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Abstract

Motivation: High-throughput sequencing technologies, in particular RNA sequencing (RNA-seq),

have become the basic practice for genomic studies in biomedical research. In addition to studying

genes individually, for example, through differential expression analysis, investigating co-

ordinated expression variations of genes may help reveal the underlying cellular mechanisms to

derive better understanding and more effective prognosis and intervention strategies. Although

there exists a variety of co-expression network based methods to analyze microarray data for this

purpose, instead of blindly extending these methods for microarray data that may introduce un-

necessary bias, it is crucial to develop methods well adapted to RNA-seq data to identify the func-

tional modules of genes with similar expression patterns.

Results: We have developed a fully Bayesian covariate-dependent negative binomial factor ana-

lysis (dNBFA) method—dNBFA—for RNA-seq count data, to capture coordinated gene expression

changes, while considering effects from covariates reflecting different influencing factors. Unlike

existing co-expression network based methods, our proposed model does not require multiple

ad-hoc choices on data processing, transformation, as well as co-expression measures and can be

directly applied to RNA-seq data. Furthermore, being capable of incorporating covariate informa-

tion, the proposed method can tackle setups with complex confounding factors in different experi-

ment designs. Finally, the natural model parameterization removes the need for a normalization

preprocessing step, as commonly adopted to compensate for the effect of sequencing-depth varia-

tions. Efficient Bayesian inference of model parameters is derived by exploiting conditional conju-

gacy via novel data augmentation techniques. Experimental results on several real-world RNA-seq

datasets on complex diseases suggest dNBFA as a powerful tool for discovering the gene modules

with significant differential expression and meaningful biological insight.

Availability and implementation: dNBFA is implemented in R language and is available at https://

github.com/siamakz/dNBFA.

Contact: siamak@tamu.edu or mingyuan.zhou@mccombs.utexas.edu or xqian@ece.tamu.edu

1 Introduction

High-throughput sequencing technology has emerged as a powerful

tool for life science research (Wang et al., 2009). In particular, RNA

sequencing (RNA-seq), which measures the expression of each gene

(transcript) or genomic feature of interest by counting the number of

sequence reads mapped to them, has been widely adopted for

genotype-phenotype association studies. A large body of statistical

tools and frameworks have been developed for identifying the genes

that are differentially expressed between different groups of sam-

ples, either based on their genotypes, phenotypic traits, or treatment

conditions (Dadaneh et al., 2017; Law et al., 2014; Love et al.,

2014; Robinson et al., 2010).

Living systems are complex and their behavior is coordinated by

multiple components. Especially, when studying complex disease,

phenotypic changes have been shown to be associated with co-

ordinated regulation in functional modules of interacting genes

(pathways or sub-networks) rather than statistically significant

changes in individual genes (Nam and Kim, 2008). Therefore, a class

of approaches has been developed to detect genes with similar ex-

pression patterns as potential functional modules. Weighted Gene

VC The Author(s) 2018. Published by Oxford University Press. i61

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34, 2018, i61–i69

doi: 10.1093/bioinformatics/bty237

ISMB 2018

https://github.com/siamakz/dNBFA
https://github.com/siamakz/dNBFA
Deleted Text: (HTS) 
Deleted Text: Robinson <italic>et<?A3B2 show $146#?>al.</italic>, 2010; Love <italic>et<?A3B2 show $146#?>al.</italic>, 2014; Law <italic>et<?A3B2 show $146#?>al.</italic>, 2014; 
Deleted Text: ve
https://academic.oup.com/


Co-Expression Network Analysis (WGCNA; Langfelder and

Horvath, 2008), a popular tool for gene co-expression network ana-

lysis, first constructs an adjacency matrix based on the pairwise co-

expression measures, for example, based on the correlation between

gene expressions across samples; then it assigns genes to different

modules using the hierarchical clustering algorithm. DiffCoEx

(Tesson et al., 2010) builds on WGCNA, and by computing the

matrix of adjacency differences between different experiment

conditions, aims at identifying differentially co-expressed genes.

Several targeted methods also have been proposed for studying co-

expression changes across conditions, relying on pre-defined gene

modules (Cho et al., 2009; Choi et al., 2005; Choi and Kendziorski,

2009). For instance, Choi and Kendziorski (2009) focuses on the

analysis of modules based on known gene annotations, such as gene

ontology categories.

All of the aforementioned methods were proposed for data gen-

erated from microarray based experiments; and thus there remains a

lack of tools for gene module detection specifically designed for

RNA-seq count data. Furthermore, the existing methods often re-

quire prior knowledge from either manual annotations or other

module identification methods. They need to be supplied with pre-

pared lists of genes as candidate functional modules. For example,

Lei et al. (2017) have proposed a network module-based generalized

linear model for identifying differentially expressed pre-defined

gene sets.

A suitable method for gene module identification based on

RNA-seq data should explicitly model highly over-dispersed count

data that are often skewed (Datta and Nettleton, 2014) to avoid po-

tential bias introduced by inappropriate modeling. One of the most

popular solutions to account for over-dispersion due to biological

variability is using the negative binomial (NB) distribution, which

possesses a quadratic variance-mean relationship. More important-

ly, the number of ad-hoc choices in modeling and data analytics

should be minimized. Many existing methods, which often take two

stages to first construct co-expression networks based on expression

profile data and then identify co-expressed modules based on differ-

ent clustering methods, may lead to uncertain results sensitive to dif-

ferent choices. Last but not least, when dealing with RNA-seq data,

the variability of the sequencing depths across samples needs to be

taken into account.

In this paper, we propose a novel covariate-dependent NB fac-

torization model for identifying gene modules in RNA-seq experi-

ments. The proposed method, directly applied to gene counts from

RNA-seq, obviates the need for multiple ad-hoc steps as required in

co-expression network analyses of WGCNA (Langfelder and

Horvath, 2008) and DiffCoEx (Tesson et al., 2010). In addition, by

employing a flexible regression model for the scale parameter of the

gamma distribution in our fully Bayesian NB factor analysis model,

dNBFA is capable of tackling RNA-seq experiments with complex

confounding factors and quantifies the impact of these factors on

the identified modules. Finally, similar to the mechanisms employed

in Dadaneh et al. (2017), this new approach does not require an ad-

hoc normalization step, as the model accounts for the sequencing-

depth heterogeneity of different samples automatically.

For posterior inference of the model parameters of dNBFA,

closed-form Gibbs sampling update equations are derived by

exploiting novel data augmentation techniques. More specifically,

we apply the augmentation technique of Zhou and Carin (2015) for

the NB distribution, and the Polya-Gamma (PG) distributed auxil-

iary variable technique of Polson et al. (2013) for the closed-form in-

ference of regression coefficients, removing the need for non-trivial

Metropolis-Hastings correction steps (Chib and Greenberg, 1995).

Experimental results on various RNA-seq datasets demonstrate the

superior performance of dNBFA in finding more biologically signifi-

cant modules, in comparison to the two-stage methods, such as

WGCNA and DiffCoEx.

The remainder of this paper is organized as follows. In Section 2,

we introduce the model and its Gibbs sampling inference for covariate-

dependent NB factor analysis of RNA-seq data. In Section 3, we pre-

sent our experimental results on multiple The Cancer Genome Atlas

(TCGA) cancer datasets as well as a Autism study dataset, which dem-

onstrate that not only the modules identified by dNBFA are more dif-

ferentially expressed, but also the incorporation of confounding

factors in dNBFA may increase the chance for relevant biological dis-

coveries tailored to the designed experiments. We conclude the paper

in Section 4.

2 Materials and methods

2.1 NB factor analysis
In this section, we first present the Negative Binomial Factor

Analysis (NBFA) method for count data (Zhou, 2017), and demon-

strate how it can be applied in the context of RNA-seq data analysis

for the identification of gene modules. Let nvj denote the number of

sequencing reads mapped to gene v 2 f1; . . . ;Vg in sequencing sam-

ple j 2 f1; . . . ; Jg, and let the V � 1 vector nj contain all the gene

counts for sample j. The NB distribution is a popular choice to

model RNA-seq count data, allowing one to account for over-

dispersion due to technical and biological variations (Anders and

Huber, 2010; Dadaneh et al., 2017; Robinson et al., 2010). Under

the NBFA model (Zhou, 2017), the sample counts are factorized as

nj � NBðUhj; pjÞ; (1)

where n � NB r; pð Þ denotes the NB distribution with the probability

mass function (PMF) fN nð Þ ¼ C nþrð Þ
n!C rð Þ pn 1� pð Þr, where C �ð Þ is the

gamma function and n 2 f0; 1; 2; . . .g. U ¼ /1; . . . ;/Kð Þ 2 RV�K
þ

represents the factor loading matrix, H ¼ ðh1; . . . ; hJÞ 2 RK�J
þ repre-

sents the factor score matrix and Rþ ¼ fx : x � 0g. For each latent

factor, /k ¼ /1k; . . . ;/Vkð ÞT encodes the weights of the V genes

associated with factor k and hj encodes the popularity of K factors

in sample j. The NBFA can be augmented as

nvj ¼
XK

k¼1

nvjk; nvjk � NB /vkhkj; pj

� �
: (2)

From biological perspectives, K factors can correspond to the

underlying biological processes (BPs) or functional modules related

to genotypic, phenotypic, or treatment condition changes. The cor-

responding sub-counts nvjk can be viewed as the result of the contri-

bution of underlying BP k to the expression of gene v in sample j.

The probability parameter pj, which only depends on the sample

index, can be considered as a parameter reflecting the potential het-

erogeneity of counts, due to the variation of the sequencing depths

across different samples.

More precisely, using Equation (2) and the formula for the mean

of the NB distribution, the expected expression of gene v in sample

j can be expressed as E nvj

� �
¼

PK
k¼1 /vk

�
hkj

�
pj

1�pj
. The term

pj

1�pj
can

be interpreted as the effect of the sequencing-depth heterogeneity of

sample j on the corresponding gene expression in this sample. This

approach removes the need for an ad-hoc normalization step, as the

model accounts for the sequencing-depth heterogeneity of different

samples automatically, similar to the mechanisms employed in

Dadaneh et al. (2017). The remaining term in this expectation,PK
k¼1 /vkhkj, can represent the true abundance of gene v in sample j.

i62 S.Zamani Dadaneh et al.

Deleted Text: )
Deleted Text: (
Deleted Text: ,
Deleted Text: TCGA (
Deleted Text: negative binomial (
Deleted Text: )
Deleted Text: Dadaneh <italic>et<?A3B2 show $146#?>al.</italic>, 2017; 
Deleted Text: ,
Deleted Text: biological process


Specifically, it comprises of contributions from all latent factors,

where each contribution is encoded as the product of the gene asso-

ciation with latent factors as modules and the contribution of those

modules to sample j.

NBFA proceeds by placing the Dirichlet and gamma prior distri-

butions on /vk and hkj, respectively, and appropriate prior distribu-

tions on the other model parameters. A Gibbs sampling algorithm

that exploits novel data augmentation techniques has been derived

for inferring the model parameters (Zhou, 2017).

2.2 Covariate-dependent NBFA
In real-world RNA-seq experiments, it is often desirable to identify

the functional modules corresponding to critical BPs specific to the

behavior of interest by the design of experiments. Often, the presence

of potential confounding factors also requires that the developed factor

analysis method based on RNA-seq data can take them into account

(when the corresponding conditions are given) to derive correct func-

tional module results. The aforementioned NBFA model neglects such

information about sequencing samples from designed experiments. In

order to empower the NBFA model in tackling the setups with complex

experiment design, we extend its framework to make it capable of

incorporating the external covariate information (e.g. phenotypes,

treatments and other confounding factors) into the factor analysis

model to derive the new covariate-dependent NBFA (dNBFA) model.

The graphical representation of dNBFA is illustrated as a hier-

archical model in Figure 1. In the first layer of dNBFA, similar to

NBFA, the gene counts are modeled using the same NB distribution

as in Equation (2). Then, in the next layer we place a gamma prior

distribution on hkj as

hkj � Gamma rk; e
bT

k
xj

� �
; (3)

where xj is the P� 1 vector of covariates for sample j, reflecting the

corresponding experiment design. In this model, both numerical and

categorical covariates can be used.

Employing the law of total expectation, and removing the

sequencing depth effect by the related terms containing pj, we have

E nvjk

� �
/ /vkrkebT

k
xj . This new layer of model, splits the effect of the

latent factor k on sample j into two parts; rk, which can be consid-

ered as representing the baseline expression of the factor k across all

samples, and the exponential term ebT
k xj , which adjusts the effect of

the latent factor on the sample according to its traits. We note that

including an intercept in bT
k xj may weaken the identifiably of rk, as

in the expectation of the count nvjk a product term rkebk0 depending

only on latent factor k appears. Thus in all subsequent experiments a

separate intercept term is not used when considering covariate effects.

The parameters of the dNBFA model with their interpretations in the

context of RNA-seq experiments are presented in Table 1.

We place independent zero-mean normal distributions on the

components of the regression coefficient parameters as

bk �
YP
p¼1

N 0; a�1
p

� �
; (4)

where ap is the precision parameter of the normal distribution. By

assuming identical precisions for components of the regression coef-

ficients across all latent factors, dNBFA burrows statistical strengths

to infer these precision parameters.

Similar to NBFA, a Dirichlet prior distribution with the smooth-

ing parameter g is imposed on the gene-module association parame-

ters /vk:

/1k; . . . ;/Vkð Þ � Dir g; . . . ; gð Þ: (5)

The Dirichlet smoothing parameter g controls the sparsity of the

inferred latent factors. Generally speaking, the smaller g is, the more

sparse and specific the inferred factors are encouraged to be.

A challenge in NB factorization is how to determine the number

of latent factors K. To address this issue, one can employ a reason-

ably large K and then according to the inference step for rk [refer to

Equation (12) below], the baseline expression inferred for non-

important latent factors vanishes as the number of assigned gene

sub-counts to it decreases.

We complete the model by placing conjugate priors on hyper-

parameters. Specifically, we exploit the gamma-Poisson conjugacy,

beta-NB conjugacy with respect to the probability parameter and

gamma–gamma conjugacy with respect to the scale parameter of the

gamma distribution. The complete dNBFA model is presented

below:

nvj ¼
XK

k¼1

nvjk; nvjk � NB /vkhkj; pj

� �
;

hkj � Gamma rk; e
bT

k
xj

� �
; rk � Gamma c0=K; 1=c0ð Þ;

/1k; . . . ;/Vkð Þ � Dir g; . . . ; gð Þ; bk �
YP
p¼1

N 0; a�1
p

� �
;

c0; c0; a; g � Gamma e0; 1=f0ð Þ; pj � Beta a0; b0ð Þ:

(6)

Throughout the experiments in this paper, we set the hyperpara-

meters as e0 ¼ f0 ¼ 0:01 and a0 ¼ b0 ¼ 1. In the following section,

we provide an efficient inference algorithm that adopts novel data

augmentation techniques tailored to our dNBFA model.

2.3 Inference via Gibbs sampling
By utilizing a few data augmentation techniques (Polson et al.,

2013; Zhou et al., 2012; Zhou and Carin, 2015), we derive an effi-

cient Gibbs sampling algorithm for inferring the model parameters

in Equation (6), as described below. Algorithm 1 summarizes all the

steps in the Gibbs sampling algorithm.

Sample /vk and hkj. We start with the data augmentation

technique developed for inferring the NB dispersion parameter

(Zhou and Carin, 2015). More precisely, the NB random variable

n � NB r; pð Þ can be generated from a compound Poisson distribu-

tion as

n ¼
X‘
t¼1

ut; ut � Log pð Þ; ‘ � Pois �rln 1� pð Þð Þ;

where u � Log pð Þ corresponds to the logarithmic random

variable (Johnson et al., 2005), with the PMF

fU uð Þ ¼ � pu

uln 1�pð Þ ; u 2 f1; 2; . . .g. As shown in Zhou and Carin

(2015), given n and r, the distribution of ‘ is a Chinese Restaurant

Table (CRT) distribution, ‘jn; rð Þ � CRT n; rð Þ, which can be gener-

ated as ‘ ¼
Pn

t¼1 bt; bt � Bernoulli r
rþt�1

� �
.

Utilizing the above data augmentation technique, for each

observed count nvj, a latent count is sampled as

‘vjj�
� �

� CRT nvj;
XK

k¼1

/vkhkj

 !
: (7)
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These counts are then further split into latent sub-counts

[Proposition 3 of Zhou (2017)] using a multinomial distribution:

‘vj1; . . . ; ‘vjKj�
� �

�Mult ‘vj;
/v1h1jPK

k¼1 /vkhkj

; . . . ;
/vKhKjPK
k¼1 /vkhkj

 ! !
:

(8)

These latent counts can be considered as being generated as

‘vjk � Pois qj/vkhkj

� �
, where qj :¼ �ln 1� pj

� �
. Hence, using

gamma-Poisson conjugacy, /vk and hkj are updated as

/1k; . . . ;/Vkj�ð Þ � Dir gþ ‘1�k; . . . ; gþ ‘V�kð Þ

hkjj�
� �

� Gamma rk þ ‘�kj;
1

qj þ e�bT
k xj

 !
;

(9)

where ‘v�k ¼
PJ

j¼1 ‘vjk and ‘�kj ¼
PV

v¼1 ‘vjk.

Sample rk and c0. Let us denote wkj :¼ bT
k xj þ lnqj. Starting with

‘�jk � Pois qjhkj

� �
, marginalizing out hkj leads to

‘�jk � NB rk;
1

1þ e�wkj

� 	
: (10)

Employing the CRT augmentation technique as

~‘ jkj�
� �

� CRT ‘�jk; rk

� �
; (11)

the Gibbs sampling update for rk can be written as

rkj�ð Þ � Gamma c0=Kþ ~‘ �k;
1

c0 þ
P

j ln 1þ ewkj
� �

 !
: (12)

Following a similar procedure for c0, first we draw

~~‘kj�
� �

� CRT ~‘ �k; c0=K
� �

; (13)

and then we update the conditional posterior of c0 as

c0j�ð Þ � Gamma e0 þ
X

k

~~‘k;
1

f0 �
X

k
ln 1� ~pkð Þ=K

 !
; (14)

where ~pk :¼
P

j
ln 1þe

wkjð Þ
c0þ
P

j
ln 1þe

wkjð Þ.

Sample bk. For the regression coefficients modeling potential

covariate effects, the lack of conditional conjugacy precludes imme-

diate closed-form inference. Therefore, we adopt another data aug-

mentation technique, specifically designed for dNBFA, to infer the

regression coefficients bk, relying on the PG data augmentation of

(Polson et al., 2013; Zhou et al., 2012). Denote xkj as a random

variable drawn from the PG distribution as xkj � PG ‘�jk þ rk;0
� �

:

Since Exkj
½exp ð�xkjw

2
kj=2Þ� ¼ cosh ‘�jkþrkð Þðw2

kj=2Þ, the likelihood

of wkj in Equation (10) can be expressed as

L wkj

� �
/

ewkj
� �‘�jk

1þ ewkj
� �‘�jkþrk

/ exp
‘�jk � rk

2
wkj

� 	
Exkj

exp �xkjw
2
kj=2

� �h i
:

(15)

Exploiting the exponential tilting of the PG distribution in Polson

et al. (2013), we draw xkj as

xkjj�
� �

� PG ‘�jk þ rk;wkj

� �
: (16)

Given the values of the auxiliary variables xkj for j ¼ 1; . . . ; J and

the prior in Equation (6), the conditional posterior of bk can be

updated as

bkj�ð Þ � N lk;Rkð Þ; (17)

where Rk ¼ diag a1; . . . ; aPð Þ þ
P

j xkjxjx
T
j

� ��1
and lk ¼ RkP

j
‘�jk�rk

2 � xkj ln qj

� �� �h
xj

i
.

Table 1. Parameters of covariate-dNBFA and their interpretations

in the context of RNA-seq data

Parameter Constraint Interpretation

rk rk > 0 Module baseline expression

pj 0 < pj < 1 Sequencing depth

/vk

PV
v¼1 /vk ¼ 1; /vk > 0 Gene-module association

hkj hkj > 0 Popularity of factor k in sample j

bkp bkp 2 R Impact of covariate p on

expression of factor k

Note: The inputs of dNBFA are gene counts nvj and vector of covariates xj.

Fig. 1. Graphical representation of the dNBFA model
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Sample g. To derive the update steps for Dirichlet hyperpara-

meters, we note that the likelihood for f/kg is

L f/kgð Þ /
Y
k¼1

Mult ‘1�k; . . . ; ‘V�k; ‘��k;/kð Þ: (18)

Marginalizing out f/kg from Equation (18), the likelihood for g can

be expressed as

L gð Þ /
Y
k¼1

DirMult ‘1�k; . . . ; ‘V�k; ‘��k; g; . . . ; gð Þ; (19)

where DirMult denotes the Dirichlet-Multinomial distribution

(Zhou, 2017). Since the product of ‘ gð Þ and
Q

k Beta qk; ‘��k; gVð Þ can

be written as

L gð Þ
Y

k

Beta qk; ‘��k; gVð Þ /
Y

k

Y
v

NB ‘v�k; g; qkð Þ; (20)

we can further apply the data augmentation technique for the NB

distribution of Zhou and Carin (2015) to derive closed-form update

equations for g as

qkj�ð Þ � Beta ‘��k; gVð Þ; uvkj�ð Þ � CRT ‘v�k; gð Þ

gj�ð Þ � Gamma e0 þ
X
v;k

uvk;
1

f0 � V
P

k ln 1� qkð Þ

 !
:

(21)

Sample ap, pj and c0. Using appropriate conditional conjugacies,

we can sample the remaining parameters as

apj�
� �

� Gamma e0 þ K=2;
1

f0 þ
P

k b2
kp=2

 !

pjj�
� �

� Beta a0 þ
XV

v¼1

nvj; b0 þ
XK

k¼1

hkj

 !

c0j�ð Þ � Gamma e0 þ c0;
1

f0 þ
P

k rk

� 	
:

(22)

The Gibbs sampling steps in Equations (7) to (22) are summar-

ized in Algorithm 1.

3 Results

We evaluate our dNBFA for covariate-dependent factor analysis

based on two sets of real-world RNA-seq data studying complex dis-

eases, and compare its performance with those of WGCNA

(Langfelder and Horvath, 2008) and DiffCoEx (Tesson et al., 2010),

two commonly adopted two-stage co-expression network based

methods.

The first set of RNA-seq data was extracted from TCGA

[Cancer Genome Atlas (TCGA) Research Network and others,

2008], including three datasets on breast invasive carcinoma

(BRCA), lung squamous cell carcinoma (LUSC) and kidney renal

clear cell carcinoma (KIRC). These data were retrieved using the

TCGA2STAT R package (Wan et al., 2015). Using TCGA data we

expect to illustrate the higher differential expression significance of

gene modules identified by dNBFA with respect to the disease factor

compared to the results from WGCNA and DiffCoEx.

The second experiment was performed on a RNA-seq dataset of

the Autism study in Gupta et al. (2014), where samples were

obtained from three brain regions: the cerebral cortex Brodmann

area (BA) 19, anterior prefrontal cortex (BA10) and a part of the

frontal cortex (BA44). For this dataset, we demonstrate how incor-

porating covariate information may enhance the chance of achieving

meaningful biological discoveries.

For both TCGA and Autism experiments, dNBFA was run using

3000 MCMC iterations, where after the first 1000 burn-in itera-

tions, the posterior samples with the highest likelihood were col-

lected as the point estimates of model parameters. The total number

of latent factors for both TCGA and Autism were initially set as

K¼250, and after the parameter inference, only the top 100 factors

with non-negligible baseline expressions were kept for further analy-

ses. In addition, to determine module membership, for each latent

factor k, only the top 20 genes with highest /vk were considered as

members of module k. It should be noted that when an evaluation

metric that can take advantage of the whole association matrix U
exists, this ad-hoc step of using a cut-off for the gene-association

parameter can be avoided.

For WGCNA, the adjacency matrix was built by first computing

the pairwise Pearson correlation coefficients between gene expression

profiles and then applying the soft threshold b ¼ 6; 9 for TCGA and

Autism data, respectively. The gene modules were identified by apply-

ing a hierarchical clustering algorithm to the derived topological over-

lap dissimilarity matrix (Ravasz et al., 2002). A similar procedure was

followed for DiffCoEx, except that the topological overlap matrix

was built upon the matrix of adjacency difference (Tesson et al.,

2010). Our experiments show that the discovered modules by

WGCNA and DiffCoEx comprise of large lists of genes, where no fur-

ther modeling capability is provided to narrow down the gene sets for

more consequent exploratory analysis.

3.1 TCGA data
For all TCGA datasets, we have filtered out the genes whose total

read counts across all samples are less than 50, resulting in roughly

20 000 genes in each dataset. The total numbers of samples for

BRCA, LUSC and KIRC datasets are, respectively, 40, 34 and 40,

where in each case the number of primary tumor and normal sam-

ples are equal.

Based on the resulting RNA-seq count data, dNBFA, WGCNA

and DiffCoEx have been applied to derive functional gene modules

Algorithm 1 dNBFA model inference

Inputs: RNA-seq counts, design matrix of covariate effects, N

Outputs: gene module membership matrix

Initialize model parameters

# Do Gibbs sampling:

for iter¼1 to N do

Sample ‘vjk using the CRT distribution [Equation (7)]

Update /vk and hkj using the gamma-Poisson conjugacy

[Equation (9)]

Sample ~‘ jk using the CRT distribution [Equation (11)]

Update rk and c0 using the gamma-Poisson conjugacy

[Equation (12),(14)]

Sample auxiliary variables xkj, using the PG distribution

[Equation (16)]

Update regression coefficients [Equation (17)]

Update g using auxiliary beta distributed random varia-

bles [Equation (21)]

Update ap, pj and c0 [Equation (22)]

end for
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using the aforementioned settings. To assess the significance of dif-

ferential expression of identified modules with respect to the disease

status of samples, we follow the framework of Langfelder and

Horvath (2008). More precisely, for each detected module, first the

eigengene (Langfelder and Horvath, 2008) is computed via the first

principal component of the expression matrix of the corresponding

derived module. The module eigengene is used to summarize and

represent the expression profiles of the module genes (Horvath and

Dong, 2008). Then, the association of the eigengene expression with

the disease status is evaluated and finally the significance of the asso-

ciation is assessed based on the student’s t-test.

We calculate the P-values for gene modules identified by dNBFA,

WGCNA and DiffCoEx, applied to the three TCGA datasets. The

sorted P-values [based on -log(P-value)] are illustrated in Figure 2. The

eigengenes of the modules detected by dNBFA are remarkably more dif-

ferentially expressed than those detected by WGCNA and DiffCoEx in

all three TCGA datasets. To further investigate the results, we present

the per-sample eigengenes of the module ranked 10th for differential ex-

pression, which was identified by dNBFA, WGCNA and DiffCoEx for

the three TCGA datasets in Figure 3. The per-sample eigengenes of

dNBFA modules are more consistently differentially expressed with re-

spect to the disease status covariate for all three TCGA datasets, while

per-sample eigengenes of WGCNA and DiffCoEx demonstrate higher

variations within each group of samples with the same disease status.

To ensure that the gene modules detected by dNBFA are not redundant,

we also have examined the modules for significant overlap. Except a

minor overlap between two modules, the rest of the modules identified

by dNBFA are completely disjoint. These results suggest that dNBFA

can be a powerful untargeted module identification tool, without pre-

defined gene lists, for genomic experiments that study coordinated gene

expression pattern changes across multiple groups.

To further verify the advantages of dNBFA that it avoids overfit-

ting when the initial number of modules K is set high, we present in

Figure 4 the learned rk’s, representing the baseline expression associ-

ated with the derived modules, for three TCGA datasets. Only the

top 40 rk’s are included in this figure. For all datasets, only a fraction

of modules have significantly large baseline expression; and thus in

practice, a threshold can be used to extract the modules that contrib-

ute significantly to coordinated gene expression changes specific to

the experiment design factors of interest.

Fig. 2. Significance of differential expression for eigengenes associated with gene modules identified by dNBFA, WGCNA and DiffCoEx applied to three TCGA

datasets. The panels show the sorted negative logarithm of P-values of the derived modules. P-values are calculated using the student’s t-test on association be-

tween module eigengene expression and the samples’ condition factor (cancerous versus normal)

Fig. 3. Per-sample eigengene expression of modules with the 10th lowest P-values discovered by dNBFA, WGCNA and DiffCoEx, across cancerous and normal

samples for the three TCGA datasets. In each figure the y-axis is the eigengene expression, and the x-axis is the sample number. Red and blue bars correspond

to the normal and cancer groups, respectively. Figures in top, middle and bottom rows are the results of dNBFA, DiffCoEx and WGCNA, respectively. Figures in

left, middle and right columns correspond to BRCA, LUSC and KIRC datasets, respectively
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For the analysis of the real-world TCGA dataset on a single clus-

ter node with Intel Xeon 2.5 GHz E5–2670 v2 processor, on average

it took around 8 h for both the dNBFA and NBFA methods with

3000 MCMC iterations and about 1 h for both WGCNA and

DiffCoEx.

3.2 Autism data
Autism is a neuro-developmental disorder, in which the affected

individuals are characterized by impairments in social and commu-

nicative developments (Gupta et al., 2014). To apply dNBFA to the

RNA-seq dataset of the Autism study in Gupta et al. (2014), we first

discard the samples with low sequencing depths, resulting in a data-

set with 36 samples from the control group and 23 Autism samples.

The following analyses are performed using a subset of 12 010 genes

that have a count of at least three per sample across 90% of the sam-

ples. In this experiment, site of sample collection, age, sex and brain

region are available as the covariate information in factor analysis.

To examine how this information can alter the NB factor analysis

results, in the first set of experiments we use the covariates to apply

dNBFA; and in the second set of experiments, we neglect all covari-

ate information and run the naive NBFA on the dataset.

We perform gene set enrichment analysis on the discovered mod-

ules by applying dNBFA and NBFA, respectively, to the Autism

data, covering molecular function (MF), cellular component (CC)

and BP ontology domains. We calculate the significance of GO

terms using Fisher’s exact test and depict the sorted negative loga-

rithm of P-values for both dNBFA and NBFA in Figure 5. The mod-

ules detected by dNBFA have, in general, lower P-values than those

identified by NBFA without covariates, suggesting that incorporat-

ing covariate information may increase the chance of discovering

biologically meaningful modules.

To investigate the gene ontology results more thoroughly, the

top 10 GO terms with the lowest P-values are presented in Tables 2

and 3 for dNBFA and NBFA methods, respectively. In these tables,

each row is the most significant GO term corresponding to one mod-

ule identified by dNBFA or NBFA. The top modules discovered

by dNBFA provide more explicit connections to neural system.

Especially, the top module identified by dNBFA, which was not

detected by NBFA, is associated with GO term ‘type I interferon sig-

naling pathway’, where type I Interferon responses in the brain are

classically attributed to viral infections (Delhaye et al., 2006), which

in turn are connected to Autism (Patterson, 2011). Another import-

ant module detected only by dNBFA, the third module in Table 2,

is related to adaptive immune response which is closely correlated

to the development of Autism spectrum disorders (Ashwood

et al., 2006; Heuer et al., 2008). More precisely, this module

includes the human leukocyte antigen (HLA) genes that play an in-

strumental role in many innate and adaptive immune responses

Fig. 4. Inferred baseline expression rk for modules detected by dNBFA in the three TCGA datasets. Only the top 40 rk’s are included in this figure

Fig. 5. Negative logarithm of P-values for GO term enrichment analysis of

modules detected by dNBFA and NBFA, applied to Autism RNA-seq data. For

dNBFA, site of sample collection, age, sex and brain region are used as cova-

riate information, while no such information is incorporated for NBFA

Table 2. Top enriched GO terms identified by dNBFA algorithm

applied to Autism RNA-seq data

GO-ID Aspect Term P-value

GO: 0060337 BP Type I interferon signaling

pathway

4.377782e–15

GO: 0043209 CC Myelin sheath 1.522628e–14

GO: 0002460 BP aSee blow 9.487407e–13

GO: 0061024 BP Membrane organization 2.250911e–11

GO: 0044456 CC Synapse part 4.010908e–10

GO: 0005575 CC Cellular component 4.950009e–10

GO: 0033693 BP Neurofilament bundle

assembly

3.982179e–09

GO: 0031720 MF Haptoglobin binding 3.982179e–09

GO: 0000982 MF bSee blow 6.267732e–09

GO: 0001504 BP Neurotransmitter uptake 1.015843e–08

aAdaptive immune response based on somatic recombination of immune

receptors built from immunoglobulin superfamily domains.
bTranscription factor activity, RNA polymerase II core promoter proximal

region sequence-specific binding.
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(Torres et al., 2012). Many reports have provided the evidence on

associations between Autism and HLA genes/haplotypes, suggesting

an underlying dysregulation of the immune system mediated by HLA

genes (Torres et al., 2002; Torres et al., 2012; Warren et al., 1996).

A third important module identified only by dNBFA is associated

with GO term ‘neuron differentiation (GO: 0030182, P-value ¼
1.4 � 10–08). Specifically, this module includes calmodulin 1

(CALM1) gene. Significant defects in CALM1 interaction modules,

which regulate voltage-independent calcium-activated action poten-

tials at the neuronal synapse, are reported in autistic patients (Hadley

et al., 2014).

Other GO terms directly related to the nervous system associated

with the top modules discovered by dNBFA include ‘Myelin sheath’,

‘synapse part’, ‘neurofilament bundle assembl’ and ‘neurotransmit-

ter uptake’. Specifically, the decreased thickness of myelin in the

orbitofrontal cortex region is closely related to Autism disorders

(Zikopoulos and Barbas, 2010). In addition, the module detected by

dNBFA corresponding to GO term ‘synapse part’ has the highest as-

sociation with the gene SNAP-25, whose reduced expression level is

responsible for the cognitive deficits in children affected by Autism

spectrum disorders (Braida et al., 2015).

Examining the detected modules by both dNBFA and NBFA, we

observe that multiple GO terms relevant to Autism, such as ‘myelin

sheath’, ‘NADH regeneration’ and ‘nervous system development’,

are revealed by both algorithms. NADH is mainly involved in cata-

bolic reactions (energy metabolism and mitochondrial function),

whose decreased level has been reported in some children with

Autism (Adams et al., 2011). On the other hand, defects in Autism

appear closely tied to late developmental steps of nervous system

that depend on synaptic activity and activity-dependent transcrip-

tional changes (Walsh et al., 2008). Hence the relevance of the dis-

covered GO terms by both dNBFA and NBFA to Autism is

confirmed.

Finally, by examining the trace plots of model parameters, such

as c0 and rk, we find that the Markov chains for the dNBFA method

converge fast and mix well, supporting the practice of performing

downstream analysis with 3000 MCMC iterations.

In summary, both NBFA and dNBFA methods emerge as useful

module identification tools in RNA-seq data analysis, as in compari-

son to other available methods for gene module detection, they re-

quire minimum user adjustments. Specifically, the experimental

results on the Autism dataset show that the incorporation of

covariate information by dNBFA may lead to the discovery of more

significant Autism-relevant modules, which otherwise would be

missed by NBFA.

4 Conclusions

We propose a novel Bayesian covariate-dependent negative binomial

factor analysis (dNBFA) method for analyzing RNA-seq count data.

Our experimental results on real-world RNA-seq data demonstrate

that dNBFA is capable of handling complex experiments involving

multiple factors. What’s more, dNBFA does not require any ad-hoc

data normalization, data preprocessing, or co-expression network

construction steps. By taking advantage of novel data augmentation

techniques, dNBFA possesses efficient closed-form Gibbs sampling

update equations. Experimental results on multiple RNA-seq data

studying complex diseases, both cancer and Autism, demonstrate

that our dNBFA can be directly applied to RNA-seq data to derive

meaningful functional modules and it has potential advantages over

existing two-stage co-expression network based methods.
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