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ABSTRACT

MAGIA? (http://gencomp.bio.unipd.it/magia2) is an
update, extension and evolution of the MAGIA web
tool. It is dedicated to the integrated analysis of
in silico target prediction, microRNA (miRNA) and
gene expression data for the reconstruction of
post-transcriptional regulatory networks. miRNAs
are fundamental post-transcriptional regulators of
several key biological and pathological processes.
As miRNAs act prevalently through target degrad-
ation, their expression profiles are expected to be
inversely correlated to those of the target genes.
Low specificity of target prediction algorithms
makes integration approaches an interesting
solution for target prediction refinement. MAGIA?
performs this integrative approach supporting dif-
ferent association measures, multiple organisms
and almost all target predictions algorithms.
Nevertheless, miRNAs activity should be viewed as
part of a more complex scenario where regulatory
elements and their interactors generate a highly
connected network and where gene expression
profiles are the result of different levels of regula-
tion. The updated MAGIA? tries to dissect this com-
plexity by reconstructing mixed regulatory circuits
involving either miRNA or transcription factor (TF)
as regulators. Two types of circuits are identified:
(i) a TF that regulates both a miRNA and its target
and (ii) a miRNA that regulates both a TF and its
target.

INTRODUCTION

MicroRNAs (miRNAs) are fundamental post-transcrip-
tional regulators of several biological processes, whose al-
terations have been demonstrated in a number of diseases
and in almost all human cancers (1-5).

miRNA imperfectly bind the 3’-untranslated region
(3’-UTR) of their target mRNAs and may cause transla-
tion inhibition and/or mRNA cleavage and degradation
(6,7). miRNAs can have multiple targets and a single
protein-coding gene can be targeted by multiple
miRNAs. In this perspective, the network of post-trans-
criptional regulatory relationships is expected to have a
highly complex connectivity structure.

In silico target identification is based on (i) sequence
similarity search, possibly considering target site evolu-
tionary conservation and (ii) thermodynamic stability.
However, it is known that the results of target prediction
algorithms are characterized by very low specificity (8).
This is caused both by the limited comprehension of the
molecular basis of miRNA-target pairing and by the
context-dependency of post-transcriptional regulation
due to the cooperative interactions of different miRNAs.
The integration of target predictions with miRNA and
gene expression profiles has been recently proposed to
improve the detection of functional miRNA-target rela-
tionships (9,10). As miRNAs act prevalently through
target degradation, expression profiles of miRNA and
target genes/transcripts are expected to be inversely
correlated.

Although some studies have demonstrated that the
regulation of single key targets may largely explain the
function of a given miRNA in tumorigenesis or metastasis
development (11-13), the mechanisms of RNA regulation
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are emerging to be much more complex than previously
expected. miRNA activity should be viewed as part of a
complex system where regulatory eclements and their
interactors generate a highly connected network, which
regulates gene expression on multiple levels.
Unfortunately, from an experimental point of view, the
cooperation of different miRNAs acting on more than
one target and the interplay with other regulatory levels
are still challenging to be proved.

The gene regulation at the transcriptional level is, in
general, quantitatively stronger than that occurring
post-transcriptionally. Both levels impact on mRNA/
genes expression profiles. Indeed, the miRNAs expression
level can be activated or repressed by transcription factors
(TFs), whereas mRNAs encoding TFs can be silenced by
miRNAs. miRNAs and TF can share targets. Thus,
miRNAs and TFs can form feedback or feed-forward
loops, cooperating to tune gene expression (14) and
playing critical roles in various biological processes. In a
seminal review, Inui et al. (15) describes the role of
miRNAs in pathways as decision maker elements to dis-
criminate real versus too weak or too transient signals. In
this context, the association between miRNAs and target
expression profiles is generally more complex than linear
correlation.

Although many researchers have attempted to under-
stand the mechanism of miRNAs to regulate target
genes and their roles in various diseases, the study of
miRNA regulation by TFs (TF-miRNA regulation) has
been relatively limited (16). Some attempts have been
reported in order to computationally reconstruct regula-
tory circuits concerning miRNA-TFs and their joint
targets (17-19). However, the identification of miRNA
promoters is a challenging task. As promoter regions
could be several thousands of base pairs upstream of the
primary-miRNA, a correct way of identifying putative
miRNA regulatory regions was not clearly established so
far. To this aim, a few databases have been developed to
store experimentally validated TF-miRNAs interactions
(16,20).

Although several web tools (21-27) were recently de-
veloped in order to enhance the functional insights of
miRNA functions and to improve miRNA-mRNA inter-
actions identification almost none of them face the
complex problem of the reconstruction of the above-men-
tioned TF—miRNA-target circuits.

Here, we present MAGIA®? (miRNA and genes
integrated analysis 2012 update, freely available at
http://gencomp.bio.unipd.it/magia2) an updated and
fully redesigned release of MAGIA (21), a web application
for the integrative analysis of in silico target prediction,
miRNA and gene expression data. As in the previous
release, MAGIA? refines in silico target prediction
through miRNA—target expression association measures.
MAGIA? extends the analysis, supporting multiple organ-
isms (human, mouse, rat and drosophila), and using a
greatly expanded list of target predictions algorithms. It
allows the combination of multiple predictions and the
selection of user-defined thresholds for each one. The
MAGIA? architecture was completely redesigned: both
data and analyses results are stored in a user-specific

environment keeping the data private. Furthermore, the
updated MAGIA? tries to dissect regulatory complexity
reconstructing mixed regulatory circuits involving either
human miRNA or TF as regulators (Figure 1A). In par-
ticular, two types of mixed regulatory circuits are
identified: (i) a TF that regulates both a given miRNA
and its target gene; (ii) a miRNA that regulates both a
given TF and its regulated gene (Figure 1B). In order to
help the user in the interpretation of the results, novel
features are implemented into MAGIA”. Among them
(1) miRNA-target interactions experimentally validated
[as reported in miRecords (28), TarBase (29)
and mirTarBase (30) databases] are specifically marked;
(i1) Functional enrichment of the gene network component
can be performed directly from MAGIA? using DAVID
platform.

WEB TOOL IMPLEMENTATION

In Figure 2, MAGIA? architecture comprises three main
sections: (i) data upload, (ii) data analysis and methods
setup and (iii) results visualization, browsing and linking
to external knowledgebase and tools.

Data upload

In the first section, the user selects the organism, defines
the gene or transcript ID used (EntrezGene, RefSeq,
ENSEMBL gene or transcript are allowed) and uploads
miRNA and gene (or transcript) expression data. In this
way, a private MAGIA environment is created. Input files
must be tab-delimited matrices (samples on the columns
and, genes/transcripts or miRNAs on the rows).

Gene and miRNA expression profiles should be already
normalized and filtered. Specifically, mRNA and miRNA
profiles could be generated using different platforms and
could be pre-processed with different algorithms as correl-
ation coefficient and mutual information are invariant
under a linear transformation.

Platform-specific probes (Affymetrix and Agilent IDs)
are not unique, with several probes mapping on the same
gene/transcript and being frequently associated with not
concordant expression. Besides, over 30% of the
Affymetrix probes do not correctly map to the genes
they are supposed to belong (31,32). For these reasons,
in the expression signal reconstruction phase, we suggest
the user (i) to use custom CDF for Affymetrix technology
and (ii) to choose the best probe (in term of quality check
flag, or using other criteria) for Agilent technology.

The first columns of matrices should contain miRNA
and gene/transcripts IDs of supported organisms; the
header lines should be set according to the experimental
design chosen. MAGIA? considers two different experi-
mental designs: (i) matched case—gene/transcript and
miRNA expression data from the same biological
samples and (ii) non-matched case—mRNA /transcript
and miRNA expression data on different biological
samples, belonging to the same set of classes, possibly re-
sulting in different sample sizes. When using matched
profiles the names of the columns of miRNA and gene/
transcript matrices should correspond exactly; otherwise,
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Figure 1. Interplay of miRNAs and TFs in gene/transcripts expression regulation involves mixed regulatory circuits. Panels A and B represent the
molecular biology and the simplified schematization of interconnected pathways of transcriptional and post-transcriptional regulation, respectively:
(1) a TF (dark green) interacts both with a protein-coding gene and a miRNA promoter, regulating their transcription, whereas the regulated

miRNA targets the protein-coding mRNA exerting post-transcriptional regulation; (2) a miRNA regulates post-transcriptionally both a gene
encoding a TF (light green) and a protein-coding gene, that is transcriptional target of the same TF.
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Figure 2. MAGIA? flow chart illustrating the different steps imple-
mented with the back- and front-end in Upload, Analysis and
Results sections of MAGIAZ.

MAGIA? input files requires that column labels represent
sample classes. When matrices have been successfully
uploaded, the user has now created his personal
environment.

No registration is required to use MAGIAZ. To map a
user to his personal environment, two standard mechan-
isms for session management are used: (i) a cookie is set in
the user browser; (ii) a session id is appended to each web
application url.

The second mechanism allows users to share their
personal environment (data and analyses) with collabor-
ators. Moreover, the design of MAGIA~ allows two or
more users to perform analyses at the same time on

a shared environment without explicit notification or
locking.

Analysis setup

After data upload, the user can setup a new analysis using
data available in his environment and specify settings in a
few simple steps.

Step 1: selection of expression matrices

After creating the ‘My data’ environment, the user can
select two matrices, one for gene/transcripts and one for
miRNA expression data. As the presence of miRNAs and
genes with poorly variable expression profiles may intro-
duce noise and produce false-positive associations, by
default MAGIA? filters profiles according to their expres-
sion variability, calculated through the variation coeffi-
cient (CV): the 25% less variable profiles (both for
miRNAs and for genes/transcripts) are removed. This
variability filter can be explicitly skipped using a check
box in case the data selected by the user are already
filtered. This may apply to a user pre-selected subset of
differentially expressed miRNAs that need to be all con-
sidered for network reconstruction.

Step 2: selection of the association measure

The selection of the association measures is strictly de-
pendent on the experimental design chosen by the user.
For matched design, three methods for expression profiles
combination are available (parametric, non-parametric
linear correlation and association measure based on infor-
mation theory), while for un-matched design only a
meta-analysis is possible. The Spearman correlation is a
non-parametric, rank-based linear correlation measure
suitable for non-normally distributed data and/or small
sample size (e.g. 3-5). Pearson correlation is a parametric
linear correlation measure, suggested for normally
distributed data and medium-large sample size (>9).
Mutual information is an information measure quantify-
ing the mutual dependence of variables, including
non-linear relationships and in general is suitable for
large sample size (at least 20 needed).

Meta analysis approach is based on the combination of
P-values of differential expression (using empirical Bayes
test) (33), separately for genes and miRNAs across sample
classes, using the inverse chi square distribution to identify
oppositely variable miRNA—target pairs (21).

Step 3: selection of the target prediction algorithms

MAGIA? makes use of eight different catalogs of target
predictions:  Microcosm  (34), microrna.org (35),
DIANA-microT (36), miRDB (37), PicTar (38), PITA
(39), RNA22 (40) and TargetScan (41). Unfortunately
not all of them use the same identifiers to refer to genes
and transcripts. MAGIA? relieves the user from directly
addressing this issue by converting identifiers at the start
of each analysis. In case of a conversion requiring multiple
steps (e.g. if the user upload matrices with Ensemble gene
Ids, their conversion to Refseq would require two steps:
Ensemble gene ID—Ensemble transcript ID and
Ensemble transcript ID—RefSeq), MAGIA? warns the
user. ID conversion, from one transcript ID to another,



in fact usually leads to the loss of a noticeable amount of
identifiers and potentially incorrect assignments because
there is not a one to one relationship between transcripts
identifiers of major sequence databases. Predictions may
be further filtered using their scores (MAGIA? tutorial
provides information to guide the user in this selection
procedure) and multiple targets database may be
combined, by taking their intersection.

Integrated analysis: interaction strength quantification and
regulatory circuits identification human and mouse data

Using human and mouse data, MAGIA? combines ex-
pression profiles analysis with three sets of regulatory
interaction predictions, i.e. information about TFs and
miRNAs that may regulate a gene/transcript expression
at transcriptional and post transcriptional level, respect-
ively, and about transcriptional regulation of TF on
miRNAs.

In this way, MAGIA? identifies two types of mixed
regulatory circuits: (i) a TF regulating both a given
miRNA and its target gene; and (ii) a miRNA regulating
both a given TF and its regulated gene.

More in detail, miRNA—target interactions derive from
the combination of Steps 2 and 3 above. Namely, only the
subset of predicted miRNA—target interactions associated
to informative expression profiles relationship measures
(e.g. high correlation) are included in the network.

Regarding TFs, we used experimentally validated TF-
miRNA interactions reported in mirGen2.0 (17) and
TransmiR (42), whereas TF-gene interactions were
obtained from ECRbase database (43) (http://ecrbase
.dcode.org/) for mouse organism and from the ‘TFBS
conserved’ track of the UCSC genome annotation for
human (version hgl9). Each annotated TF binding site
was associated with a RefSeq transcript if it lied within
10Kb of its 5-UTR and 3 Kb of its 3’-UTR. To be more
stringent, we required a prediction z-score of at least 3.
This resulted in 304,035 total associations: each transcript
is linked on average to 11.7 TFBS. By comparison,
TargetScan predicts that on average 12.5 microRNAs
interact with each transcript.

Thus, association measures described in Step 2 are
estimated not only for miRNA-target interactions pre-
dicted in Step 3 but also for TF-target relations
(TF-gene and TF-miRNA) retrieved from public
databases.

Each circuit type might be the result of several different
combinations of induction/repression interactions. Using
correlation, significant circuits can include different com-
binations of positive and negative values, highlighting dif-
ferent types of putative regulatory interactions (e.g. TF
that inhibits its target mRNA but that activates miRNA
expression, a TF that activates both elements). MAGIA?
allows the user to download all the circuits in a flat file
that can be easily open with a excel sheet for further pro-
cessing, filtering and analysis and highlight edges accord-
ing to the sign of the association measure. With this file,
the user can check the correlation associated to each edge
and speculate on their functional relations.
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Rat and Drosophila data

Using rat and drosophila data association measures
described in Step 2 are estimated only for those
miRNA-target interactions predicted in Step 3.
TF-target and TF-miRNA information is unavailable.

It is worth noticing that when MAGIA? is used for
analysis of miRNA and transcript expression profiles,
each alternative transcript of the same gene is treated as
a separate entity. In this case, network and circuits visu-
alization and interaction tables report information on in-
dividual transcript (and of the gene to which it belongs).
The use of transcripts expression increase network com-
plexity but also adds relevant information on transcript
heterogeneity, especially when transcript expression is
adequately quantified.

MAGIA? RESULTS

MAGIA? results are reported as interactive images and
dynamic tables (Figure 3). According to the analysis
setting, MAGIA? shows (i) the top 200 functional inter-
actions (between miRNAs, genes and TFs); (i) top 20
mixed regulatory circuits and (iii) top 40 interactors of a
user-selected network node. For each network, two or
more tables report different types of supported relation-
ships. In the general view, miRNA-target and TF-target
relations are shown, whereas in the circuits visualization
mode, triplets of elements involved in type 1 and 2 circuits
are listed separately. Focusing on a specific gene/tran-
script, TF or miRNAs, all direct interactors are shown
in appropriate tables. Experimentally validated miRNA—
target interactions according to the miRecords (28),
mirTarbase (29) and mirTarBase (30) are highlighted in
tables. Furthermore, for each element involved in a sup-
ported interaction, MAGIA? provides links to external
miRNA- and gene-related databases to help the user in
results interpretation. Complete results can be browsed
and download as tab delimited flat files.

From the general network view, a DAVID enrichment
analysis can be automatically started. MAGIA? transmits
the whole set of genes and TFs represented in the network
directly to the DAVID tool for functional enrichment
analyses. The default enrichment score provided by
DAVID is estimated on the whole genome; however, the
user can upload the list of the platform IDs as background
to perform a different analysis. This feature may allow the
identification of molecular functions under the control of
a specific set of transcriptional and post-transcriptional
regulators.

CASE STUDY: THE RECONSTRUCTION OF
REGULATORY CIRCUITS IN NCI-60 CELL LINES

As a benchmark case study, we used the miRNA and
target expression profiles of the NCI-60, a panel of 60
human cancer cell lines from several distinct tissues (44).
The NCI-60 expression data were collected using, respect-
ively, the Affymetrix HG-U133A platform and the Ohio
State University Comprehensive Cancer Center miRNA
platform, OSUCCC, version 3.0. Both data sets are
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Figure 3. MAGIA? results using NCI-60 matched gene and miRNA expression data. (A) Regulatory network reconstructed using the best
miRNA-target and TF-target interactions. (B) Top 20 mixed regulatory circuits.

available at the ArrayExpress database
E-GEOD-5720, miRNA: E-MEXP-1029).

We selected EntrezGene IDs, Pearson correlation
measure and the intersection of TargetScan and
DIANA-microT target prediction algorithms. We found

(mRNA:

a total number of 970 interactions with Pearson correl-
ation r>0.4 in absolute value and with FDR <0.05
(Table 1). Among these, 13 miRNA-target interactions
(two with positive and 11 with negative correlations) are
experimentally validated. Given the dense connectivity of



Table 1. Total number of interactions with Pearson correlation
r>0.4 in absolute value and with FDR <0.05 identified by MAGIA?
using NCI-60 data set

Interaction type Pos. corr. Neg. Corr. TOT
miRNA-mRNA 216 (44%) 281 (56%) 497
TF-miRNA 14 (46%) 16 (54%) 30
TF-gene 120 (27%) 325 (73%) 444
TOT 350 (36%) 622 (64%) 970

the entire network, MAGIA? shows the sub-network
derived from those interactions with »> 0.4 or r < —0.4,
for a maximum of 200 interactions (50 miRNA-gene, 50
miRNA-TF, 50 TF-miRNA and 50 TF-gene). Figure 3
shows the resulting network for this case study (50
miRNA-gene, 1 miRNA-TF, 50 TF-gene and 31 TF-
miRNA). Whole results can be downloaded as a tab de-
limited file with specific attributes that can be directly
imported into Cytoscape (45).

miRNA-target interactions include a total number of
17 different miRNAs and of 39 different genes while TF—
target interactions include a total number of 27 different
TFs and 72 different TF targets. Among the best inter-
actions, we found three miRNA-target relationships
experimentally validated as reported in TarBase and
miRecords: miR-223 with LMO2 (46) positively
correlated with r=0.79, miR-221 with ESR1 and
miR-222 with ESR1 (47) inversely correlated with respect-
ively r = —0.60 and r = —0.59. Interestingly, the inter-
action between miR-223 with LMO?2 is the interaction
with the highest score.

Among the top TF-target interactions, we found
GATAI and STATSA factors. GATA factors are unique
TFs with conserved DNA-binding domains. They serve
diverse roles in embryogenesis, cell differentiation, regula-
tion of tissue-specific genes and carcinogenesis. Multiple
studies have analyzed the role of GATA factors in gastro-
intestinal malignancy, such as those of the stomach, pan-
creas and colon, and premalignant lesions such as
Barrett’s esophagus (48). TF STATSA, on the other
hand, has been shown to play a critical role in prostate
and breast cancer growth and differentiation (49).

Pathways enrichment analysis, conducted on target and
TF genes, leads to relevant and interesting results:
TGF-beta signaling pathway (P = 0.047, PANTHER
database) (50) and ErbB signaling pathway (P = 0.032,
KEGG database) (51) are identified as two of the most
enriched pathways. Perturbations of transforming growth
factor-B (TGFp) signaling are central to tumorigenesis
and tumor progression through their effects on cellular
process, including cell proliferation and cell invasion (52)
while excessive ErbB signaling is associated with the
development of a wide variety of types of solid tumor.
ErbB-1 and ErbB-2 are found in many human cancers
and their excessive signaling may be critical factors in
the development and malignancy of these tumors (53).

The most interestingly new feature of MAGIA? is the
possibility to identify putative mixed regulatory circuits.
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In this analysis (Figure 3B), MAGIA? highlights 20
circuits possibly relevant in tumor samples.

Circuits of type 2, where miRNA acts as master regu-
lator of a TF and its target involve principally FOXF2
and miR-200, miR-506 and miR-204 families. Changes
in miR-200 family levels have been associated with
enhanced tumorigenesis and resistance to several chemo-
therapy drugs; in addition, they significantly correlate with
decreased survival (54-56).

Among circuits of type 1, where a TF regulates either
the miR and its target, we observed an interesting network
composed of four circuits (triangles) involving GATALI, as
master regulator, miR-144 and miR-181 family, and
specific common target genes (EPB41, ANKI1 and
HIC1). Taken individually, different elements in this net
are known to be involved in cancer development and pro-
gression. For instance, recent studies showed that
miR-181a and miR-181b function as tumor suppressors,
which trigger growth inhibition, induce apoptosis and
inhibit invasion in glioma cells (57). EPB41 is known as
tumor suppressor gene in meningioma pathogenesis (58).
The master regulator of hematopoiesis, GATA-1 binds to
DNA sites with the consensus sequence [AT|GATA[AG]
within regulatory regions of globin genes and of other
genes expressed in erythroid cells. It plays also important
roles in hematologic malignancies (59) and it seems to
directly activate transcription of genes encoding the essen-
tial autophagy component (60).

Further, and most interestingly, combined involvements
in cancer (as indirect or direct interactions) of miRNAs
and specific genes and TFs of this net have been reported.

Specifically, a study of prognostic significance of
CEBPA mutations in cytogenetically normal acute
myeloid leukemia with high-risk molecular features, and
gene and microRNA expression signatures associated with
CEBPA mutations (61) showed that up-regulation of
specific genes, including GATA1 (ZFPM1, EPOR, and
GFIIB) and miRNAs (i.e. the miR-181 family) are
involved in erythroid differentiation and down-regulation
of homeobox genes. Similarly Whitman ez al. (62) studied
FLT3-internal tandem duplications as adverse prognostic
marker in primary cytogenetically normal acute myeloid
leukemia and reported an FLT3-ITD-associated expres-
sion signature with over-expression of different genes,
including ANK1 [FLT3, homeobox genes (MEISI,
PBX3, HOXB3) and immunotherapeutic targets (WTI,
CD33) and underexpression of leukemia-associated
(MLLT3, TAL1) and erythropoiesis-associated (GATA3,
EPOR, ANK1, HEMGN) genes] and underexpression of
miR-144.

Focusing more on causal relationships, it was
demonstrated that the miR 144/451 locus, essential for
erythropoiesis, is a direct transcriptional target of
GATALI (63). Chromatin immunoprecipitation showed a
strong signal for GATA-1 occupancy at the erythroid cis-
regulatory module (enhancer) located 2.8 upstream of the
miR 144/451 transcriptional start site, containing two
conserved GATA binding motifs. During erythroid
lincage differentiation, GATA-2 binding, characteristic
of early precursors, is gradually replaced by GATA-I
that induces gene activation in later stages of maturation.
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In summary, we can affirm first that key cancer genes,
TFs and miRNAs are represented in top circuits blindly
identified by MAGIA? mixed circuits reconstruction based
on cancer cell lines expression data. Furthermore, both
combined involvement in cancer signatures and/or the ex-
istence of direct regulatory interactions relevant for cell
differentiation regarding different pairs among the set of
TFs, miRNAs and target genes found in MAGIA? mixed
circuits clearly corroborates the biological significance of
mixed regulatory circuits identified by MAGIAZ.
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