labeling results through
a computationally demanding non-linear optimization formula-
tion, which employs global iterative fitting and statistical analysis
(Wiechert et al., 2001; Antoniewicz et al., 2007). The other 13C-
labeling assisted method is based on the estimation of the local
ratios of fluxes emerging from a branch point (Sauer, 2006; Zam-
boni et al., 2009) rather than the absolute quantification of all
fluxes. These experimental flux split ratios can be used to shrink
the solution space of Eq. 2 in a complementary flux calculation,
leading to the discovery of a condition-specific network (Schuetz
et al., 2007; Tarlak et al., 2014). Softwares are available for the
rather sophisticated calculation of experimental fluxes (or flux
ratios) from carbon labeling data for both methods (Zamboni
et al., 2005; Quek et al., 2009; Weitzel et al., 2013). A new trend in
this area is to collect data at the non-stationary phase of isotopic
labeling rather than at the isotopic steady state, which was shown
to be more informative in terms of predicting the flux-weighted
active metabolic network structure (Schaub et al., 2008; Young
et al., 2008; Wiechert and Nöh, 2013). Works on the tracing of
intracellular metabolites rather than only 10–15 protein-bound
amino acids have also appeared due to the higher coverage of
metabolic pathways despite the inherent experimental difficulties
in terms of higher turnover rates as well as stability issues (Van
Winden et al., 2005; Toya et al., 2007; Millard et al., 2014).

The computational approach for the discovery of condition-
specific metabolic network based on Eq. 2 is known as constraint-
based modeling. Constraint-based modeling methods aim to
shrink the solution space of the equation as much as possible
by putting relevant constraints on the system. The most common
method, FBA, treats the problem in Eq. 2 as an optimization prob-
lem and linear programing is applied to solve it. The stoichiometry
of metabolic reactions (stoichiometric matrix), reaction direction-
ality information, a physiologically relevant objective function,
and the value of at least one of the exchange fluxes are all that
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are required for FBA to return a condition-specific flux distrib-
ution. The flux distribution returned by FBA is not necessarily
unique, and there may be a variety of flux distributions all leading
to the same optimum value of the objective function. Therefore,
Flux Variability Analysis (FVA) must be used together with FBA, to
determine the variability, if any, on each metabolic flux in regard to
the condition of interest (Mahadevan and Schilling, 2003; Müller
and Bockmayr, 2013). The maximization of biomass produc-
tion has been successfully applied as a reliable objective function
for FBA to predict flux distributions in a variety of microor-
ganisms (Varma and Palsson, 1994; Feist and Palsson, 2010). In
some studies, it has been hypothesized that one objective function
alone may not capture the metabolic behavior of the cell compre-
hensively. Therefore, multi-objective optimization platforms have
been designed and utilized to come up with more specific flux
distributions. Several modified versions of FBA including parsi-
monious FBA, pFBA (Lewis et al., 2010), and flexible-optimality
FBA, flexoFBA (Tarlak et al., 2014), have been developed in this
manner. On the other hand, some research groups have devel-
oped methods based on the availability of additional omics data,
which are discussed below. For a thorough review of a number of
FBA-derived flux calculation methods, the readers are referred to
Lewis et al. (2012).

CONSTRAINTS BASED ON TRANSCRIPTOME OR PROTEOME DATA
The rate of an enzymatic reaction inside the cell is a function of sev-
eral different factors, such as the concentration of substrates, prod-
ucts, and regulators of the enzyme and also the amount of available
active enzyme for that reaction. Among these factors, the concen-
tration of active enzymes can be related to the activity of genes
through layers of transcription, translation, and post-translational
modifications. Transcriptome data are much more accessible and
comprehensive compared to the other omics data. Several different
research groups have developed different strategies to incorpo-
rate transcriptome data into constraint-based models. The idea
behind this is that the amount of mRNAs (gene activities) may
be correlated with the concentration of active enzymes, and hence
this can be utilized to provide additional constraints on meta-
bolic fluxes. At the bottom line, if an enzyme coding gene is not
transcribed at steady state, the corresponding reaction should be
inactive at that steady state, if there is no other enzyme catalyz-
ing that reaction. This idea was first used by Akesson et al. to set
the flux values to zero for those reactions whose corresponding
genes were expressed at low levels (Åkesson et al., 2004). More
sophisticated and structured versions of this approach appeared
later, under the names of GIMME (Becker and Palsson, 2008)
and iMAT (Shlomi et al., 2008). These approaches classify some
reactions as inactive reactions based on the low expression lev-
els of their associated genes. Then, they employ a computational
framework which minimizes the contradiction between the clas-
sification and an active physiological flux distribution since some
of these classifications may render the flux state unrealistic (such
as zero growth rate). Several other alternative methods appeared
recently to incorporate transcriptome data into the prediction of
active metabolic network and flux distribution. In an interesting
study, for example, mRNA levels from transcriptome data were
used as weights for the corresponding reactions to predict a flux

distribution without using a conventional objective function such
as the maximization of biomass growth (Lee et al., 2012). A recent
study (Machado and Herrgård, 2014) evaluated these methods sys-
tematically for the prediction of flux distributions, and the results
were compared to that of parsimonious FBA as a reference method
that does not consider the transcriptome data. In general, none of
the methods could significantly improve the results of pFBA and
none of them outperformed the others for the tested cases (S. cere-
visiae and E. coli). Instead of the prediction of flux distributions,
these methods, however, may significantly help in the discovery
of active metabolic networks in context/tissue-specific cells and
in the conditions where a relevant objective function cannot be
hypothesized.

Transcriptome data are not necessarily correlated with the rate
of corresponding reactions. Inconsistency between mRNA levels
and reaction rates is a result of influence of several other factors
in the regulation of enzymatic reactions. Therefore, if proteome
data are available, it can be used instead of transcriptome data
as a better representative for the concentration of active enzymes
since proteome is hierarchically closer to the enzyme states than
transcriptome data. The methods that are developed to integrate
transcriptome data with the FBA method can all be used for
the purpose of integrating proteome data. For example, GIM-
MEp (Bordbar et al., 2012) is the proteome equivalent version of
GIMME. Some of such integrative methods were primarily tested
with proteome data. INIT (Agren et al., 2012), for example, was
developed by using proteome abundance data from Human Pro-
tein Atlas database. However, it was shown that utilizing proteome
data instead of transcriptome data could not improve the pre-
diction of flux distributions for the tested cases (S. cerevisiae and
E. coli) (Machado and Herrgård, 2014). In a study which used
metabolome and proteome data in the flux calculation method,
on the other hand, even the use of only proteome data were shown
to improve the results compared to the traditional FBA (see the
next section for more details) (Yizhak et al., 2010).

Substrate concentrations, the concentration of enzyme regu-
lators, the turn over number of the catalyzing enzyme, and the
concentration of the active enzyme are all playing significant roles
in the determination of reaction rates, and among them only
the concentration of the active enzyme may be represented by
the corresponding protein or mRNA concentration. Translated
proteins are not necessarily active enzymes, and they may need
to undergo post-translational modifications (e.g., phosphoryla-
tion/acetylation) to become capable of catalyzing the reactions.
This is one of the main reasons behind inconsistency between
protein levels and reaction rates. On the other hand, the turn
over number (catalytic power) of one enzyme may differ by sev-
eral orders of magnitude from the turn over number of another
enzyme (Hoppe, 2012). It means that although the concentration
of one enzyme may be much less than the others in the network,
the reaction catalyzed by that enzyme can proceed much faster
than others. According to this fact, the use of the absolute concen-
trations of proteins or mRNAs to constrain reaction rates does not
seem promising. However, the turn over number of one enzyme in
an individual is an intrinsic parameter of the enzyme that does not
change from one condition to another except by effective muta-
tions that rarely occur. Because of this, the relative levels of proteins
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or mRNAs can be utilized to overcome the problem of big differ-
ences in turn over numbers. One steady state with available data on
flux values and protein/mRNA levels can be taken as the reference
state, and then the relative/differential levels of proteins/mRNAs
to the reference state can be used to predict the flux distributions at
the new conditions. Based on this approach, algorithms have been
developed to incorporate relative/differential transcriptome data
into metabolic-flux analysis, among which are MADE (Jensen and
Papin, 2011) and GX-FBA (Navid and Almaas, 2012). One other
main reason for the inconsistency between protein levels and reac-
tion rates is the distribution of flux control among different layers
from genotype to phenotype. Metabolic fluxes can be regulated
hierarchically (through gene expression levels) or metabolically
(through metabolic interactions) (Daran-Lapujade et al., 2007;
Postmus et al., 2008; Nikerel et al., 2012; Chubukov et al., 2013).
Use of transcriptome or proteome data will not be helpful if the
metabolic fluxes are controlled at the metabolic level.

CONSTRAINTS BASED ON METABOLOME DATA
One approach to find more specific and physiologically relevant
flux distributions is to provide additional constraints by speci-
fying the directionality of reversible reactions. This can be done
by taking Gibbs free energies of metabolites into consideration.
The Gibbs free energy change of a reversible biochemical trans-
formation (one reaction or a series of reactions) determines the
direction of that transformation and its departure from reversibil-
ity. The earlier studies assumed standard conditions (all metabolite
concentrations were assumed to be 1 M), and did not explicitly
consider metabolite concentrations in the calculation of Gibbs
energy changes of reactions due to the scarcity of metabolome
data (Henry et al., 2006). Recent studies, however, take the con-
centration of metabolites into account, when available, to perform
thermodynamic-based metabolic-flux analysis, leading to more
reliable predictions (Hoppe et al., 2007; Bennett et al., 2009; Soh
and Hatzimanikatis, 2010; Hamilton et al., 2013).

Extracellular metabolome data can be used to constrain
genome-scale metabolic models for the calculation of intracel-
lular flux distributions by simply constraining the secretion and
uptake rates of extracellular metabolites based on such data (Çakır
et al., 2007; Mo et al., 2009). In a different approach, Michaelis–
Menten-based kinetics was used for the estimation of reaction rates
for the reactions for which appropriate intracellular metabolome
(and proteome) data are available (Yizhak et al., 2010). The FBA
framework was designed in such a way that the calculated fluxes
are as consistent as possible with the kinetically derived reaction
rates, if available. The simultaneous use of metabolome and pro-
teome data for this purpose significantly improved the results. The
use of metabolome data alone also resulted in better predictions
than the traditional FBA. In a recent study, a kinetic platform was
established based on Michaelis–Menten equation to bridge gene
expression levels, metabolite concentrations and metabolic fluxes
without requiring the knowledge of kinetic parameters (Zelezniak
et al., 2014). They could show that changes in metabolite con-
centrations relative to a reference steady state can be predicted by
their formulation that includes information on network connec-
tivity in addition to differential mRNA expression levels. All those
works utilizing kinetic information demonstrate the necessity of

dynamic models for a more comprehensive analysis of metabolic
networks.

Kinetic models of biochemical reactions not only provide a
rational platform for omics data – especially metabolomics – to be
incorporated in the estimation of metabolic fluxes but also they
enable the prediction and study of the dynamics of metabolic net-
works far beyond the steady state (Box 1). Such models were only
possible for small-scale metabolic networks until recently (Teusink
et al., 2000; Chassagnole et al., 2002), since, they require detailed
information on the enzyme kinetics of each individual reaction.
Estimation of kinetic parameters is a major obstacle in the applica-
bility of dynamic modeling of metabolic networks. New platforms
and algorithms were established to circumvent this problem so that
the estimation of explicit kinetic parameters is not a prerequisite
to study the dynamic capacity and behavior of the system (Link
et al., 2014). Approximative kinetic models (lin-log, power-law,
mass-action) on the other hand, try to fit a standard rate expression
formula to all reactions of the network to increase the range of their
applicability to larger networks (Visser et al., 2004; Sorribas et al.,
2007). Thanks to approximative kinetics, attempts to reconstruct
large-scale kinetic metabolic models with more than 100 reactions
were recently presented (Smallbone et al., 2010; Chakrabarti et al.,
2013; Stanford et al., 2013), but their prediction power is limited to
the conditions adequately close to the corresponding steady state.

As a better alternative to approximative kinetics, an approach
was established and utilized based on the concept of parametric
Jacobian, which covers the behavior of all possible kinetic mod-
els that are consistent with an experimentally observed operating
point (Steuer et al., 2006). This approach provides an oppor-
tunity to detect and analyze bifurcation characteristics of the
metabolic network without the need for explicit determination
of kinetic parameters. Ensemble modeling of metabolic networks
(Tran et al., 2008) is an elegant idea for large-scale kinetic modeling
of biochemical reaction networks. In this method, each enzymatic
reaction is broken down to its elementary reactions that all follow
mass-action kinetics. An ensemble of thermodynamically con-
sistent kinetic models with different dynamic behavior that all
converge to a reference steady state is collected with the help of
intracellular metabolome data. This ensemble is then filtered by
the results of perturbation experiments to filter out inconsistent
models from the ensemble and to increase the predictability of
remaining models. The approach was successfully applied, among
others, to construct kinetic models of E. coli (Khodayari et al.,
2014) and cancer metabolisms (Khazaei et al., 2012), leading to
promising flux predictions.

TOP-DOWN APPROACHES TO DISCOVER
CONDITION-SPECIFIC METABOLIC NETWORKS
Time series of metabolite concentrations in response to a per-
turbation, and also replicates of metabolome data at a specific
steady state, both implicitly contain information on the structure
of active metabolic network. Reverse engineering of these data to
infer the condition-specific metabolic network without necessar-
ily prior knowledge on the genome of the organism and its static
metabolic network is an alternative to all bottom-up approaches
that are based on the availability of a large-scale stoichiometric
model of the organism. Although promising, less attention has

www.frontiersin.org December 2014 | Volume 2 | Article 62 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Çakır and Khatibipour Metabolic network discovery methods

been paid to these top-down approaches compared to bottom-
ups mainly because of the technical obstacles in gathering reliable
metabolome data in large scale. This limitation will be removed
with future advancements in the detection and quantification of
intracellular metabolites such as higher coverage and temporal
resolution. At this stage, however, several research groups have
established algorithms and methods for reverse engineering of
metabolic networks by using either time series or steady-state
replicates of metabolite concentrations (Crampin et al., 2004;
Chou and Voit, 2009; Hendrickx et al., 2011; Lecca and Priami,
2013).

NETWORK DISCOVERY BASED ON TIME-SERIES DATA
The use of time-series metabolite concentration data to predict the
underlying network connectivity information first appeared in the
literature about two decades ago. Time-lagged correlations com-
bined with a projection technique called multidimensional scaling
were shown to construct the structure of generic biochemical net-
works with few nodes (Arkin and Ross, 1995). Correlation between
time-series profiles of metabolites, with the consideration of the
delay in the influence of one metabolite on the next, is the basis of
the time-lagged correlation method for the inference of metabolic
networks. The approach, called correlation metric construction,
was later experimentally verified in vitro by inferring the first
steps of glycolytic pathway in a 14-metabolite system (Arkin et al.,
1997). Modified versions of the approach appeared later (Samoilov
et al., 2001; Lecca et al., 2012). In the latter, metabolic pathway of
an anticancer drug was deduced from the time-lagged correla-
tions of corresponding metabolite concentration measurements.
The modification introduced by the former work was recently
improved by using mutual information similarity score rather
than simple linear correlation (Villaverde et al., 2014). The authors
compared their method, called MIDER, with several other meth-
ods by applying it to different types of cellular networks, including
in vitro glycolytic pathway data. The approach outperformed the
other methods.

Another method to reconstitute a network using time-series
data is based on perturbation experiments around steady state.
The initial curve of concentration changes of metabolites in
response to a pulse change on the concentration of a metabo-
lite is processed with the method of zero initial slopes (Vance
et al., 2002). The method successfully inferred the structure of
glycolysis based on in vitro experimental data (Torralba et al.,
2003). Performance comparison of the method with the corre-
lation metric construction approach was later provided based on
in silico data of S. cerevisiae and E. coli central metabolic networks
(Hendrickx et al., 2011). An approach based also on perturbation
experiments, but with a different formulation aiming to calculate
Jacobian matrix from time derivatives of concentration data, was
first applied to gene networks (Schmidt et al., 2005). A modified
version of the approach recently used in vivo metabolite concentra-
tion measurements from tomato seedlings to reconstruct quercetin
glycosylation pathway (Astola et al., 2011).

Apart from such model-free structure identification methods,
model-based methods use time-series metabolite concentration
data not only to identify network structure but also to esti-
mate proper model parameters such as rate constants of kinetic

expressions (Chou and Voit, 2009). Majority of these approaches
use power-law (also called S-system) formulation (Savageau and
Voit, 1987) to approximate reaction kinetics. An approach, for
example, used S-system modeling with a multi-objective optimiza-
tion by simultaneously minimizing the number of interactions and
the error in the fitting (Liu and Wang, 2008). They applied their
method to major metabolites involved in ethanol fermentation. An
earlier work analyzed a small three-metabolite network of phos-
pholipid metabolism by combining S-system modeling and an
evolutionary modeling method, genetic programing (Ando et al.,
2002). Later, a new representation of S-system approach, called S-
trees, was combined with genetic programing to reverse-engineer
yeast fermentation pathway in a more efficient manner by using
in silico time-series concentration data of five metabolites (Cho
et al., 2006). In a sophisticated approach, others used symbolic
regression based on genetic programing to infer both the struc-
ture and the model of yeast glycolytic oscillations from in silico
data (Schmidt et al., 2011). Their use of acylic graph encoding
rather than tree-based encoding together with symbolic regres-
sion approach ensured the identification of parsimonious (sparse)
models. Rather than S-system formulation, mass-action kinet-
ics can also be used to infer pathway connectivity and reaction
mechanism (Srividhya et al., 2007). This minimizes the compu-
tational burden on the algorithm since only rate constants are to
be estimated as parameters in the mass-action formulation. The
authors tested their method with real time course experimental
metabolome data of Lactococcus lactis glycolysis. A graphical user
interface was later made available by the same group to ease the
inference of kinetics and network architecture from dynamic data
of biochemical pathways (Mourão et al., 2011). Genetic program-
ing was also combined with mass-action kinetics in an algorithm,
which ensures the estimation of biochemically more plausible
models (Gormley et al., 2013). The small phospholipid network
of (Ando et al., 2002) was inferred in a more compact way by this
algorithm.

NETWORK DISCOVERY BASED ON STEADY-STATE DATA
The use of steady-state metabolome data to infer metabolic net-
work structure has also drawn attention in the last decade. The
biological variability in the metabolism of the organisms at around
steady state is a known phenomenon due to slight variations
in the enzyme levels or due to slight natural or environment-
induced fluctuations within cellular processes. Slight variations in
the steady-state measurements of metabolite levels can be infor-
mative on the network structure (Steuer et al., 2003; Camacho
et al., 2005; Çakır et al., 2009). The most common approach
here is to use the similarity measures such as Pearson correla-
tion to assign edges between metabolites. One should note that
such correlations are not necessarily strong among neighboring
metabolites whereas there could be strong correlations among
distant metabolites in the network (Camacho et al., 2005). In
a comprehensive study, different alternative similarity measures
(linear vs. non-linear, and full vs. partial) were applied to in silico
metabolome data belonging to two microorganisms to systemati-
cally analyze method performances (Çakır et al., 2009). The results
revealed no clear superiority between linear (Pearson correlation)
and non-linear (mutual information) similarity measures. The
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best performing method was identified as nth order partial Pearson
correlation, known also as graphical Gaussian modeling. Graphi-
cal Gaussian modeling was also applied to metabolome data from
blood serum samples to reconstruct human fatty acid metabo-
lism (Krumsiek et al., 2011). Others (Nemenman et al., 2007)
analyzed in silico metabolome data of red blood cell metabolism
by ARACNE approach (Margolin et al., 2006), which is based on
pruning mutual information scores. An elegant improvement on
ARACNE based reverse engineering of metabolic profiling data
was suggested later (Bandaru et al., 2011). The approach puts a
constraint on the possible metabolic transformations to satisfy the
mass conservation between the connected metabolites. Synthetic
data covering up to about 200 metabolites were generated to test
the approach. One issue in such similarity-based approaches is
that only pairwise interactions are aimed to be found. However, a
metabolic reaction can involve more than two metabolites. Based
on this reasoning, an attempt to also deduce triple interactions
by using ternary mutual information was suggested (Diê.p et al.,
2011). Analysis of synthetic yeast glycolysis data and red blood cell
data showed the success of this approach in capturing higher order
interactions.

A different approach to discover active metabolic networks
from steady-state data is based on Lyapunov equation. In Eq. 1, the
rate vector, v, is a complex non-linear function of concentrations,
C. For systems around steady state, the equation can be expressed
in terms of Jacobian matrix, J, by the help of linear approximation:

dX

dt
≈ JX (3)

with X=C−Cs, and Cs shows the steady-state metabolite con-
centrations. Jacobian matrix stores detailed information on the
structure of the underlying network; such as the directionality
of interaction, strength of interaction, and regulation type of
interaction. For small fluctuations around steady state, the right-
hand side of Eq. 3 becomes zero, and the left-hand side can be
expressed in such a way that a link between the covariance matrix
of metabolome data, Γ, and Jacobian matrix is provided. The
details of the derivation are given elsewhere (Van Kampen, 1992;
Steuer et al., 2003).

JΓ+ ΓJT
= −2D (4)

D in the equation shows the extent of fluctuations. Eq. 4, known as
Lyapunov equation, can be used to infer metabolic network struc-
ture since it provides a link between the data-based covariance
matrix and network connectivity stored in J. Reverse-engineering
metabolome data by using the Lyapunov equation was first dis-
cussed via a hypothetical three-metabolite system (Steuer et al.,
2003). A recent work provided a theoretical analysis on the use
of the Lyapunov equation to infer network structure from steady-
state metabolome data (Öksüz et al., 2013). The authors used a
rearranged version of the Lyapunov equation:

Aj = 2d (5)

Here, j and d are vectorized versions of J and D matrices. A is a
matrix based on the covariance of data. In that work, directed net-
works were inferred from in silico metabolome data of S. cerevisiae

glycolysis, E. coli central carbon metabolism, and brain glycolysis
by solving Eq. 5 for j using a genetic-algorithm based formula-
tion. In the optimization formulation, the dual objective function
was simultaneous maximization of the sparse structure and min-
imization of the residual norm of the equation. When compared
to the inference results based on nth order partial Pearson correla-
tion, a much higher prediction accuracy was reported. One other
advantage of the optimization-based approach is the fact that Eq.
5 infers a directed network whereas correlation-based approaches
cannot predict directions of interactions. The Lyapunov equation
was recently used to infer differential changes in Jacobian matrix
rather than the inference of network structure by predicting Jaco-
bian matrix itself (Sun and Weckwerth, 2012; Kügler and Yang,
2014; Nägele et al., 2014).

PATHS TO RECONCILE BOTTOM-UP AND TOP-DOWN
METABOLIC NETWORK DISCOVERY APPROACHES
Previous sections reviewed bottom-up and top-down meta-
bolic network discovery approaches from literature. Top-down
approaches are dependent on intracellular metabolome data, and
there are bottom-up approaches, which aim to use omics data as
additional constraints. The simultaneous use of both approaches
to discover better condition-specific networks has not been a focus
in the scientific community. Here, we will elaborate on the ways
to reconcile these two approaches when intracellular metabolome
data of a condition in question are available.

All model-based top-down approaches using time-series data
also infer a Jacobian matrix of the model. Many other top-down
approaches are based on correlations between metabolites. There is
a significant relationship between the correlation strengths and the
strengths of interactions implied by Jacobian entries (Çakır et al.,
2009). Therefore, correlation strengths or Jacobian-interaction
strengths of the inferred edges can be used as edge scores in the
bottom-up constraint-based modeling approaches as additional
constraints for a better identification of the active metabolic net-
work as follows: all inferred edges in a top-down approach based
on metabolome data are ranked with respect to their edge scores.
Afterward, cut-off values for high- and low-scores are determined.
If a high-score edge also appears in the corresponding static
genome-scale stoichiometric model, that reaction is assigned a
high weight. If a high edge-score does not have a correspond-
ing connection in the genome-scale model, this could imply a
novel or a regulatory interaction. As it is known, genome-scale
metabolic models do not account for regulatory interactions of
metabolites with enzymes, however, top-down approaches do
not have this limitation since they are purely data-based. If the
edge-score is low, the corresponding reaction in the stoichiomet-
ric model is assigned a low weight. Similarly, if the top-down
approach assigns no edge between two metabolites, which are
linked with a reaction in the stoichiometric model, such reac-
tions are also assigned low weight. All other reactions can be
assigned with a medium-weight. Then, a mixed-integer program-
ing based optimization framework can be used with Eq. 2 such
that the resulting condition-specific flux distribution is as consis-
tent as possible with the edge scores, including maximum possible
number of high-weight reactions and minimum possible num-
ber of low-weight reactions as active. Thereby, the strength of
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top-down predictions can be used for better bottom-up flux
predictions.

Use of transcriptome or proteome data as constraints in
metabolic-flux calculations resulted in several alternative meth-
ods such as GIMME, iMAT, and INIT. These approaches remove
reactions from the static metabolic reaction set if the controlling
gene or protein is not active. However, a recent work compar-
ing all these methods could not identify a method with clear
superiority over the parsimonious FBA (Machado and Herrgård,
2014). This approach can be combined with edge scores (inferred
Jacobian-interaction strength or calculated correlation strength)
information to yield better network identification. GIMME-like
approaches remove reactions from the model, this means also
removal of metabolites. Two different approaches can be used:
(i) removed reactions whose main substrates and products show
high edge scores must be retained in the reaction set, implying
an active edge (ii) reactions whose main substrates and products
show very low and insignificant correlations must be candidates
to be removed from the reaction set, implying an inactive edge if
their removal does not hamper the objective function. Such a flux
calculation powered by the top-down inference of network edges
can lead to a more refined network.

One reconciliation approach will be the integrative use of
flux-balance equation (Eq. 2) and rearranged Lyapunov equation
(Eq. 5). Flux-balance equation was widely used in the last two
decades because of its simplicity, requiring only the stoichiomet-
ric coefficients of reactions, and few measurement constraints. The
rearranged Lyapunov equation bears a similar simplicity since it
is only based on the covariances of metabolome measurements.
The only major issue, as it is the case in flux-balance equation, is
a proper choice of objective function to solve the equation. Since
both J and v, the unknowns in both equations, represent the active
network structure, the coupled use of these two equations can be
beneficial from two different aspects: (i) a better flux distribution
can be found thanks to the metabolome-based constraint provided
by Eq. 5, (ii) the information stored in stoichiometric matrix, since
it will reveal all possible non-interacting pairs, will provide a con-
straint to get a better estimate of Jacobian matrix by setting edge
scores of some pairs to zero.

An approach getting popular to construct genome-scale kinetic
models is ensemble modeling. This modeling approach constructs
kinetic models from an ensemble of models, and filters the incon-
sistent models out by using the results of perturbation experiments
(Tran et al., 2008; Khodayari et al., 2014). On the other hand, a
number of methods infer networks from time-series data by using
a model-based approach. The output of such methods is both the
network structure and the dynamic kinetic model with estimated
parameters (Srividhya et al., 2007; Liu and Wang, 2008). A num-
ber of alternative models are scanned in these methods to infer the
most suitable one. Therefore, the strengths of model-based net-
work inference and ensemble-based kinetic model reconstruction
can be combined to yield better frameworks.

In summary, both bottom-up and top-down discovery of meta-
bolic networks have come a long way in the last 20 years, providing
the scientific community with a number of computational meth-
ods, as reviewed in this review. Considering the improvements
that are being experienced both on the coverage and precision of

metabolome data, the coming decade will witness an exponential
increase in the number of metabolome datasets, similar to what
was experienced with transcriptome data in the last decade. This
review aimed at drawing attention to this point, as ways to recon-
cile the two major metabolic network discovery approaches will
gain increasing importance.
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Diê.p, N. Q., Hoan, P. T., B ?ao, H. T., Hùng, T. Ð, and Th´̆ang, P. Q. (2011). Compu-
tational reconstruction of metabolic networks from high-throughput profiling
data. J. Comput. Sci. Cybern 27, 23–35. doi:10.15625/1813-9663/27/1/460

Dunn, W. B., Bailey, N. J., and Johnson, H. E. (2005). Measuring the metabolome:
current analytical technologies. Analyst 130, 606–625. doi:10.1039/b418288j

Feist, A. M., and Palsson, B. O. (2010). The biomass objective function. Curr. Opin.
Microbiol. 13, 344–349. doi:10.1016/j.mib.2010.03.003

Gormley, P., Li, K., Wolkenhauer, O., Irwin, G. W., and Du, D. (2013). Reverse engi-
neering of biochemical reaction networks using co-evolution with eng-genes.
Cogn. Comput. 5, 106–118. doi:10.1007/s12559-012-9159-y

Hamilton, J. J., Dwivedi, V., and Reed, J. L. (2013). Quantitative assessment of ther-
modynamic constraints on the solution space of genome-scale metabolic models.
Biophys. J. 105, 512–522. doi:10.1016/j.bpj.2013.06.011

Hendrickx, D. M., Hendriks, M. M. W. B., Eilers, P. H. C., Smilde, A. K., and Hoefs-
loot, H. C. J. (2011). Reverse engineering of metabolic networks, a critical assess-
ment. Mol. Biosyst. 7, 511–520. doi:10.1039/c0mb00083c

Henry, C. S., Jankowski, M. D., Broadbelt, L. J., and Hatzimanikatis, V. (2006).
Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys.
J. 90, 1453–1461. doi:10.1529/biophysj.105.071720

Hoppe, A. (2012). What mRNA abundances can tell us about metabolism. Metabo-
lites 2, 614–631. doi:10.3390/metabo2030614

Hoppe, A., Hoffmann, S., and Holzhütter, H.-G. (2007). Including metabolite con-
centrations into flux balance analysis: thermodynamic realizability as a con-
straint on flux distributions in metabolic networks. BMC Syst. Biol. 1:23.
doi:10.1186/1752-0509-1-23

Jensen, P. A., and Papin, J. A. (2011). Functional integration of a metabolic network
model and expression data without arbitrary thresholding. Bioinformatics 27,
541–547. doi:10.1093/bioinformatics/btq702

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.
(2014). Data, information, knowledge and principle: back to metabolism in
KEGG. Nucleic Acids Res. 42, D199–D205. doi:10.1093/nar/gkt1076

Kell, D. B. (2004). Metabolomics and systems biology: making sense of the soup.
Curr. Opin. Microbiol. 7, 296–307. doi:10.1016/j.mib.2004.04.012

Khazaei, T., McGuigan, A., and Mahadevan, R. (2012). Ensemble modeling of cancer
metabolism. Front. Physiol. 3:135. doi:10.3389/fphys.2012.00135

Khodayari, A., Zomorrodi, A. R., Liao, J. C., and Maranas, C. D. (2014). A kinetic
model of Escherichia coli core metabolism satisfying multiple sets of mutant flux
data. Metab. Eng. 25, 50–62. doi:10.1016/j.ymben.2014.05.014

Kim, T. Y., Sohn, S. B., Kim, Y. B., Kim, W. J., and Lee, S. Y. (2012). Recent advances in
reconstruction and applications of genome-scale metabolic models. Curr. Opin.
Biotechnol. 23, 617–623. doi:10.1016/j.copbio.2011.10.007

Krumsiek, J., Suhre, K., Illig, T., Adamski, J., and Theis, F. J. (2011). Gauss-
ian graphical modeling reconstructs pathway reactions from high-throughput
metabolomics data. BMC Syst. Biol. 5:21. doi:10.1186/1752-0509-5-21

Kügler, P., and Yang, W. (2014). Identification of alterations in the Jacobian of bio-
chemical reaction networks from steady state covariance data at two conditions.
J. Math. Biol. 68, 1757–1783. doi:10.1007/s00285-013-0685-3

Kumar, A., Suthers, P. F., and Maranas, C. D. (2012). MetRxn: a knowledgebase
of metabolites and reactions spanning metabolic models and databases. BMC
Bioinformatics 13:6. doi:10.1186/1471-2105-13-6

Lecca, P., Morpurgo, D., Fantaccini, G., Casagrande, A., and Priami, C. (2012). Infer-
ring biochemical reaction pathways: the case of the gemcitabine pharmacokinet-
ics. BMC Syst. Biol. 6:51. doi:10.1186/1752-0509-6-51

Lecca, P., and Priami, C. (2013). Biological network inference for drug discovery.
Drug Discov. Today 18, 256–264. doi:10.1016/j.drudis.2012.11.001

Lee, D., Smallbone, K., Dunn, W. B., Murabito, E., Winder, C. L., Kell, D. B., et al.
(2012). Improving metabolic flux predictions using absolute gene expression
data. BMC Syst. Biol. 6:73. doi:10.1186/1752-0509-6-73

Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpi-
tiya, A. D., et al. (2010). Omic data from evolved E. coli are consistent with
computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390.
doi:10.1038/msb.2010.47

Lewis, N. E., Nagarajan, H., and Palsson, B. O. (2012). Constraining the metabolic
genotype-phenotype relationship using a phylogeny of in silico methods. Nat.
Rev. Microbiol. 10, 291–305. doi:10.1038/nrmicro2737

Link, H., Christodoulou, D., and Sauer, U. (2014). Advancing metabolic models with
kinetic information. Curr. Opin. Biotechnol. 29, 8–14. doi:10.1016/j.copbio.2014.
01.015

Liu, P.-K., and Wang, F.-S. (2008). Inference of biochemical network models
in S-system using multiobjective optimization approach. Bioinformatics 24,
1085–1092. doi:10.1093/bioinformatics/btn075

Machado, D., and Herrgård, M. (2014). Systematic evaluation of methods for inte-
gration of transcriptomic data into constraint-based models of metabolism.
PLoS Comput. Biol. 10:e1003989. doi:10.1371/journal.pcbi.1003989

Mahadevan, R., and Schilling, C. H. (2003). The effects of alternate optimal solutions
in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276.
doi:10.1016/j.ymben.2003.09.002

Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera,
R., et al. (2006). ARACNE: an algorithm for the reconstruction of gene regula-
tory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl.
1):S7. doi:10.1186/1471-2105-7-S1-S7

Millard, P., Massou, S., Wittmann, C., Portais, J.-C., and Létisse, F. (2014). Sampling
of intracellular metabolites for stationary and non-stationary (13)C metabolic
flux analysis in Escherichia coli. Anal. Biochem. 465C, 38–49. doi:10.1016/j.ab.
2014.07.026

Mo, M. L., Palsson, B. O., and Herrgård, M. J. (2009). Connecting extracellular
metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol.
3:37. doi:10.1186/1752-0509-3-37

Mourão, M. A., Srividhya, J., McSharry, P. E., Crampin, E. J., and Schnell, S. (2011). A
graphical user interface for a method to infer kinetics and network architecture
(MIKANA). PLoS ONE 6:e27534. doi:10.1371/journal.pone.0027534

Mueller, D., and Heinzle, E. (2013). Stable isotope-assisted metabolomics to detect
metabolic flux changes in mammalian cell cultures. Curr. Opin. Biotechnol. 24,
54–59. doi:10.1016/j.copbio.2012.10.015

Müller, A., and Bockmayr, A. (2013). Fast thermodynamically constrained flux vari-
ability analysis. Bioinformatics 29, 903–909. doi:10.1093/bioinformatics/btt059

Nägele, T., Mair, A., Sun, X., Fragner, L., Teige, M., and Weckwerth, W. (2014). Solv-
ing the differential biochemical Jacobian from metabolomics covariance data.
PLoS ONE 9:e92299. doi:10.1371/journal.pone.0092299

www.frontiersin.org December 2014 | Volume 2 | Article 62 | 9

http://dx.doi.org/10.1007/s11306-005-1107-3
http://dx.doi.org/10.1007/s11306-005-1107-3
http://dx.doi.org/10.1093/nar/gkt1103
http://dx.doi.org/10.1002/biot.201300091
http://dx.doi.org/10.1002/bit.10288
http://dx.doi.org/10.1093/bioinformatics/btl122
http://dx.doi.org/10.1016/j.mbs.2009.03.002
http://dx.doi.org/10.1038/msb.2013.66
http://dx.doi.org/10.1016/j.pbiomolbio.2004.04.002
http://dx.doi.org/10.1093/nar/gkt1102
http://dx.doi.org/10.1073/pnas.0707476104
http://dx.doi.org/10.1002/bit.20457
http://dx.doi.org/10.1002/bit.20457
http://dx.doi.org/10.15625/1813-9663/27/1/460
http://dx.doi.org/10.1039/b418288j
http://dx.doi.org/10.1016/j.mib.2010.03.003
http://dx.doi.org/10.1007/s12559-012-9159-y
http://dx.doi.org/10.1016/j.bpj.2013.06.011
http://dx.doi.org/10.1039/c0mb00083c
http://dx.doi.org/10.1529/biophysj.105.071720
http://dx.doi.org/10.3390/metabo2030614
http://dx.doi.org/10.1186/1752-0509-1-23
http://dx.doi.org/10.1093/bioinformatics/btq702
http://dx.doi.org/10.1093/nar/gkt1076
http://dx.doi.org/10.1016/j.mib.2004.04.012
http://dx.doi.org/10.3389/fphys.2012.00135
http://dx.doi.org/10.1016/j.ymben.2014.05.014
http://dx.doi.org/10.1016/j.copbio.2011.10.007
http://dx.doi.org/10.1186/1752-0509-5-21
http://dx.doi.org/10.1007/s00285-013-0685-3
http://dx.doi.org/10.1186/1471-2105-13-6
http://dx.doi.org/10.1186/1752-0509-6-51
http://dx.doi.org/10.1016/j.drudis.2012.11.001
http://dx.doi.org/10.1186/1752-0509-6-73
http://dx.doi.org/10.1038/msb.2010.47
http://dx.doi.org/10.1038/nrmicro2737
http://dx.doi.org/10.1016/j.copbio.2014.01.015
http://dx.doi.org/10.1016/j.copbio.2014.01.015
http://dx.doi.org/10.1093/bioinformatics/btn075
http://dx.doi.org/10.1371/journal.pcbi.1003989
http://dx.doi.org/10.1016/j.ymben.2003.09.002
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://dx.doi.org/10.1016/j.ab.2014.07.026
http://dx.doi.org/10.1016/j.ab.2014.07.026
http://dx.doi.org/10.1186/1752-0509-3-37
http://dx.doi.org/10.1371/journal.pone.0027534
http://dx.doi.org/10.1016/j.copbio.2012.10.015
http://dx.doi.org/10.1093/bioinformatics/btt059
http://dx.doi.org/10.1371/journal.pone.0092299
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Çakır and Khatibipour Metabolic network discovery methods

Navid, A., and Almaas, E. (2012). Genome-level transcription data of Yersinia pestis
analyzed with a new metabolic constraint-based approach. BMC Syst. Biol. 6:150.
doi:10.1186/1752-0509-6-150

Nemenman, I., Escola, G. S., Hlavacek, W. S., Unkefer, P. J., Unkefer, C. J., and
Wall, M. E. (2007). Reconstruction of metabolic networks from high-throughput
metabolite profiling data: in silico analysis of red blood cell metabolism. Ann. N.
Y. Acad. Sci. 1115, 102–115. doi:10.1196/annals.1407.013

Nikerel, E., Berkhout, J., Hu, F., Teusink, B., Reinders, M. J. T., and de Ridder, D.
(2012). Understanding regulation of metabolism through feasibility analysis.
PLoS ONE 7:e39396. doi:10.1371/journal.pone.0039396

Oberhardt, M. A., Palsson, B. Ø., and Papin, J. A. (2009). Applications of genome-
scale metabolic reconstructions. Mol. Syst. Biol. 5, 320. doi:10.1038/msb.2009.77

Öksüz, M., Sadıkoglu, H., and Çakır, T. (2013). Sparsity as cellular objective to infer
directed metabolic networks from steady-state metabolome data: a theoretical
analysis. PLoS ONE 8:e84505. doi:10.1371/journal.pone.0084505

Orth, J. D., Thiele, I., and Palsson, B. Ø (2010). What is flux balance analysis? Nat.
Biotechnol. 28, 245–248. doi:10.1038/nbt.1614

Petranovic, D., and Nielsen, J. (2008). Can yeast systems biology contribute to the
understanding of human disease? Trends Biotechnol. 26, 584–590. doi:10.1016/j.
tibtech.2008.07.008

Postmus, J., Canelas, A. B., Bouwman, J., Bakker, B. M., van Gulik, W., de Mattos,
M. J. T., et al. (2008). Quantitative analysis of the high temperature-induced
glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic
regulation. J. Biol. Chem. 283, 23524–23532. doi:10.1074/jbc.M802908200

Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011).
The human serum metabolome. PLoS ONE 6:e16957. doi:10.1371/journal.pone.
0016957

Quek, L.-E., Wittmann, C., Nielsen, L. K., and Krömer, J. O. (2009). OpenFLUX:
efficient modelling software for 13C-based metabolic flux analysis. Microb. Cell
Fact. 8, 25. doi:10.1186/1475-2859-8-25

Samoilov, M., Arkin, A., and Ross, J. (2001). On the deduction of chemical reac-
tion pathways from measurements of time series of concentrations. Chaos 11,
108–114. doi:10.1063/1.1336499

Sauer, U. (2006). Metabolic networks in motion: 13C-based flux analysis. Mol. Syst.
Biol. 2, 62. doi:10.1038/msb4100109

Savageau, M. A., and Voit, E. O. (1987). Recasting nonlinear differential equa-
tions as S-systems: a canonical nonlinear form. Math. Biosci. 87, 83–115.
doi:10.1016/0025-5564(87)90035-6

Schaub, J., Mauch, K., and Reuss, M. (2008). Metabolic flux analysis in Escherichia
coli by integrating isotopic dynamic and isotopic stationary 13C labeling data.
Biotechnol. Bioeng. 99, 1170–1185. doi:10.1002/bit.21675

Schmidt, H., Cho, K.-H., and Jacobsen, E. W. (2005). Identification of small scale
biochemical networks based on general type system perturbations. FEBS J. 272,
2141–2151. doi:10.1111/j.1742-4658.2005.04605.x

Schmidt, M. D.,Vallabhajosyula, R. R., Jenkins, J. W., Hood, J. E., Soni, A. S., Wikswo,
J. P., et al. (2011). Automated refinement and inference of analytical models for
metabolic networks. Phys. Biol. 8, 055011. doi:10.1088/1478-3975/8/5/055011

Schuetz, R., Kuepfer, L., and Sauer, U. (2007). Systematic evaluation of objective
functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3,
119. doi:10.1038/msb4100162

Shlomi, T., Cabili, M. N., Herrgård, M. J., Palsson, B. Ø, and Ruppin, E. (2008).
Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol.
26, 1003–1010. doi:10.1038/nbt.1487

Smallbone, K., Simeonidis, E., Swainston, N., and Mendes, P. (2010). Towards
a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol. 4:6.
doi:10.1186/1752-0509-4-6

Soh, K. C., and Hatzimanikatis, V. (2010). Network thermodynamics in the post-
genomic era. Curr. Opin. Microbiol. 13, 350–357. doi:10.1016/j.mib.2010.03.001

Sorribas, A., Hernández-Bermejo, B., Vilaprinyo, E., and Alves, R. (2007). Coopera-
tivity and saturation in biochemical networks: a saturable formalism using Taylor
series approximations. Biotechnol. Bioeng. 97, 1259–1277. doi:10.1002/bit.21316

Srividhya, J., Crampin, E. J., McSharry, P. E., and Schnell, S. (2007). Recon-
structing biochemical pathways from time course data. Proteomics 7, 828–838.
doi:10.1002/pmic.200600428

Stanford, N. J., Lubitz, T., Smallbone, K., Klipp, E., Mendes, P., and Liebermeister, W.
(2013). Systematic construction of kinetic models from genome-scale metabolic
networks. PLoS ONE 8:e79195. doi:10.1371/journal.pone.0079195

Steuer, R., Gross, T., Selbig, J., and Blasius, B. (2006). Structural kinetic mod-
eling of metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 103, 11868–11873.
doi:10.1073/pnas.0600013103

Steuer, R., Kurths, J., Fiehn, O., and Weckwerth, W. (2003). Observing and inter-
preting correlations in metabolomic networks. Bioinformatics 19, 1019–1026.
doi:10.1093/bioinformatics/btg120

Sun, X., and Weckwerth, W. (2012). COVAIN: a toolbox for uni-and multivariate
statistics, time-series and correlation network analysis and inverse estimation of
the differential Jacobian from metabolomics covariance data. Metabolomics 8,
81–93. doi:10.1007/s11306-012-0399-3

Tarlak, F., Sadıkoglu, H., and Çakır, T. (2014). The role of flexibility and optimality
in the prediction of intracellular fluxes of microbial central carbon metabolism.
Mol. Biosyst. 10, 2459–2465. doi:10.1039/c4mb00117f

Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E., van der Weijden, C. C., Schep-
per, M., et al. (2000). Can yeast glycolysis be understood in terms of in vitro
kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267,
5313–5329. doi:10.1046/j.1432-1327.2000.01527.x

Thiele, I., and Palsson, B. (2010). A protocol for generating a high-quality genome-
scale metabolic reconstruction. Nat. Protoc. 5, 93–121. doi:10.1038/nprot.2009.
203

Torralba, A. S., Yu, K., Shen, P., Oefner, P. J., and Ross, J. (2003). Experimental test
of a method for determining causal connectivities of species in reactions. Proc.
Natl. Acad. Sci. U.S.A. 100, 1494–1498. doi:10.1073/pnas.262790699

Toya,Y., Ishii, N., Hirasawa, T., Naba, M., Hirai, K., Sugawara, K., et al. (2007). Direct
measurement of isotopomer of intracellular metabolites using capillary elec-
trophoresis time-of-flight mass spectrometry for efficient metabolic flux analy-
sis. J. Chromatogr. 1159, 134–141. doi:10.1016/j.chroma.2007.04.011

Tran, L. M., Rizk, M. L., and Liao, J. C. (2008). Ensemble modeling of metabolic
networks. Biophys. J. 95, 5606–5617. doi:10.1529/biophysj.108.135442

Van Kampen, N. G. (1992). Stochastic Processes in Physics and Chemistry. Amster-
dam: Elsevier Science.

Van Winden, W. A., van Dam, J. C., Ras, C., Kleijn, R. J.,Vinke, J. L., van Gulik, W. M.,
et al. (2005). Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D
based on mass isotopomer measurements of (13)C-labeled primary metabolites.
FEMS Yeast Res. 5, 559–568. doi:10.1016/j.femsyr.2004.10.007

Vance, W., Arkin, A., and Ross, J. (2002). Determination of causal connectivities
of species in reaction networks. Proc. Natl. Acad. Sci. U.S.A. 99, 5816–5821.
doi:10.1073/pnas.022049699

Varma, A., and Palsson, B. (1994). Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type Escherichia coli
W3110: basic concepts, scientific and practical use. Appl. Environ. Microbiol. 60,
3724–3731.

Villaverde, A. F., Ross, J., Morán, F., and Banga, J. R. (2014). MIDER: network
inference with mutual information distance and entropy reduction. PLoS ONE
9:e96732. doi:10.1371/journal.pone.0096732

Visser, D., Schmid, J. W., Mauch, K., Reuss, M., and Heijnen, J. J. (2004). Optimal
re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab.
Eng. 6, 378–390. doi:10.1016/j.ymben.2004.07.001

Weckwerth, W., Loureiro, M. E., Wenzel, K., and Fiehn, O. (2004). Differential meta-
bolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad.
Sci. U.S.A. 101, 7809–7814. doi:10.1073/pnas.0303415101

Weitzel, M., Nöh, K., Dalman, T., Niedenführ, S., Stute, B., and Wiechert, W. (2013).
13CFLUX2 – high-performance software suite for (13)C-metabolic flux analysis.
Bioinformatics 29, 143–145. doi:10.1093/bioinformatics/bts646

Wiechert, W., Möllney, M., Petersen, S., and de Graaf, A. A. (2001). A uni-
versal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265–283.
doi:10.1006/mben.2001.0187

Wiechert, W., and Nöh, K. (2013). Isotopically non-stationary metabolic flux
analysis: complex yet highly informative. Curr. Opin. Biotechnol. 24, 979–986.
doi:10.1016/j.copbio.2013.03.024

Yizhak, K., Benyamini, T., Liebermeister, W., Ruppin, E., and Shlomi, T. (2010). Inte-
grating quantitative proteomics and metabolomics with a genome-scale meta-
bolic network model. Bioinformatics 26, i255–i260. doi:10.1093/bioinformatics/
btq183

Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H., and Stephanopoulos, G.
(2008). An elementary metabolite unit (EMU) based method of isotopically non-
stationary flux analysis. Biotechnol. Bioeng. 99, 686–699. doi:10.1002/bit.21632

Frontiers in Bioengineering and Biotechnology | Systems Biology December 2014 | Volume 2 | Article 62 | 10

http://dx.doi.org/10.1186/1752-0509-6-150
http://dx.doi.org/10.1196/annals.1407.013
http://dx.doi.org/10.1371/journal.pone.0039396
http://dx.doi.org/10.1038/msb.2009.77
http://dx.doi.org/10.1371/journal.pone.0084505
http://dx.doi.org/10.1038/nbt.1614
http://dx.doi.org/10.1016/j.tibtech.2008.07.008
http://dx.doi.org/10.1016/j.tibtech.2008.07.008
http://dx.doi.org/10.1074/jbc.M802908200
http://dx.doi.org/10.1371/journal.pone.0016957
http://dx.doi.org/10.1371/journal.pone.0016957
http://dx.doi.org/10.1186/1475-2859-8-25
http://dx.doi.org/10.1063/1.1336499
http://dx.doi.org/10.1038/msb4100109
http://dx.doi.org/10.1016/0025-5564(87)90035-6
http://dx.doi.org/10.1002/bit.21675
http://dx.doi.org/10.1111/j.1742-4658.2005.04605.x
http://dx.doi.org/10.1088/1478-3975/8/5/055011
http://dx.doi.org/10.1038/msb4100162
http://dx.doi.org/10.1038/nbt.1487
http://dx.doi.org/10.1186/1752-0509-4-6
http://dx.doi.org/10.1016/j.mib.2010.03.001
http://dx.doi.org/10.1002/bit.21316
http://dx.doi.org/10.1002/pmic.200600428
http://dx.doi.org/10.1371/journal.pone.0079195
http://dx.doi.org/10.1073/pnas.0600013103
http://dx.doi.org/10.1093/bioinformatics/btg120
http://dx.doi.org/10.1007/s11306-012-0399-3
http://dx.doi.org/10.1039/c4mb00117f
http://dx.doi.org/10.1046/j.1432-1327.2000.01527.x
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1073/pnas.262790699
http://dx.doi.org/10.1016/j.chroma.2007.04.011
http://dx.doi.org/10.1529/biophysj.108.135442
http://dx.doi.org/10.1016/j.femsyr.2004.10.007
http://dx.doi.org/10.1073/pnas.022049699
http://dx.doi.org/10.1371/journal.pone.0096732
http://dx.doi.org/10.1016/j.ymben.2004.07.001
http://dx.doi.org/10.1073/pnas.0303415101
http://dx.doi.org/10.1093/bioinformatics/bts646
http://dx.doi.org/10.1006/mben.2001.0187
http://dx.doi.org/10.1016/j.copbio.2013.03.024
http://dx.doi.org/10.1093/bioinformatics/btq183
http://dx.doi.org/10.1093/bioinformatics/btq183
http://dx.doi.org/10.1002/bit.21632
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Çakır and Khatibipour Metabolic network discovery methods

Zamboni, N., Fendt, S.-M., Rühl, M., and Sauer, U. (2009). (13)C-based metabolic
flux analysis. Nat. Protoc. 4, 878–892. doi:10.1038/nprot.2009.58

Zamboni, N., Fischer, E., and Sauer, U. (2005). FiatFlux – a software for meta-
bolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209.
doi:10.1186/1471-2105-6-209

Zelezniak, A., Sheridan, S., and Patil, K. R. (2014). Contribution of network connec-
tivity in determining the relationship between gene expression and metabolite
concentration changes. PLoS Comput. Biol. 10:e1003572. doi:10.1371/journal.
pcbi.1003572

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 24 September 2014; accepted: 14 November 2014; published online: 03
December 2014.
Citation: Çakır T and Khatibipour MJ (2014) Metabolic network discovery by
top-down and bottom-up approaches and paths for reconciliation. Front. Bioeng.
Biotechnol. 2:62. doi: 10.3389/fbioe.2014.00062
This article was submitted to Systems Biology, a section of the journal Frontiers in
Bioengineering and Biotechnology.
Copyright © 2014 Çakır and Khatibipour. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org December 2014 | Volume 2 | Article 62 | 11

http://dx.doi.org/10.1038/nprot.2009.58
http://dx.doi.org/10.1186/1471-2105-6-209
http://dx.doi.org/10.1371/journal.pcbi.1003572
http://dx.doi.org/10.1371/journal.pcbi.1003572
http://dx.doi.org/10.3389/fbioe.2014.00062
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive

	Metabolic network discovery by top-down and bottom-up approaches and paths for reconciliation
	Introduction
	Bottom-Up approaches to discover condition-specific metabolic networks
	Constraints based on transcriptome or proteome data
	Constraints based on metabolome data

	Top-Down approaches to discover condition-specific metabolic networks
	Network discovery based on time-series data
	Network discovery based on steady-state data

	Paths to reconcile bottom-up and top-down metabolic network discovery approaches
	Acknowledgments
	References


