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KATP Channel Mutations and Neonatal Diabetes

Kenju Shimomura and Yuko Maejima

Abstract:
Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological func-

tions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It

functions as a “metabolic sensor” that converts the metabolic status to electrical activity. In pancreatic beta-

cells, the KATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and

thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene,

which encodes the Kir6.2 subunit of the KATP channel, were found to cause neonatal diabetes. In some muta-

tions, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal dia-

betes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfony-

lurea receptor (SUR) 1, the regulatory subunit of the KATP channel, which cause neonatal diabetes/DEND syn-

drome and also discusses the findings of the pathological mechanisms that are associated with neonatal dia-

betes, and its neurological features.
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The Structure and Physiological Roles of the
KATP Channel

The glucose-dependent insulin secretion is initiated by an

increase in the plasma glucose concentration, which en-

hances the glucose metabolism in beta-cells. This enhanced

glucose metabolism leads to an increase in the intracellular

concentration of adenosine triphosphate (ATP). This leads to

the closure of the KATP channel, which in turn induces mem-

brane depolarization and triggers the opening of the voltage

dependent Ca2+ channel, which stimulates the release of in-

sulin (1, 2) (Fig. 1). However, the detailed mechanisms that

are involved in glucose-dependent insulin secretion and the

regulation of the KATP channel are more complicated than the

above mechanism.

The electrophysiological findings of KATP channel property

confused researchers in the early days of KATP channel re-

search. From the early electrophysiological studies, it was

clear that an increased ATP concentration inhibited the KATP

channel, but the measurement of the ATP concentration in

intact beta-cells revealed that the intracellular ATP concen-

tration was so high, even under low glucose conditions (2-4

mM), that the KATP channel should be permanently

closed (3, 4). However, this discrepancy was later explained

by the finding that MgADP can activate the KATP chan-

nel (5, 6). At low glucose concentrations, the activation of

the KATP channel by MgADP was found to be more domi-

nant, while at high glucose concentrations the inhibitory ef-

fects of ATP were found to become more dominant as the

intracellular ATP concentration increased. The regulation of

KATP channel activity was therefore revealed to result from a

balance between the inhibitory effects of intracellular ATP

and the activation of the KATP channel by intracellular

MgADP.

When the KATP channel was cloned in 1995, it was found

to be a complex of two different proteins: pore forming

subunit Kir6.2, a member of the inwardly rectifying potas-

sium channel family; and sulfonylurea receptor (SUR) 1, a

member of the ABCC family, and an ATP-binding cassette

transporter (7, 8) (Fig. 2). Four Kir6.2 subunits compose

a channel pore and four SUR1 subunits surrounding the

Kir6.2 channel pore compose a 4:4 octameric complex (9).

Each Kir6.2 and SUR1 subunit possesses a endoplasmic re-

ticulum retention motif and since Kir6.2 and SUR1 mask

each other’s motifs, none of the subunits can reach the cell
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Figure　1.　The mechanism of insulin secretion.

Figure　2.　A schematic illustration of the KATP channel. Kir6.2 has two transmembrane domains and 
an inner loop that controls the K+ flux. SUR1 subunit consists of three transmembrane domains 
(TMD 0-2) and contains two nucleotide binding domains (NBD1 and 2).

membrane alone (10). The binding site for ATP lies on the

Kir6.2 subunit while the MgADP binding site lies on the

SUR1 subunit (11-14).

The Discovery of Neonatal Diabetes due to
Gain-of-function Mutations in the

KATP Channel

It is well known that KATP channel mutations can cause

congenital hyperinsulinism. The underlying mechanisms of

congenital hyperinsulinism include a total loss of the KATP

channel in the plasma membrane or the impairment of KATP

channel activation by MgADP, which modulates the closed

state of the KATP channel, resulting in permanent membrane

depolarization and insulin secretion (15-18).

On the other hand, the existence of genetic variance in

residue 23 of Kir6.2 (E23K) has been reported to be com-

mon in patients with type 2 diabetes (the precise mechanism

by which E23K contributes to the development of diabetes

remains unclear) (19-21). In 2000, a gain-of-function muta-

tion of the KATP channel was found to cause glucose intoler-

ance in a mouse model (22). This report indicated the possi-

bility that gain-of-function mutations in the KATP channel

may decrease insulin secretion, leading to the development

of diabetes in humans.

In 2004, the first case of neonatal diabetes with a gain-of-

function mutation in the KATP channel was reported (23). The

prevalence of neonatal diabetes is estimated to be 1 in

250,000. It is characterized by the onset of diabetes within 6

months after birth (24-29). Nearly half of the cases of neo-

natal diabetes are caused by Kir6.2 (KCNJ11) and SUR1

(ABCC8) mutations (23-32). Approximately 31% of the

cases are due to KCNJ11 mutations, while 13% are due to

ABCC8 mutations (33). Although the majority of these pa-

tients develop diabetes, only approximately 20% of patients

with KATP channel mutations develop neurological symptoms.

Neonatal diabetes is classified into the following four sub-

types based on the severity of the symptoms: transient hy-

perglycemia (transient neonatal diabetes: TNDM); perma-

nent hyperglycemia (permanent neonatal diabetes: PNDM);

the presence of severe neurological symptoms such as devel-

opmental delay, epilepsy and muscle weakness (DEND syn-

drome); and DEND syndrome symptoms without epilepsy

(intermediate DEND syndrome: iDEND) (24-28).
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Figure　3.　A molecular model of Kir6.2 (left) and a simplified illustration of Kir6.2 (middle). ATP 
docks to its binding site. A schematic illustration of single KATP channel currents recorded at -60mV 
from inside-out patches with wild type or mutant Kir6.2 are shown on the right. Note that with the 
gating mutation, the Po increases in comparison to the wild-type channels. The increase in the Po is 
not observed with the binding mutation.

Kir6.2 Mutations and the Pathophysiology of
Neonatal Diabetes

The reported mutations of Kir6.2 are mostly dominant

heterozygous (one homozygous mutation has been reported),

whereas those in SUR1 are either dominant or recessively

inherited (29, 32, 34).

The functional studies of neonatal diabetes-causing Kir6.2

mutations have shown that these mutations reduce the ability

of ATP to inhibit the KATP channel (23, 25-30). These tiny

changes in the KATP channel activity, which occur due to a

small shift in ATP sensitivity, can alter the beta-cell electri-

cal activity and insulin secretion to an extent that causes

diabetes (34). The molecular mechanism underlying this re-

duced ATP sensitivity depends on the location of the Kir6.2

mutation (Fig. 3).

Mutations located in the predicted ATP binding site are

considered to directly impair the binding of ATP to Kir6.2

(binding mutations). Mutations located in the regions in-

volved in channel gating are considered to indirectly reduce

the inhibition of channel activity by ATP (gating mutations).

Binding mutations do not usually affect the gating property

of the KATP channel. In single channel recordings of the KATP

channel with binding mutations, the fraction of time that

channels spend in the open state (open probability: Po) is

similar to that of the wild-type KATP channel (25, 35-37). On

the other hand, when KATP channel gating mutations are pre-

sent, the Po is increased in comparison to the wild-type KATP

channel, which indicates that these mutations shift the chan-

nel gating toward the open state. The shift of channel gating

toward the open state will ultimately reduce the inhibition of

the channel by ATP (37-40).

Although there are no correlations between the underlying

mechanism (gating or binding) and the severity of patient

symptoms, there is a clear correlation between the degree of

ATP sensitivity and the severity of the disease. In compari-

son to the fraction of the remaining KATP channel current un-

der 3 mM MgATP (which corresponds to the physiological

concentration of intracellular ATP), the mutations that cause

DEND syndrome cause larger remaining KATP channel cur-

rents than those that cause iDEND (41). Similarly, the muta-

tions that cause iDEND are associated with larger remaining

KATP channel currents in comparison to PNDM or

TNDM (41).

SUR1 Mutations and the Pathophysiology of
Neonatal Diabetes

The mechanism through which SUR1 mutations induce

neonatal diabetes/DEND syndrome is complicated and

poorly understood. SUR1 is composed of three transmem-

brane domains (TMDs), which are linked by a cytosolic

linker region (CL3) and two nucleotide-binding domains

(NBDs), NBD1 and NBD2. TMD 1 and 2 contain six trans-

membrane helices, while TMD0 contains five transmem-

brane helices (7, 32) (Fig. 2).

Each NBD contains Walker A and Walker B motifs,

which are required for nucleotide binding. NBD1 and 2

dimerize to undergo MgATP binding, and NBD2 hydrolyses

MgATP to MgADP and stimulates the KATP channel activity.

To date, more than 60 mutations that induce neonatal dia-

betes have been identified in SUR1. Most patients with SUR

mutations only have diabetes; however, approximately 30%

of patients with SUR mutation are reported to have neuro-

logical features (32). There are two possible mechanisms

through which SUR1 mutations can induce an increase in

the KATP channel activity. The first mechanism is through the

actions of Kir6.2, such as reducing the binding of ATP to

Kir6.2 or stabilizing the open state of the channel by impair-

ing the gating mechanism of Kir6.2 (42). The second possi-

ble mechanism involves the enhancement of the activating

effect of MgADP (43-48). How SUR1 is coupled to the to-

tal KATP channel activity remains unclear. However, because
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very recent studies have clarified the structure of the KATP

channel in high resolution, it is expected that the details of

the interaction of Kir6.2 and SUR1 will be re-

vealed (47, 48).

The Neurological Features of KATP Channel
Mutations Causing DEND Syndrome

The mechanism underlying the induction of hyperglyce-

mia by KATP channel mutations has been well investigated.

However, the mechanisms underlying the development of

the neurological features that are seen in patients with

DEND syndrome are less understood (49). The KATP channel

is expressed in multiple types of neurons in the brain. Al-

though numerous studies have reported on the KATP channel

and the brain function, the details of the physiological con-

tribution of the brain KATP channel remain to be elucidated.

However, recent studies have clarified the physiological con-

tribution of the brain KATP channel to some extent. The neu-

rons in the hypothalamus are known to sense changes in

glucose concentrations through the KATP channel, which ulti-

mately regulates the food intake and glucose metabo-

lism (49-52). It has also been reported that the KATP channel

contributes to the protection of neurons against stressful

conditions such as brain infarction and hypoglycemia (53).

However, these functions, which are already known, can-

not fully explain the neurological symptoms of DEND syn-

drome. It is hypothesized that the underlying mechanism

through which DEND syndrome patients develop epilepsy

involves the deactivation of the inhibitory neurons, which is

induced by the opening of the KATP channel.

As previously mentioned, the neurological symptoms of

patients with DEND syndrome were originally considered to

be associated with developmental delay, epilepsy and muscle

weakness. However, recent reports suggest the existence of

psychiatric disorders. Some patients with causative muta-

tions of DEND syndrome are reported to show signs of at-

tention deficit hyperactivity disorder (ADHD), autism or

sleeping disorder (54, 55). In a mouse model, mice with

neural tissue with DEND-causing V59M mutations dis-

played hyperactivity, increased exploratory behavior and re-

duced anxiety, which is consistent with the symptoms of

ADHD and autism (56). The precise mechanism underlying

the development of these psychiatric disorders remains un-

clear. Because these psychiatric symptoms have a severe im-

pact on both the patient and the patient’s family, an inte-

grated and collaborative approach to clinical care is re-

quired.

Implications for Therapy

Before the discovery of KATP channel mutations, neonatal

diabetes was considered to be a rare form of type 1 diabe-

tes, and was therefore treated with insulin. However, numer-

ous basic and clinical studies on mutations have revealed

that many patients with neonatal diabetes due to KATP chan-

nel mutations can be treated with sulphonylurea drugs,

which bind to both Kir6.2 and SUR1 subunits (57, 58).

The low affinity-binding site in Kir6.2 is blocked by high

concentrations of the sulphonylurea drugs and has no clini-

cal relevance. The primary effect of the drug is mediated by

the high affinity-binding site on SUR1 (59, 60). Clinically,

sulphonylureas bind to the high affinity-binding site and in-

duce the closure of the KATP channel by suppressing the acti-

vating effect of MgADP and unmasking the inhibiting effect

of ATP on Kir6.2 (59)

Studies of the KATP channel mutations using the Xenopus

oocyte expression system have revealed that many (if not

all) mutations were found to be closed to some extent by

sulphonylurea drugs (27, 35, 37, 38, 58). Based on these

findings, more than 90% (87.5% in Japan) of patients with

neonatal diabetes were successfully switched from insulin

injection treatment to oral sulphonylurea (glibenclamide)

therapy (57, 58, 61). Because a high dose of glibenclamide

is required for the treatment of neonatal diabetes, the risk of

inducing hypoglycemia should be considered. However,

clinical studies have shown that sulphonylurea therapy in-

duces fewer fluctuations in blood glucose, and a marked de-

crease in HbA1c levels in comparison to insulin injection

therapy (57).

It is suggested that sulphonylureas can also improve the

neurological features of patients with DEND syndrome (26).

Hashimoto et al. reported the successful improvement of the

neurological features in patients with T293N and R50P mu-

tations, which are associated with DEND syndrome (61).

However, the patients’ neurological symptoms did not com-

pletely recover after treatment with sulphonylureas. This

may be because the concentration of sulphonylurea is not

sufficient to close the KATP channel in the brain. Whether

sulphonylureas can cross the blood brain barrier (BBB) re-

mains unclear. A previous study showed that when gliben-

clamide was administered peripherally in mice, the drug

concentration in the cerebral spinal fluid was not high

enough to block the mutated KATP channel, which affected

the neural electrical activity (62). However, an increase in

the blood flow in the cerebellum was observed in patients

with DEND syndrome after they switched to sulphonylurea

therapy (63). This shows that sulphonylureas have an effect

on the brain, and that the improvement of the motor func-

tion by the initiation of sulphonylurea therapy may be ex-

plained by the improved cerebellum function; however, fur-

ther study is required to test this hypothesis.

Generally, sulphonylurea treatment is more effective when

it is started at an early stage of life. Age and prolonged poor

glycemic control seem to be important predictors of respon-

siveness to sulphonylureas in neonatal diabetic patients. Ef-

fective transfer is less likely in elderly patients with poor

glycemic control (64-66). Because insulin therapy does not

improve the neurological symptoms of DEND syndrome, an

early-stage diagnosis is critical, as it enables sulphonylurea

therapy to be initiated as quickly as possible.

Minor side effects of high-dose sulphonylurea treatment
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have been reported in patients with neonatal diabetes. Tran-

sient diarrhea was reported by some patients after switching

to sulphonylurea treatment (67). Furthermore, approximately

7.5% of sulphonylurea-treated patients experienced tooth

discoloration (68). The severity of discoloration varies from

a mild color change to a loss of enamel. The mechanism re-

sponsible for this symptom is unclear but thought possibly

to be related to the direct exposure of the teeth to high

doses of the drug, because the patients with discoloration

either chewed the drug or took it in solution (68).

Conclusion

The increased activity of the KATP channel due to muta-

tions leads to reduced insulin secretion and the development

of neonatal diabetes. Some mutations cause severe neuro-

logical symptoms. Recent studies have shown that many pa-

tients with neonatal diabetes and KATP channel mutations can

be effectively treated using sulphonylurea drugs. Functional

studies on KATP channel mutations provide novel therapeutic

options for patients with neonatal diabetes; thus, it is impor-

tant to make a precise diagnosis at an early stage of the dis-

ease.
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