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Abstract The world was ambushed in 2019 by the

COVID-19 virus which affected the health, economy, and

lifestyle of individuals worldwide. One way of combating

such a public health concern is by using appropriate, rapid,

and unbiased diagnostic tools for quick detection of

infected people. However, a current dearth of bioinfor-

matics tools necessitates modeling studies to help diagnose

COVID-19 cases. Molecular-based methods such as the

real-time reverse transcription polymerase chain reaction

(rRT-PCR) for detecting COVID-19 is time consuming and

prone to contamination. Modern bioinformatics tools have

made it possible to create large databases of protein

sequences of various diseases, apply data mining tech-

niques, and accurately diagnose diseases. However, the

current sequence alignment tools that use these databases

are not able to detect novel COVID-19 viral sequences due

to high sequence dissimilarity. The objective of this study,

therefore, was to develop models that can accurately

classify COVID-19 viral sequences rapidly using protein

vectors generated by neural word embedding technique.

Five machine learning models; K nearest neighbor

regression (KNN), support vector machine (SVM), random

forest (RF), Linear discriminant analysis (LDA), and

Logistic regression were developed using datasets from the

National Center for Biotechnology. Our results suggest, the

RF model performed better than all other models on the

training dataset with 99% accuracy score and 99.5%

accuracy on the testing dataset. The implication of this

study is that, rapid detection of the COVID-19 virus in

suspected cases could potentially save lives as less time

will be needed to ascertain the status of a patient.

Keywords COVID-19 � Natural language processing �
Word vectors � Receiver operator characteristic curve �
Continuousbag-of-words � Artificial intelligence

1 Introduction

The world was ambushed in 2019 by the Corona virus

disease 2019 (COVID-19) which affected the health,

economy, and lifestyle of individuals worldwide. First

discovered in Wuhan, Hubei Province, China in late 2019,

COVID-19 has spread worldwide and subsequently been

declared as a global pandemic by the World Health

Organization on March 11, 2020 [1]. At the time of writing

this paper, the total confirmed cases of COVID-19 stood at

298,915,721 with 5,469,303 confirmed deaths worldwide

[2]. COVID-19 is a novel infectious disease caused by

severe acute respiratory syndrome coronavirus-2 (SARS-

COV-2), a new type of virus family that had not yet been

detected in humans [3]. The viral disease is transmitted

through person-to-person contact through respiratory dro-

plets generated by breathing, sneezing, coughing etc. as

well as direct contact with an infected person [3]. As a

result of the widespread ubiquitous nature of the COVID-

19 virus, scientists and clinicians are researching new
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technologies to screen infected patients at various stages of

the viral infection [4].

The heightened interest of researchers on the COVID-19

virus is in part due to the discovery and publishing of the

genetic sequence of the virus on January 11, 2020 [5]. The

current standard diagnostic testing method for COVID-19

is the real-time reverse transcription polymerase chain

reaction (rRT-PCR) which detects the virus’ genetic

material and the antigen test which detects specific proteins

in the virus [6]. According to Long et al. [7], it takes about

5–6 hours to obtain results from rRT-PCR. In addition, the

average accuracy of the rRt-PCR has been reported to be

60–70% [7] which means some tests may turn out to be

false positives. Nasopharyngeal swabs are commonly taken

to the lab before the swabs are then investigated using PCR

which could take longer in places where PCR is not readily

available. Although the rRT-PCR test for COVID-19 has

been largely successful, sometimes, there can be a 12–48-

hour lag in reporting the results to individuals. The

apparent lag in getting test results prolongs the time in

which an asymptomatic person may inadvertently transmit

the disease to others. Rani et al. [8] also argue that doctors

spend time studying COVID-19 test reports which can be

time-consuming. In addition, molecular-based methods

such as rRT-PCR and microarrays are time consuming and

can lead to contamination of sequences [9].

Modern bioinformatics tools have made it possible to

create large databases of protein sequences of various

diseases [10, 11], apply data mining techniques, and

accurately diagnose diseases [12, 13]. However, current

sequence alignment methods which depend on databases to

align sequences are not able to detect novel sequences due

to the high dissimilarities among the queried sequences

[14]. In such cases, there is a risk of pronouncing a

potential COVID-19 case as a negative when the patient is

actually infected with the virus (false negative) [14]. There

is therefore a need for the development of alternative data-

driven models which can help in the quick identification

COVID-19 using modern machine learning techniques.

Despite the recent discovery of different COVID-19

vaccines, Forni et al. [15] argues that the development of

the vaccines in a short period of time inherently suggests

that the long-term efficacy and the side effects of the

vaccines is still not known. We now know that the BioN-

Tech/Pfizer vaccine is 95% efficacious after two doses and

apparently safe [16]. However, Shen et al. [17] raises the

challenge of equitable distribution of the COVID vaccine

which underscores the uphill battle ahead to fight COVID-

19. Most people in developing countries have yet to receive

a single dose of the vaccine and must rely solely on

implementing public health practices to prevent spread of

COVID-19. The prompt and early detection of the COVID-

19 virus using artificial intelligence is still an evolving area

that needs more attention.

1.1 Review of relevant studies

Recently, there has been a surge in the use of machine

learning and artificial intelligence (AI) to either screen,

predict or forecast the occurrence of COVID-19 [4]. In this

section, we briefly discuss studies that used laboratory test

results as a basis for detecting COVID-19 using various

machine learning techniques. We also briefly outline

studies that applied machine learning methods to protein

sequences to predict the presence or absence of COVID-19.

Dutta and Bandyopadhyay [18] determined the feasibility

of using machine learning methods to evaluate the pre-

diction accuracy of confirmed negative, released, and death

cases of COVID-19. Khanday et al. [19] used supervised

machine learning techniques (LR, Multinomial Naı̈ve

Bayes, SVM, DT, bagging, AdaBoost, RF classifier, and

stochastic gradient boosting) to classify textural clinical

reports of COVID-19 patients. The classification was done

to separate the cases into four different categories COVID-

19, SARS, and acute respiratory distress syndrome

(ARDS). Their results suggest that logistic regression and

multinomial Naı̈ve Bayesian classifiers gave the best per-

formance results with 94% precision, 96% recall, 95% F1

score and 96.2% accuracy. Aljame et al. [20] obtained

5644 data samples with 559 confirmed COVID-19 cases

from the Albert Einstein Hospital in Brazil. The authors

used classical methods (extra trees, random forest, and

logistic regression) to predict the presence of COVID-19.

They then increased the performance by applying XGBoost

algorithm to the prediction results from the classical

methods. Overall, the authors reported that the improved

ensemble model achieved an accuracy of 99.88%, area

under the curve (AUC) of 99.38%, a sensitivity of 98.72%,

and a specificity of 99.99%. Brinati et al. [21] used

machine learning classification algorithms (decision tree,

extremely randomized trees, K-nearest neighbor, logistic

regression, naı̈ve Bayes, random forest, and support vector

regression) to develop models to detect COVID-19 from

routine blood examinations of 279 patients. The best per-

forming model was a modified version of the random forest

model called the three-way random forest classifier. The

authors report that the three-way random forest model

achieved an accuracy of 86%, sensitivity of 95%, and

a specificity of 75%. Turabieh and Karaa [22] predicted the

presence of COVID-19 by using blood test results of 5644

patient. The authors combined wrapper feature selection

algorithm with convolutional neural network, decision

trees, K-nearest neighbor, and näıve bayes. The authors

obtained a best accuracy of 76% when they combined a
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wrapper feature selection method based called a binary

genetic algorithm with convolutional neural network.

Deep learning models have also been applied to help

diagnose COVID-19 [23, 24]. Alakus and Turkoglu [23]

developed and evaluated clinical predictive models to

determine COVID-19 infection using 111 laboratory find-

ings from 5644 patients. The algorithms employed in their

study included: artificial neural networks (ANN), convo-

lutional neural networks (CNN), long-short term memory

(LSTM), recurrent neural networks (RNN), CNNLSTM,

and CNNRNN. Their results suggest the CNNLSTM model

attained the best accuracy, recall, and AUC values of

92.3%, 93.68%, and 90.0% respectively. Göreke et al. [24]

created a feature group based on laboratory findings which

were used to design a hybrid classifier based on deep

learning architecture (ANN, CNN, and RNN) to detect

COVID-19. The authors report that RNN attained the best

accuracy of 94.95%, F1-score of 94.98%, precision of

94.98%, and recall of 94.98%. An ensemble-based model

called Deep Forest was developed by Aljame [6] by

combining three classifiers: extra tree, XGBoost, and

LightGBM. Their proposed model achieved an accuracy of

99.5%, a sensitivity of 95.3%, and a specificity of 99.96%.

Some studies also focused on developing machine

learning models by finding the degree of similarity of a

COVID-19 genome against a given genomic sequence

[8, 25–27]. Rani et al. [8] developed a deep learning model

to find similarities between a given genome and a COVID-

19 genome and detecting the presence of COVID-19 in

humans using data from the National Centre for Biotech-

nology Information. The authors employed Convolutional

Neural Networks (CNN) and Long-Short-Term-Memory

(LSTM) for improving the accuracy of classification and

similarity score prediction. The authors claimed their CNN

model was efficient at detecting genome sequences of

COVID-19 in a host genome with 99.27% accuracy.

Jamshidi et al. [25] reviewed studies that delineated the

application of Generative Adversial Networks (GANs) in

detecting COVID-19 genome in a human genome sample.

Cleemput et al. [26] developed a bioinformatics based tool

‘‘Genome Detective Coronavirus Typing Tool’’ which was

capable of identifying genomic sequences of COVID-19

with 87.5% accuracy. Similarly, Arslan [27] developed a

method that distinguishes human COVID-19 genome from

bat SARS-CoV-like coronavirus. The authors applied

classical machine learning techniques like support vector

machine (SVM), K-nearest neighbor (KNN), decision trees

(DT), random forests (RF), Adaptive Boosting (AdaBoost),

and multi-layer perceptron (MLP) on 1000 genome

sequences of COVID-19 and 615 genome sequences of

other types of human coronavirus. They report that their

KNN model attained an accuracy of 99.2% in detecting

COVID-19 genomes. While using laboratory test results

and genomic sequences to predict COVID-19 cases have

been largely ubiquitous, few studies focus on using the

protein sequences of samples from COVID-19 cases to

predict the presence or absence of COVID-19 [12, 13, 28].

1.2 Rationale for application of word vectors

Protein sequences are represented by a continuous string of

letters arranged in the order of their amino acid monomers,

and this information can be translated to determine prop-

erties of the protein such as the shape, thus, the application

of word vectors for preprocessing [29]. Word vectors are

numerical representations of words in a low dimensional

space. These vectors are generated using a one-layer neural

network with hyperparameters such as context windows,

vector dimension, etc. Different techniques for vectorizing

words include skip-gram, continuous-bag-of-words

(CBOW), Global vectors (GloVe), FastText [30]. The

former two language models are collectively known as

Word2vec [29]. Skip-gram predicts the context words

(surrounding words) given the target word within a pre-

defined context window size, whereas CBOW predicts the

context words given a target word [31]. GloVe model uses

the probability of word co-occurrence within a context

window and claims that ratios of the co-occurrence prob-

abilities of words can distinctively indicate the relatedness

of words [30]. Like the skip-gram, it predicts the context

words given a target word. Different tasks such as word

similarity, analogy, and other downstream processing

usage have yielded varied results using these different

language models. Therefore, there is no clear advantage of

using a particular language model. Word embedding is

preferred to one-hot encoding because of its ability to

provide expressive representation of word relations instead

of zeros and ones in one-hot encoding of words [32]. Also,

one-hot-encoding is computationally expensive due to the

curse of dimensionality [33]. Ubiquitous successful appli-

cation of word embedding models in biology and bioin-

formatics have been reported in literature. Chen et al. [34]

used the GloVe model to represent protein sequences and

subsequently used it to predict self-interacting proteins.

Also, word embedding models have been used in down

streaming prediction of antimicrobial peptides [35] and

identifying substrate specificities of transporters [36].

1.3 Purpose of study

The main goal of this machine learning study was to use

trained data to elicit some underlying patterns in big data,

build models using the trained data, and make predictions

based on an optimized line of best fit [37]. To the best of

our knowledge, no study has implemented continuous-bag-

of-words to generate vectors of the COVID-19 viral
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sequences and used the vectors as input features to build

models used for prediction. By using modern data science

tools like machine learning, models can be built to accu-

rately predict if a viral sequence can cause COVID-19 or

not. The objective of this study therefore was to develop

models that can rapidly and accurately classify a viral

sequence as COVID-19 positive or negative based on its

similarity to labelled COVID-19 data. Here, we exploited

different machine learning algorithms, namely, support

vector machine, K-nearest neighbor, random forest, linear

discriminant analysis, and logistic regression to assist in

identifying COVID-19 viral sequences. We first created

k-mers of the protein sequences and subsequently vector-

ized them using continuous-bag-of-words neural embed-

ding technique to create the input features building the

model.

2 Materials and methods

2.1 Description of the database

Protein sequence data of COVID-19 virus was obtained

from a platform (NCBI Virus) of the National Center for

Biotechnology [10]. The ‘‘NCBI virus’’ is an integrative

platform designed to support retrieval, display, and analy-

sis of large viral sequences [10]. Non-COVID-19 virus

sequences were also obtained from the NCBI taxonomy

database [38]. The main purpose of the NCBI taxonomy

database is to aggregate information on organism names

and classifications for every sequence in the protein

sequence databases of the International Nucleotide

Sequence Database collaboration [38].

2.2 Preprocessing

Sequences were obtained to build a corpus which resulted

in about 10,533 unique (words). We created trigrams from

each sequence, and each trigram was considered as a word.

The trigrams consisted of continuous sliding windows of

each of the sequences. The trigrams were trained using the

continuous bag of words (CBOW) neural model [29].

Window sizes of �3, �4, �5 were used to train the corpus

at a vector dimension of 200. Context window size of �5

was also found to be suitable, and, thus, chosen.

Five hundred COVID-19 viral sequences and non-

COVID-19 viral sequences considered as positive and

negative datasets, respectively, were used as training

datasets. CD-Hit was used to reduce redundancy to make

sure no two sequences overlap more than 90% (percent

identity) [39]. The vectors of trigrams for each sequence

used for training the models were obtained from the trained

CBOW model and added to construct features equal to the

vector dimension of 200. The word vectors were stan-

dardized to range between 0 and 1. After this, principal

component analysis was used to reduce redundancy in the

dataset [40, 41]. Principal component analysis led to the

reduction of features from 200 to 10 based on the resulting

cumulative explained variance.

2.3 Model training using cross-validation

Logistic regression (LR), random forest (RF), support

vector machine (SVM), K-nearest neighbor (KNN), linear

discriminant (LD) models were trained on the data. A ten-

fold cross-validation was used in training and evaluation of

the models [42]. N-1 folds were used to train the models

and evaluated on the remaining folds iteratively. To test the

performance of the model on unseen data, we divided the

data into 70% for training and 30% for testing. Here we

report the evaluated results (training) and the test results of

all models. Figure 1 depicts a summary of the steps that

were followed in implementing the machine learning

algorithms.

2.4 Model evaluation

Generally, four statistical criteria were used to assess how

well the models developed performed on data that was used

to train the models and on data that was unseen by the

models. Three statistical criteria (Accuracy, Precision,

Recall, and F1 scores) were used to compare the perfor-

mance of the models [43].

Accuracy ¼ TPþTN
TPþTN þFPþ FN, Precision ¼ TP

TPþFP,

Recall ¼ TP
TPþFN, F1 ¼ 2 � Precision�Recall

PrecisionþRecall

TP true positive, FP false positives, TN true negative,

FN false negatives, F1 F1 score.

2.5 Machine learning techniques

2.5.1 K-nearest neighbor

K-Nearest neighbor (KNN) is one of the simplest non-

parametric learning algorithms that is easy to implement.

KNN has been referred to as a ‘‘lazy’’ learning algorithm

since it does not yield a function previously but yields the

closest ‘‘K’’ records of the training data set [44]. KNN

predicts a target class of an unseen datapoint by comparing

it to ’K’ similar cases in the input training dataset. To

implement the KNN classifier to an unknown sample and a

training dataset, a value of K is chosen and the distances of

unknown cases to all cases in the training set is computed.

In calculating the distance between an observation to the

nearest neighbors, the Euclidean distance equation can be
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used. Cases in the training set with the shortest distances to

the unknown observation are then used to predict the class

of the unknown observation [45]. A value for K which is a

hyperparameter of the algorithm that can be tuned is cho-

sen carefully as a low value can lead to overfitting of the

data while a larger K value can lead to a higher bias [46]. It

is common to use cross-validation to choose an optimal

value of K that reduces the number of errors while

increasing accuracy.

2.5.2 Support vector machine

Support vector machine (SVM) is a supervised algorithm

that classifies cases by finding a separator. With an

appropriate non-linear mapping to a high-dimensional

feature space, data points which will otherwise not be

linearly separable can be separated by a hyperplane [47].

Noble [48] argues that to understand and implement SVM,

one needs to first understand what the separating hyper-

plane is, the maximum margin hyperplane, the soft margin,

and the kernel function. In simple terms, to implement

SVM, first, an optimized hyperplane is found by mini-

mizing a regularized cost function [49]. The hyperplane is

then learned using the data set aside for training the algo-

rithm making sure the hyperplane maximizes the margin

between the classified data. The best hyperplane is one that

results in the largest separation of the two classes being

classified. Once an optimized linear function has been

obtained, new predictions are classified by feeding in

unknown data to this optimized linear function. An

important decision that must be made during the training of

the SVM model is the type of kernel function to use. Some

popular kernel functions that can be used include linear,

polynomial, radial basis functions and sigmoid functions.

2.5.3 Random forest

The Random Forest (RF) classifier algorithm is a super-

vised method of classifying input variables based on con-

structing multiple decision trees during model training and

outputting a class. According to Breiman [50], RF refers to

a combination of tree predictors in a way that each tree is

constructed based on random independent sampling of

vectors with the same distribution from the trees in the

forest. The RF algorithm addresses the problem of over-

fitting of training data sets which is common with decisions

when they become complex [51]. The method of using

multiple trees to make a prediction is known as bootstrap

aggregation (bagging) [52]. According to Hastie et al. [53],

to generate a prediction from a random forest, you have to

first create a random bootstrap sample from the original

dataset with replacement, create a decision tree using the

bootstrapped data but at each node of the tree, randomly

select a subset of predictors to obtain the best split from the

subset. Finally, from the output RF trees, a new prediction

is made by choosing the class that had the majority votes.

Two of the most important parameters to specify during

training is the number of decision trees to be grown and the

number of predictors at each node of a decision tree [50].

2.5.4 Linear discriminant analysis

Linear discriminant analysis (LDA) is a dimension reduc-

tion technique method whereby an optimal transformation

that maximizes class separability is found [54]. While

many techniques exist for classification of data, principal

component analysis (PCA) and LDA are the most used

techniques for data classification and dimensionality

reduction [55]. Dimensional reduction techniques like

LDA are mostly used to reduce dimensions by removing

redundant features and transforming those features into

lower dimensions [56]. LDA has been prominently used in

bankruptcy prediction and facial recognition [57].

According to Tharwat et al. [56], to implement LDA, the

separability between different classes is first calculated,

also known as the between-class variance or between-class

matrix. The distance between the mean and the samples of

each class are then calculated (within-class variation).

Finally, a lower dimensional space which maximizes the

Fig. 1 A summary of the methodology we adopted in this paper
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between-class variance and minimizes the within class

variance is then calculated.

2.5.5 Logistic regression

Logistic regression (LR) is a classification algorithm for

categorical variables. In LR, the aim of developing a model

is to describe the relationship of many independent vari-

ables to a dichotomous dependent variable i.e. a variable

that takes two possible outcomes [58]. LR models binary

response variables and tries to fit an equation to that data

[59]. According to Kleinbaum et al. [58], LR is by far the

most popular modeling procedure for analyzing epidemi-

ological data when the measure of an illness results in two

outcomes. In LR, the independent variable should be

continuous but if categorical then they should be converted

to indicator variables.

3 Results and discussion

Model evaluation aimed to quantify the ability of the

models developed to accurately generalize to new sequence

data that was not used to train the models. Four evaluation

metrics were used in this classification study (accuracy,

precision, recall, and F1 score). Figure 2

Table 1 presents the result of the training and test

accuracy of the five models. Test accuracy here refers to

the ratio of the correctly predicted COVID-19 positive viral

sequence to the total predictions made on the test set [60].

Prediction on the test dataset was done after 10-fold cross

validations and the model was used to predict the

sequences. Random forest (RF) produced the highest

average train accuracy of 0.99 while the LDA model

resulted in the lowest accuracy among all the models. Also,

the RF model achieved 99.5% accuracy on the test viral

sequences. Dutta & Bandyopadhyay [18] investigated the

feasibility of using machine learning methods to evaluate

the prediction accuracy of confirmed, negative, released,

and death cases of COVID-19. Their study applied a Long

short-term memory (LSTM), a Gated Recurrent Unit

(GRU), and a combined LSTM-GRU frameworks to pre-

dict the COVID-19 cases. Their study revealed that the

combined LSTM-GRU based Recurrent Neural Network

model produced the best prediction accuracy with 0.87 on

confirmed cases. Our model’s accuracy was, thus, 12%

higher than the accuracy achieved in their study. In another

study by Khanday et al. [19], logistic regression and

multinomial Naı̈ve Bayesian algorithms achieved an

accuracy of 96.2% which is lower than the accuracy

achieved by the RF model in our study. Afify and Zanaty

[13] were able to achieve an accuracy of 100% when

Linear Regression, KNN, and SVM were used to classify

human protein sequences of COVID-19 using data from 27

countries. Mohammed et al. [61] applied decision trees,

logistic regression, naive bayes, support vector machine,

and artificial neural network to develop modals to predict

COVID-19 cases for epidemiological data in Mexico. Their

results suggest decision trees had the highest prediction

accuracy with 94.99%. Our best model’s accuracy was

higher than the best model prediction accuracy in [61]. We

did not use decision trees for our study because decision

trees have been shown to overfit to training data especially

when they become too complex [51]. Random forest per-

formed best because of its ensemble nature whereby mul-

tiple decision trees are constructed during model training

and the average prediction of the decision trees gives the

class of a new observation [51].

Receiver operating characteristic (ROC) curves for the

five models were created by plotting the true positive rate

(sensitivity) on the y-axis against the false-positive rate (1-

specificity) on the x-axis (Fig. 3). Sensitivity was formally

defined as the proportion of positives which are correctly

identified (the probability of a positive test) while speci-

ficity represented the proportion of negatives correctly

Table 1 Accuracy of different machine learning techniques in

detecting COVID-19 viral sequences

Models Train accuracy Test accuracy

Logistic regression 0.856 (0.022535) 0.85

Linear discriminant analysis 0.841 (0.028532) 0.80

K-nearest neighbor 0.984 (0.012562) 0.995

Random forest 0.990 (0.007500) 0.995

Support vector regression 0.973 (0.024238) 0.99

Values in bold are highest accuracy in each column. Numbers in

parenthesis are the standard deviations after 10-fold cross validation

Fig. 2 Average precision, recall, and F-1 score of the model after

10-fold cross-validation for the five models: Logistic Regression

(LR), Random Forest (RF), K-Nearest Neighbor (KNN), Support

Vector Machine (SVM), and Linear Discriminant Analysis (LDA).
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identified (probability of a negative test) [62]. The area

under the curve (AUC) for each model is displayed in each

of the graphs. The higher the AUC value, the better the

model. Model accuracies correlate with AUC values, that

is, models that achieved high accuracies also achieved high

AUC values. The use of protein vectors generated using

neural word embedding technique word2vec (continuous

bag-of-words) to represent and extract features has resulted

in a high accuracy in detecting COVID-19 viral sequen-

ces. The ability of word embeddings to efficiently represent

characteristic relations among words through the building

of low dimensional vectors could be attributed to the rel-

ative higher performance of models in this study.

4 Conclusions

With the enormous amounts of genetic sequence data

generated on a regular basis due to the advancement in

whole-genome sequencing, there exists an opportunity for

researchers to transform these data into useful insights. In

this study, we apply popular machine learning classifica-

tion algorithms to develop models that accurately classify a

viral protein sequence as COVID-19 positive or negative

based on its similarity to labelled COVID-19 data using a

readily available data (NCBI Virus) from the National

Center for Biotechnology Information. The protein

sequences were sliced into k-mers and subsequently

Fig. 3 Receiver operating characteristic curves for the machine

learning models after 10-fold cross-validation. The models: a Logis-

tic regression, b Linear discriminant analysis, c K-nearest neighbor,

d Random Forest, and e Support vector machine is presented with

their respective area under curve values
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vectors were generated and used as input data into training

the models. The non-linear models, random forest and

k-nearest neighbors outperformed the linear model (linear

discriminant analysis). Thus, a non-linear relationship was

established between the generated protein vectors and their

respective labels. Specifically, the RF model performed

better than all the other models on the training dataset with

99% accuracy score and 99.5% accuracy on the testing

dataset while the KNN model resulted in perfect precision

that produced no false positive result. While KNN models

are relatively easy to implement, they can be computa-

tionally expensive especially when the data involved is

large. Both KNN and RF models are also known to perform

well when there is no known relationship in a dataset.

Thus, both KNN and RF were better suited to learning

patterns in the viral protein sequences and using those

patterns to accurately predict the status of the protein

sequences. While machine learning models on their own

may not be a panacea, when used to complement actual

laboratory diagnostic techniques, health practitioners can

increase the certainty of laboratory test results while

rapidly diagnosing COVID-19. Future studies could

explore the application of clustering and deep learning

techniques to the protein sequence data to predict COVID-

19 viral sequences.
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