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Abstract: Clusterin (CLU) is a multifunctional glycoprotein that has secretory and nuclear isoforms. The two isoforms are 
known to play opposite roles in cell survival/death. In this review, we summarize recent progress on the pro-apoptotic function 
of nuclear CLU in vitro and in vivo and discuss previous reports on the role of CLU in brain damage and neurodegeneration. 
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ximately 50 kDa and detected as a ~60 kDa glycosylated 
precursor secretory CLU (psCLU). It is cleaved to α and β 
chains of ~40 kDa and further glycosylated to form mature 
disulfide-linked heterodimeric secretory CLU (sCLU, 75-80 
kDa). The nCLU transcript lacks the endoplasmic reticulum 
(ER)-targeting sequences at exon 2 and utilizes the second 
ATG site at exon 3 (Fig. 1A). The product is detected as the 
~49 kDa nonglycosylated precursor nCLU in the cytosol and 
as a ~55 kDa glycosylated protein (nCLU) in the nucleus [8]. 
The CLU protein has two coiled coil domains responsible 
for interacting with other proteins, e.g., Ku70, which binds 
to CLU upon DNA damage [9] and two nuclear localization 
signals [7]. 

Proapoptotic Role of nCLU

CLU plays controversial roles in apoptosis by producing 
two alternatively spliced isoforms in various cell types [10]. 
The pro-apoptotic CLU appears to be nCLU [7], and the sCLU 
and intracellular CLU are thought to be anti-apoptotic [11, 
12]. The dichotomous roles of CLU in cell death were obvious 
from early studies using transgenic and gene-targeted mice, in 
which overexpression and deletion of the genes both caused 
reduced brain damage following hypoxia in vivo [13, 14]. 
Furthermore, previous reports showed that healthy human 
prostate cells expressed nCLU exclusively, but that human 
prostate cancer cells lost nCLU expression while increasingly 

Introduction

Clusterin (CLU) was found initially as a cell-aggregating 
factor in ram rete testis fluid [1]. Two decades ago, CLU, a 
glycoprotein also known as apolipoprotein J, testosterone-
repressed prostate message-2, and sulfate glycoprotein-2, 
was first cloned and characterized as a 427 amino acid 
polypeptide, which is post-translationally cleaved between 
residues 205 and 206 [2, 3]. The CLU transcript is expressed 
relatively highly in the brain, ovary, testis, and liver, and less 
abundantly in the heart, spleen, lung, and breast [3]. CLU was 
soon suggested as a marker of cell death, as it is upregulated 
in many cell types following cytotoxic stimulation [4-7]. 
However, accumulating results have revealed that CLU is a 
much more complicated protein than initially thought. In 
this review, we explore the pro-apoptotic role of nuclear CLU 
(nCLU) in vitro and in vivo in the context of brain damage 
and neurodegeneration.

Without glycosylation, human CLU is a protein of appro
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expressing sCLU upon metastasis [12] and that deficiency of 
Clu enhances prostate cancer metastasis in prostate cancer-
prone transgenic adenocarcinoma of mouse prostate mice 
[15]. CLU translocation from the nucleus to the cytoplasm 
is related directly to colon tumorigenesis [16]. Considering 
these results, the expression and function of CLU in vivo must 
be finely tuned at the transcriptional, translational, and post-
translational levels.

As mentioned above, CLU is a bifunctional protein in 
terms of cell death and survival; sCLU or intracellular CLU 
inhibits apoptosis by interacting with Ku70 and Bax [17], 
whereas nCLU induces cell cycle arrest and cell death by 
inhibiting nuclear factor-κB-dependent Bcl-XL expression 
[18, 19]. In contrast to a previous study, in which intracellular 
CLU inhibited apoptosis by interacting with activated Bax 
[11], our group recently reported that nCLU sequestered 
Bcl-XL via a putative Bcl-2 homology 3 (BH3) domain, 
which was demonstrated in cells transfected with CLU gene 
deletion mutants [20] and by nuclear magnetic resonance 
spectroscopy [21]. Subsequently, Bax is released from Bcl-XL, 
promoting apoptosis accompanied by caspase-3 activation 
and cytochrome c release, implying that the role of nCLU is 
similar to derepressor/sensitizer BH3-only proteins [20]. 

BH3-only proteins are pro-apoptotic proteins with a 
single BH3 domain, unlike other Bcl-2 proteins that have 
multiple BH domains. Although the precise mechanism of 
the function of BH3-only proteins remains elusive, BH3-only 

proteins appear to interact with anti-apoptotic Bcl-2 proteins, 
e.g., Bcl-2 and Bcl-XL, and to activate effector Bcl-2 proteins, 
such as Bax and Bak, directly as an activator or indirectly 
as a derepressor/sensitizer, leading to cytochrome c release 
from mitochondria and cell death [22-27]. Overexpression of 
BH3-only proteins promotes apoptosis in many cell types but 
requires either Bax or Bak as an effector [28]. There are many 
BH3-only proteins, such as Bid, Bim, Bad, Bmf, Bik/Blk, Hrk, 
NOXA, and PUMA [29, 30]. Notably, BH3-only proteins do 
not usually have any other known functional domains rather 
than the BH3 domain [31]. In human nCLU, a putative BH3 
motif was found in a C-terminal coiled coil (CC2) domain 
(Fig. 1A) [20, 21]. The sequence and tertiary structure of the 
putative BH3 motif were comparable to those of previously 
known BH3-only proteins (Fig. 1B). In particular, the 
hydrophobic L323 residue (in red Fig. 1B) and uncharged 
N328, which are highly conserved in BH3-only proteins, are 
indispensable for binding to Bcl-XL [20, 21]. Chemical shift 
perturbation data suggest that the nCLU BH3 domain could 
bind Bcl-2 as well [21], but that the actual interaction with 
Bcl-2 appears to be weaker than that of Bcl-XL [20].

We have also found that only nCLU, not sCLU, interacts 
with Bcl-XL [32]. Cleavage and heterodimerization to form 
sCLU could change protein folding and conformation, which 
might explain the differential roles of sCLU and nCLU in 
binding to Bax and Bcl-XL, respectively, and eventual cell 
survival/death. A recent report showed that the binding motif 

Fig. 1. Structure of nuclear clusterin 
(nCLU). (A) Schematic view of the 
CLU protein. The human CLU gene is 
located on chromosome 8 and consists 
of nine exons. The secretory CLU tran­
script starts with the first ATG (amino 
acid [a.a.] residue 1) and that of nCLU 
starts with the second ATG (a.a. 34). 
The CLU protein has two coiled coil 
(CC) domains and the putative Bcl-
2 homology 3 (BH3) motif (a.a. 316-
336) is in CC2. LP, leader peptide. (B) 
Sequence homolog y of BH3 motifs 
among BH3-only proteins. The core 
BH3 sequences are underlined, and the 
highly conserved arginine (L) is in red. 
The BH3 motif is responsible for binding 
the anti-apoptotic Bcl-2 family, such as 
Bcl-2 and Bcl-XL.
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in psCLU was localized in the disulfide constraint region 
and was essential to bind IκB-α, but neither the α- nor the β- 
chain of sCLU had any activity [33]. This is another example 
to understand the importance of CLU protein conformation 
and tertiary structure. In addition, post-translational 
modifications could further regulate the differential roles 
of CLU. It is known that nCLU, located in the nucleus, 
is not glycosylated [34], whereas mature sCLU is heavily 
glycosylated [35].

CLU in Brain Damage and Neurodegeneration

CLU is expressed during fetal and postnatal central nervous 

system (CNS) development in mice [36]. CLU expression 
is upregulated in rats following traumatic brain injury [37], 
in seizure [38, 39], and in some neurodegenerative diseases, 
such as Parkinson’s disease (PD) and Alzheimer’s disease (AD) 
[40, 41]. The role of CLU in brain cell death is contradictory, 
as both gene-deficiency and overexpression of CLU inhibit 
brain damage in mice [13, 14]. It should be noted that the 
experimental conditions were different, as neonatal hypoxia/
ischemia and permanent ischemia by middle cerebral artery 
occlusion in adult mice were used, respectively. CLU increases 
post-ischemic cell death in hippocampal slice cultures [42], 
implying a pro-apoptotic role for CLU.

We have discovered that nCLU plays a pro-apoptotic 
role in ethanol-induced cell death in the developing brain of 

Fig. 2. Colocalization of clusterin (CLU) and Bcl-XL in the thalamus of the developing brain following ethanol treatment. Seven-day-old rats were 
subcutaneously injected with 6 g/kg of ethanol. After the designated times, they were sacrificed and perfused. Immunohistochemistry revealed that 
CLU expression was upregulated (left column) and colocalized with Bcl-XL (arrows) in the thalamus. The middle column show Bcl-XL expression, 
and the right column show merged images. E, ethanol treatment (×400).
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infant rats [32]. We found that CLU increased in the cerebral 
cortex following acute ethanol treatment. CLU is broadly 
upregulated in the cerebral cortex, such as in Layers II, IV, 
and VI, and in the retrosplenial granular (RSG) cortex and 
the amygdala at 24 hour post-ethanol treatment. This CLU 
upregulation is related to increased cell death, which was 
assessed by activated caspase-3 levels and TUNEL staining. 
The upregulated CLU is a nuclear isoform that is translocated 
to the nucleus upon ethanol exposure and interacts with Bcl-
XL, mediating apoptosis. 

CNS dysfunction is one of the characteristics of fetal alco
hol spectrum disorder (FASD), accompanied by abnormal 
brain structure/function, reduced white and grey matter 
volumes, and reduced total brain volume [43, 44]. It should 
be mentioned that our experimental model was heavy binge 
drinking, rather than chronic alcoholism. CLU expression 
was upregulated in the dispersed areas of the cerebral cortex, 
such as Layers II, IV, and VI, and in the amygdala upon acute 
ethanol exposure [32]. The amygdaloid complex is composed 
of more than ten nuclei, and one of the major functions of the 
amygdala in rats and humans is enhanced memory formation 
for emotional stimuli [45]. Upregulated CLU expression 
was found in the RSG cortex as well. The RSG cortex is an 
important link between hippocampal formation and other 
limbic areas of the brain and is equivalent to the cingulated 
gyrus in humans [46, 47]. It is also part of “Papez circuit,” 
which was proposed by Papez as an emotion system [48]. 
The prefrontal cortex is involved in higher brain functions, 
including cognitive functions and behavioral control 
[49]. Furthermore, CLU upregulation is accompanied by 
upregulation of activated caspase 3 and TUNEL positivity in 
the brain following ethanol exposure, implying a role for CLU 
in brain cell death [32]. 

Additionally, we have found CLU upregulation and an 
interaction between CLU and Bcl-XL in the thalamus of 
the developing brain in infant rats upon ethanol exposure. 
As seen Fig. 2, CLU level increased post-ethanol exposure 
(left column), and CLU and Bcl-XL were co-localized (right 
column). Recent studies have reported that ethanol increases 
activated caspase-3 and subsequent neuronal cell death [50], 
which may be a result of ER stress induced by ethanol [51]. 
Nevertheless, the effect of ethanol on the thalamus is less 
understood. Our results suggest that CLU upregulation and 
interaction with Bcl-XL may mediate thalamic cell death by 
ethanol. The thalamus is located deep inside the forebrain 
and is often referred to as the gateway to the cerebral cortex, 

as thalamic neurons send axons to the cortex via the internal 
capsule [48]. In general, the internal capsule axons carry 
information to the cortex about the contralateral side of the 
body. It would be interesting to know the potential effect 
of ethanol on CLU expression and the interaction with 
other molecules and mechanisms thereof in the thalamus 
to understand the cause of behavioral deficits of FASD. 
Collectively, brain cell death mediated by nCLU in those areas 
might result in behavioral deficits and CNS abnormalities 
manifested in FASD. Furthermore, it is possible that CLU may 
be upregulated in other brain areas or cell types as well, such 
as the cerebellum, hippocampus, or microglial cells, which are 
known ethanol targets [52, 53]. Changes in CLU expression 
during chronic alcohol consumption have not been reported.

Not nCLU, but sCLU, has been suggested as a biomarker 
of neurodegenerative diseases, i.e., AD and PD, in the plasma 
or cerebrospinal fluid, respectively [40, 41]. In particular, 
CLU variants have been associated with AD in genome-wide 
association studies [54, 55], and plasma CLU levels reflect AD 
severity [40]. Therefore, CLU has been suggested as an AD 
risk gene. Intriguingly, sCLU, a pro-survival isoform, appears 
to fail to prevent the progression of neurodegeneration in AD, 
although it is upregulated in parallel to disease progression. 
In this context, sCLU might play a role as a chaperone in a 
similar manner to small heat shock proteins [56]. Expression 
and any contribution of nCLU need to be elucidated in 
neurodegenerative diseases as well. As nCLU plays a pro-
apoptotic role, it is likely that nCLU expression could worsen 
neurodegeneration. 

Concluding Remarks

In conclusion, we have discovered the mechanism of the 
nCLU pro-apoptotic function in vitro and in vivo, which 
shows that nCLU interacts with Bcl-XL though a putative 
BH3 domain. Notably, all BH3-only proteins interact with and 
regulate the core Bcl-2 family proteins to promote apoptosis, 
and multiple BH3-only proteins are usually involved in cell 
death in one cell type [30]. Thus, it would be interesting 
to know whether nCLU and other BH3-only proteins are 
cooperative in the cell death process. 

sCLU upregulation in AD is already suggested as a useful 
diagnostic and prognostic biomarker. nCLU expression and 
upregulation could be used as a biomarker of cell death and 
brain damage as well. More importantly, cell death could 
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be enhanced or reduced by regulating nCLU expression. 
For example, inhibiting nCLU may reduce brain damage 
by seizure or ethanol and upregulating nCLU may reduce 
tumors. However, CLU has two isoforms and multiple 
binding proteins besides Bcl-XL. Although previous results 
imply that regulating CLU isoforms could change cell fate, 
the biological roles of CLU and the mechanism of cell death/
survival regulated by CLU in vivo are thought to be more 
complex, depending on many factors, such as the expression/
induction of each isoform, subcellular location of the protein, 
various stimuli, and the microenvironment. Thus, there is 
an urgent need to develop isoform-specific antibodies and 
siRNAs for further clarification of the biological roles of CLU 
in various cell types and conditions.
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