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Abstract: Two-dimensional nanomaterials are emerging as promising candidates for a wide 
range of biomedical applications including tissue engineering, biosensing, pathogen incapa-
citation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, 
photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront 
of these materials and plays a key role in this multidisciplinary research field. Poor water 
dispersibility and low functionality of graphene, however, hamper its hybridization into new 
nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or 
non-covalent methods, is the most useful strategy to improve its dispersion in water and 
functionality as well as processability into new materials and devices. In this review, recent 
advances in functionalization of graphene derivatives by different (macro)molecules for 
future biomedical applications are reported and explained. In particular, hydrophilic functio-
nalization of graphene and graphene oxide (GO) to improve their water dispersibility and 
physicochemical properties is discussed. We have focused on the anticancer drug delivery of 
polyfunctional graphene sheets. 
Keywords: two-dimensional nanomaterials, graphene, functionalization, anticancer drug 
delivery, photothermal therapy

Introduction
Cancer is a general name for a group of more than 100 diseases and one of the most 
serious health risks that is the second-leading cause of death worldwide behind 
cardiovascular disease.1–5 Cancer is usually caused by abnormal proliferation of 
different cells in the body that differ significantly in the complexity of treatment. 
Abnormal cell proliferation leads to tumor formation that can be benign or malig-
nant. A benign tumor (non-cancerous) is not cancerous and remains confined to its 
original site and does not metastasize to other regions of the body. However, 
a malignant tumor (cancerous) is an invasive tumor and spreads through the 
bloodstream or lymphatic system throughout the body. Benign tumors can usually 
be removed by surgery, but malignant tumors are often resistant to current treat-
ments and are much more dangerous because of their ability to invade and 
metastasize to different parts of the body.6,7 Many research studies have focused 
on finding new strategies to reduce the side effects of conventional therapies.8–10 

Despite its drawbacks and limitations, chemotherapy plays a significant role in 
cancer treatment.11 One of the main challenges associated with chemotherapy is 
low bioavailability of chemotherapeutic agents and drug-resistant tumor cells.12–14 

Nanomaterials, due to their unique physicochemical properties, including shape, 
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surface, size, and optical properties, are able to target 
cancerous tissue and cross the biological barriers with 
minimal side effects.8,15,16 Different types of nanomater-
ials such as organic nanoparticles (polymeric micelles, 
liposomes, and dendrimers) inorganic nanoparticles (quan-
tum dots, carbon nanotubes, magnetic and metal nanopar-
ticles), 2D nanomaterials (graphene and its derivatives, 
molybdenum disulfide, boron nitride, black phosphorus 
nanosheets, transition-metal dichalcogenides, transition 
metal oxides, metal organic frameworks, layered double 
hydroxides), nanocomposites, and nanogels have been 
used for this purpose.17–28 To address these problems, 
anticancer drug delivery systems based on two-dimen-
sional nanomaterials are developed and their ability to 
target anticancer drugs into tumors is investigated.29 

Graphene-based nanomaterials due to their excellent phy-
sicochemical and biological properties including high 
loading capacity, photothermal property, and fast cellular 
uptake have been used to improve current 
chemotherapies.30–33 In this review, we have focused on 
the functionalized graphene sheets as nanocarriers to 

transport therapeutic agents into tumors along with 
a brief discussion on the challenges and future trends in 
this field.

Graphene Platforms: Structure, 
Chemistry, and Toxicity
Graphene is a two-dimensional honeycomb network with 
sp2 carbon atoms. Each atom is bonded to neighboring 
carbons by σ-bond and out of plane p orbitals are extended 
over the whole structure. Graphene could be considered as 
the main backbone of various allotropes of carbon including 
fullerene, zero dimension (0D), nanotubes, one dimension 
(1D), and graphite, three dimensions (3D)34 (Figure 1). The 
unique physicochemical, optical, electrical, and mechanical 
properties of graphene make it a suitable platform for var-
ious applications such as energy storage,35,36 sensors,37–39 

biological and medical applications,39–46 cancer therapy,47,48 

functional devices,49–51 and drug delivery.52–54 High thermal 
and electrical conductivity, high elasticity and flexibility, and 
large surface area are some graphene properties superior to 
other nanomaterials.55,56 Due to its outstanding properties 

Figure 1 Graphite and different allotropic forms of carbon. 
Notes: Used with permission of Future Medicine Ltd from Tonelli FM, Goulart VA, Gomes KN, et al. Graphene-based nanomaterials: biological and medical applications and 
toxicity. Nanomedicine. 2015;10:2423–2450; permission conveyed through Copyright Clearance Center, Inc. 40
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such as photothermal property, oxidative reactivity, and low 
price, graphene can be used as an appropriate platform for 
drug delivery. Also, layer structure of graphene represents 
a high loading capacity for therapeutic agents.57 Despite the 
extraordinary properties of graphene, one of the main draw-
backs of using it for drug delivery is the low dispersibility of 
this compound in aqueous solutions. Oxidation to graphene 
oxide (GO), production of reduced graphene oxide (rGO) or 
functionalization by hydrophilic functional groups are the 
main strategies to overcome this problem (Figure 2). GO, an 
oxidized derivative of graphene, consists of a large number 
of oxygen containing functionalities such as epoxide, hydro-
xyl, and carboxylic acid. While epoxide and hydroxyl 
groups are placed in the basal plane, carboxylic groups are 
placed along the edges. These functional groups improve 
dispersibility of GO in water. rGO has much less epoxy due 
to reduction and it shows a low dispersibility in aqueous 
solutions.

However, one of the main concerns regarding biomedi-
cal applications of graphene is the intrinsic toxicity and 
health risk of this compound.58–61 The toxicity of gra-
phene-based nanomaterials mainly depends on different 
factors including size, surface charge, shape, number of 
layers, surface functional groups, and particulate 
state.58,62–64 While some studies showed no toxicity and 
side effects of graphene on mouse cells, others indicated 
considerable toxicity for graphene.65–67 This discrepancy 
come back to the variation in the structure of graphene 
derivatives and necessitates more extensive studies to con-
clude on the toxicity of graphene and its derivatives. 
Therefore, before any medical applications, a deep under-
standing of the toxicological profile of graphene-based 
nanomaterials is required. Cellular studies have shown that 

graphene and its derivatives can destroy the structures of the 
cells. For example, graphene caused plasma membrane 
damage in Hep G2 cells and induced disintegrate the mito-
chondrial membrane in a dose-time and shape-dependent 
manner.68,69 Moreover, graphene-based nanomaterials led 
to DNA fragmentation and chromosomal aberrations in 
human mesenchymal stem cells and cause side effects in 
normal cells such as immune system cells.70,71 Graphene 
causes apoptosis by inducing mitogen-activated protein 
kinases and the transforming growth factor-β-related signal-
ing pathways.72 Graphene-based nanomaterials have shown 
dose-dependent hemolytic activity and aggregated graphene 
particles have shown considerable toxicity. Some studies 
have shown that graphene and its derivatives increase intra-
cellular ROS and cause cytotoxicity and induce oxidative 
stress through which proteins, DNA, and lipid destruction 
have been damaged.73–77

Robert Langer and co-workers played with the function-
ality of graphene oxide and studied the toxicity effects of 
different types of graphene oxide on mice. The aim was to 
find a possible relationship between the amount of oxygen 
containing functional groups and biocompatibility of gra-
phene oxide. Their results showed that by injecting graphene 
oxide, this substance becomes a mass in the body. The team 
found that the mice’s body excreted graphene oxide over time.

Researchers have used standard arrays to study the 
toxicity effects of graphene oxide and have shown that 
concentrations less than 1 mg/mL do not show consider-
able toxicity effects but higher concentrations are toxic to 
the body. Administration of GO in mice has resulted in 
chronic toxicity and death from pulmonary granuloma. In 
addition, dose-dependent pulmonary toxicity, granuloma-
tous lesions, pulmonary edema fibrosis, and inflammatory 

Figure 2 Structure of graphene and its oxidized derivatives. 
Notes: Reproduced with permission from Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and 
biology application. Journal of Nanostructure in Chemistry. 2018;8:123–137.41 Copyright © 2018, The Authors. Creative Commons CC BY (https://creativecommons.org/ 
licenses/by/4.0/legalcode).
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cell infiltration have also been observed after administra-
tion of GO. A pulmonary inflammatory response was also 
observed in rats after administration of graphene with 
BSA.78–81

Functionalization of graphene with different functional 
groups can potentially improve the bioavailability, circula-
tion lifetime and anticancer property of this material.82,83 

As previously mentioned, one way to achieve this goal is 
functionalization of graphene surface by suitable 
polymers.84 Modification of graphene surface by polymers 
enhances biocompatibility and circulation times of gra-
phene in vivo. PEG is the most studied polymer for the 
modification and improvement of biological properties of 
graphene derivatives. Conjugation of PEG onto graphene 
sheets reduces toxicity and increases stability of graphene 
under physiological conditions.85,86 According to the 
hematological analysis and histological examinations, 
nanographene modified PEG do not cause appreciable 
toxicity at dose (20 mg/kg) in a period of 3 months.87

Pharmacokinetics and clearance of graphene nanoma-
terials from the body has been studied but it 
needs extensive investigations to achieve a deep under-
standing of the long-term toxicity of these materials.88,89 

The physicochemical properties of graphene derivatives 
including size, surface charge, surface chemistry, and 
shape impact their pharmacokinetics dramatically.90 

Transmission electron microscope (TEM), Raman spectro-
scopy, isotopic labeling, and rare-earth elements labeling 
are some of the methods available for tracking these 
materials in body.87,91–93 For example, Liang et al used 
the La/Ce dual elemental labeling method to track the 
bioaccumulation, transfer, and clearance of polyvinylpyr-
rolidone (PVP) modified GO in vivo.94 They showed that 
injected PVP/GO mainly accumulate in the lungs, liver, 
and spleen, then pass through the glomerular filtration 
barrier (GFB) of the kidney and can be cleared, likely by 
both renal and fecal excretion. Similar results have been 
reported for injected PEGylated 125I-labeled nanographene 
sheets.87 Injected PEGylated graphene are accumulated in 
the reticuloendothelial system and gradually cleared from 
the bloodstream through their sequestration by cells of the 
mononuclear phagocyte system.

Graphene-Polymer Platforms; Synthesis 
and Physicochemical Properties
For many biological applications and in order to 
improve the functionality and dispersibility of graphene, 

surface of this nanomaterial should be modified and 
functionalized. Surface modification of graphene plat-
forms using biocompatible polymers endow new proper-
ties and effectively improve their performances for 
biomedical applications. Taking advantage of the huge 
conjugated π-systems, high specific surface area, and 
useful functionality, graphene platforms can be used as 
novel nanocarriers for different therapeutic agents.95–98 

Incorporation of polymeric systems into the graphene 
structure allows tailoring these platforms into new mul-
tifunctional systems to deliver a variety of moieties such 
as therapeutic, targeting, and diagnostic agents.97,99 

Non-covalent and covalent functionalization are two 
major strategies for the modification of graphene and 
its derivatives.100–106

Graphene derivatives can be covalently modified by 
covalent attachment of polymers through addition of free 
radicals or dienophiles to their C=C bonds. 
Macromolecules can also be conjugated to GO through 
silanization, amidation, esterification, and cycloaddition 
reactions.107,108 However, challenges have to be addressed 
regarding non-destructive and covalent functionalization 
of graphene derivatives, as the methods previously men-
tioned cause disruption of sp2 network and electronic and 
optoelectronic features of these graphene-based 
platforms.109,110 We have previously developed a non- 
destructive covalent method for the controlled functionali-
zation of nanographene sheets through nitrene [2+1] 
cycloaddition reaction based on azidodichloro-triazine at 
ambient conditions.111,112 This strategy allows the con-
trolled non-destructive functionalization of graphene with 
different polymers and (macro)molecules through conju-
gated triazine groups and opens up new avenues to con-
struct complex devices for future biomedical 
applications112 (Figure 3).

Non-covalent functionalization by supramolecular 
interactions including, π-π stacking, hydrogen bonding, 
and van der Waals force is another strategy for the mod-
ification of graphene and its derivatives. While this 
approach preserved the π-conjugation and the electronic 
properties of graphene-based materials, it is unstable and 
functional groups can be detached upon changes in the 
environmental conditions.107,108

In the past several years, various types of graphene- 
polymer platforms have been developed and investigated 
as nanocarriers for therapeutic agents. Poly(ethylene gly-
col) (PEG),43,113–115 polyethylenimine (PEI),116,117 

chitosan,118,119 and hyaluronic acid (HA)120,121 are 
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common polymers that are employed for surface functio-
nalization of graphene derivatives. Dendrimers and hyper-
branched polymers, including polyamidoamine100,122 and 
polyglycerol9,33,100,123 are other types of polymeric sys-
tems that are commonly used in this field. Polymers sig-
nificantly improve the physicochemical properties, 
solubility, stability, biocompatibility, and drug loading 
capacity of graphene.

Graphene-Polymer Platforms in Drug 
Delivery
Cancer is a major cause of death worldwide and preven-
tion or therapy of this disease is one of the biggest health 
challenges nowadays. Chemotherapy has been used exten-
sively to treat many types of cancer; however, it is limited 
by different factors including multidrug resistance, sys-
temic toxicity, immunogenicity, and bioavailability. These 
limitations could be overcome by drug delivery 
systems.124–126

Among drug delivery systems and breakthroughs, gra-
phene and its derivatives have been abundantly used for 
a wide range of biomedical applications owing to their 
sheet-like structure, high specific surface area, and ease 
of functionalization.99,127,128 Due to the availability of 
different functionalization strategies and taking advantage 
of the multifunctionality of graphene and its derivatives, 
various drug delivery systems with controllable biological 
properties can be prepared. Functionalization of graphene 
derivatives with various polymers could potentially 
improve their reactivity, biocompatibility, circulation 
times in vivo and anticancer capacity. Graphene-polymer 
platforms with high drug loading capacity have opened up 
new opportunities in the development of novel drug deliv-
ery systems for various biomedical applications, where 
conventional graphene and polymer alone cannot meet 
all requirements.32,129–131

Functionalization of graphene and its derivatives with 
PEG have been extensively used for the construction of 
anticancer drug delivery systems.113 Liu et al initially 

Figure 3 The controlled functionalization of nanographene sheets through nitrene [2+1] cycloaddition reaction at ambient conditions. 
Notes: The nucleophilic substitution of chlorine atoms in triazine groups with different polymers and (macro)molecules results in new platforms with defined structures. 
Reproduced with permission from Gholami MF, Lauster D, Ludwig K, et al. Functionalized graphene as extracellular matrix mimics: toward well-defined 2D nanomaterials for 
multivalent virus interactions. Adv Funct Mater. 2017;27:1606477.112 Copyright 2017, Advanced Functional Materials.
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reported PEG-decorated GO as a nanocarrier to effectively 
deliver anticancer drugs. They exploited non-covalent 
interactions to load anticancer hydrophobic drugs and 
found that the combination of PEG with graphene-based 
materials can effectively improve biocompatibility, cellu-
lar uptake, bioavailability, physiological stability, thera-
peutic efficacy, and circulation time of drugs in 
bloodstream.132 On the other hand, PEGylation of gra-
phene reduces aggregates of graphene in RES organs 
(lungs, liver, spleen, and kidney) as well as its retention 
and toxicity. Similarly, in another report, 6-armedPEG- 
functionalized graphene oxide-based nanocarrier has been 
reported to deliver anticancer drugs such as oridonin and 
methotrexate (MTX).133 Synthesis of PEG-grafted GO and 
loading of drugs has been performed via amidation and π- 
π stacking, respectively. This complex (oridonin or 
MTX@GO-PEG) exhibited higher cellular uptake and 
anticancer activity against CAL27 tumor cell in compar-
ison with free drugs. PEGylated graphene has also been 
developed as dual-drug (DOX and platinum) delivery sys-
tem with a higher efficiency than the single-drug 
system.113 The results of these studies showed that the 
combination of drugs efficiently overcomes the cancer 
drug resistance and improves their anti-cancer effect. 
This drug delivery system demonstrated less toxicity and 
damage to normal cells compared to DOX and platinum- 
free drugs. Interactions of PEGylated graphene with drugs 
have been adjustable by polymer chain length.134,135 In 
another study, PEGylation of GO using PEG copolymer 
conjugated to multiple pyrenes increased percentage of 
PEG on GO surface and simultaneously reduce GO to 
rGO. In-vitro assays of this study revealed that graphene 
with PEG content higher than 75% and longer PEG chain 
showed better physicochemical properties than their ana-
logs with shorter PEG chains.134 The combination of PEG 
with other polymers such as hyaluronic acid, polyethyle-
neimine, and chitosan have also been intensively 
investigated in order to improve therapeutic effects of 
graphene-drug platforms.34–38,136

PEI a cationic polymer is another type of widely 
explored polymers for the surface modification of gra-
phene-based materials.116,137,138 It was found that bare 
PEI with high molecular weight induced high cytotoxicity 
due to high cellular uptake and low biodegradability, while 
its hybridization with carbon materials resulted in a low 
cytotoxicity. Commonly, PEI is able to form a complex 
with graphene derivatives via electrostatic interactions and 
amination methods. PEI-graphene are cationic platforms 

with multiple advantages including high hydrophilicity, 
biocompatibility, strong binding to nucleic acids, effective 
cell uptake, and thermal stability. We report that co-deliv-
ery of therapeutic genes and chemotherapy downregulates 
tumor cell resistance to anticancer drugs and overcome 
multidrug resistance (MDR).139,140 PEI-conjugated gra-
phene has been developed for co-delivery of DOX drug 
and p53 tumor suppressor gene in order to inhibit HeLa 
cell growth. Owing to presence of PEI cationic polymer 
and synergistic effect of drug and gene, DOX/GO-PEI/p53 
complex has been efficiently internalized into HeLa cells 
via endocytosis and has exhibited higher growth inhibition 
than the single drug/gene delivery system.141 In 2019, 
Mallick et al developed an interesting polymer-graphene 
platform based on self-assembled PEI covered graphene 
oxide nanoparticle (PEI-GTC-NP) for codelivery of cis-
platin and topotecan into mitochondria. This platform is 
able to target drugs into mitochondria of cancer cells 
effectively. Reactive oxygen species (ROS) were gener-
ated at specific sites in mitochondria, which in turn led to 
apoptosis of cancer cells (Figure 4).116 Topotecan have 
been loaded on GO by π-π stacking to visualize nanoma-
terial in cancer cell’s mitochondria by fluorescence emis-
sion. Cisplatin was also applied as chemotherapy 
medication to treat cervical cancer. Localization of PEI- 
GTC-NPs into cancer cell resulted in mitochondrial mem-
brane perforation. MTT assay indicated that the half max-
imal inhibitory concentration (IC50) for nanoparticles in 
the absence of PEI (GTC-NPs) is higher than PEI-GTC- 
NPs. This nanoparticle with positive surface charge and 
suitable size has been able to penetrate into mitochondria 
of cancer cells specifically and has shown good potential 
for treatment of cancer.

Natural biopolymers owing to their low toxicity, biode-
gradability, renewability, environmental sensitivity, and bio-
compatibility are also promising materials to improve the 
biological properties of graphene-based materials.142–145 

Chitosan with anticancer activity and as a pH sensitive poly-
mer has been widely employed in the synthesis of polymer- 
graphene hybrids.146–148 The produced multifunctional scaf-
folds have exhibited high loading capacities and functional 
binding sites for different types of drugs and targeting 
ligands.147–149 Moreover, graphene-chitosan platforms have 
been widely studied as a pH-sensitive nanovehicle for the 
targeted release of drugs into cancer cells. Graphene oxide- 
chitosan hybrids have been developed by Dhanavel and co- 
workers for the controlled delivery of 5-Fluorouracil (5-FU) 
and curcumin (CUR). These systems have been synthesized 
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by conjugation of chitosan to GO nanosheet through tripoly-
phosphate as a crosslinker. Chitosan/reduced graphene oxide 
(CS/rGO) has displayed pH-dependent drug release beha-
vior. In 2018, Zhao et al reported a chitosan-graphene drug 
delivery system. It was a core-shell structure containing 
graphene oxide nanoparticles (GONs) as core and chitosan 
as surface charge-reversible shells, which was deposited on 
graphene core via self-assembly (Figure 5).150 Doxorubicin 
(DOX) via the non-covalent interactions (π-π stacking) 
bound to the large π conjugated system of GO and chitosan 
shells prevents premature secretion of loaded DOX in the 
medium. Due to the lower pH in cancerous tissue, the coated 
chitosan was separated, thus accelerating the release of DOX. 
The charge of these nanomaterials changes from negative at 
pH= 7.4 in the bloodstream to positive at pH 6.5 in the tumor 
tissue. Chitosan-graphene platform showed advantages over 
the usual drug delivery systems including high drug loading 
capacity (DL), great encapsulation efficiency (EE), long-time 
circulation in bloodstream, improved cellular uptake, and 
adjustable controlled release of anticancer therapeutics.

While CS has been widely explored in biomedical and 
environmental fields, there have been some limitations 
including insolubility at neutral pH and low rate of 
degradation.148 These problems have been overcome by 

combining CS with other biopolymers such as cellulose, 
dextrin, sodium alginate, and so on.151–154 Multilayers of 
biopolymers can be disposed of on graphene through various 
techniques.155,156 In a study, layer-by-layer (LbL) self-assem-
bly technique has been explored for deposition of CS and 
dextrin on graphene surface.157 In this process GO has been 
first modified with CS, followed by conjugation of dextrin 
(Dex) via electrostatic interaction with oppositely charged 
polyelectronic. The GO-CS/Dex conjugate has shown high 
drug loading capacity, physiological stability, and cellular 
uptake, compared with GO-CS. In another study, CS has 
been modified by poly(itaconic acid-copolymerized acrylic 
acid) in order to increase hydrophilic nature of chitosan.53 

This new combination has been used for the modification of 
GO-amine (AGO) with anticancer drug delivery application. 
CS-GO hybrid has been prepared via electrostatic interac-
tions between chemically modified chitosan as an anionic 
polyelectrolyte and AGO which acts as a cationic 
polyelectrolyte.118 Omidi et al,119 Samadi et al,158 and Lei 
et al159 have also verified improvement of physicochemical 
and biological properties of graphene-chitosan composites 
through integration with other polymers.

HA is recognized as another important polysaccharide for 
the improvement of the biological properties of graphene- 

Figure 4 GO with PEI coverage coloaded with cisplatin and topotecan for mitochondria targeting of cancer cells. 
Notes: Reproduced with permission from Mallick A, Nandi A, Basu S. Polyethylenimine coated graphene oxide nanoparticles for targeting mitochondria in cancer cells. ACS 
Applied Bio Mater. 2018;2:14–19.116 Copyright 2019, American Chemical Society.
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based materials.121,160,161 Biomedical applications of HA 
and its usage for the production of anticancer drug delivery 
systems have been widely developed, due to its excellent 
biocompatibility, biodegradability, as well as strong binding 
affinity and selective targeting of tumor markers, especially 
the cluster determinant 44 (CD44) and hyaluronan receptor 
(HARE).162–164 Yin’s group has prepared redox-sensitive 
hyaluronic acid-graphene oxide (HSG) composite and stu-
died its ability to target HA-receptor overexpressing tumors 
and efficiency of redox-sensitive linkages to localize drugs at 
the target sites. This system was synthesized by conjugation 
of hyaluronic acid to GO nanosheet using disulfide linkages 
(HSG). HSG-DOX displayed accelerated release of DOX in 
acidic environments. Because high activity of hyaluronidase 
(HAase) in acidic conditions resulted in degradation of hya-
luronic acid chains into small pieces and promoted release of 
DOX. Owing to high drug-loading capacity, photothermally 
controlled effects, specific targeting of HA receptors over-
expressing tumors, and redox-dependent response, HSG- 
DOX showed amplified chemotherapeutic outcomes.161

Dendrimers and hyperbranched polymers, especially poly-
glycerol, are able to effectively improve biological properties 

and biofunctionality of graphene sheets, as demonstrated in 
our previous studies.51,100,103,112,131,165–167 Our group imple-
mented a new method for functionalization of graphene-based 
nanomaterials with hyperbranched polyglycerol.14 Thermally 
reduced GO was functionalized by triazine and consequently 
conjugated with hyperbranched polyglycerol through triazine 
functional groups. The polyglycerol-covered nanographene 
with mitochondria-targeted ligands and pH-triggered surface 
charges showed a high loading capacity and triggered release 
of DOX drug in the acidic environment (Figure 6). Owing to 
photothermal properties of nanographene, this multifunctional 
drug delivery system exhibited accelerated drug release and 
enhanced chemotherapeutic effect after NIR irradiation. The 
authors concluded that the high accumulation of smart multi-
functional drug delivery system in mitochondria and nucleus, 
together with photothermal properties, were the reasons for the 
enhanced chemotherapeutic effects.14

Targeted Drug Delivery
One of the cancer treatment methods that has received 
a great deal of attention is targeted delivery in which anti- 
cancer drugs are transported to the target tissues specifically. 

Figure 5 Schematic representation of the synthesis and cellular uptake of GO nanoparticle/chitosan hybrids as drug delivery system. 
Notes: This system was sensitive to changes in pH through which intracellular DOX delivery was controlled. Reproduced with permission from Zhao X, Wei Z, Zhao Z, 
et al. Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular 
doxorubicin delivery. ACS Appl Mater Interfaces. 2018;10:6608–6617.150 Copyright 2018, American Chemical Society.
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The method is designed by attaching targeting agents to 
nanocarriers. Targeting drug delivery systems increases the 
localization of drugs at tumor sites and diminishes the side 
effects of chemotherapies. Accordingly, a drug delivery sys-
tem with targeting ligands and good emission property in 
visible and infrared has been prepared by loading anticancer 
drugs onto NGO.168 Zhang et al have developed GO as 
a drug delivery system by loading DOX and Camptothecin 
(CPT) on its surface and conjugation of folic acid to 

transport cargos to the tumor sites. FA-conjugated NGO 
(FA–NGO) was able to target MCF-7 cells, and human 
breast cancer cells by interaction with FA receptors.68 

Some superparamagnetic nanocarrier based on attaching 
Fe3O4 as a magnetic nanocarrier on GO and aptamer 
(APT) as a targeting moiety for MCF-7 cancer cell is pre-
pared and then, paclitaxel (PAC) is loaded as an anti-cancer 
drug. This system has shown advantages including biocom-
patibility, pH-responsivity, thermal stability, and high drug 

Figure 6 (A) The chemical structure of the polyglycerol-covered nanographene with the mitochondria-targeting ligands and charge conversional functional groups. (B) 
Multifunctional drug delivery system accumulates in mitochondria by targeting ligands and photothermal properties under NIR laser irradiation result in drug release and 
good therapeutic efficiency. 
Notes: Reproduced with permission from Tu Z, Qiao H, Yan Y, et al. Directed Graphene-based Nanoplatforms for hyperthermia: Overcoming multiple drug resistance. 
Angewandte Chemie. 2018;130:11368–11372.14 Copyright © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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loading capacity over similar nanocarriers.169 A rGO-based 
system with the ability to deliver DOX to human breast 
adenocarcinoma cancer cells (MDA-MB-231) is also 
reported. In this system, a thiol maleimide containing cate-
chol (dopa-MAL) is assembled on the surface of rGO by π-π 
stacking. Then, a cancer cell targeting cyclic peptide is 
attached to dopa-MAL. This nanostructure has shown 
a high efficiency against MDA-MB-231 cells with an 
IC50=58 µg mL−1 for DOX-loaded rGO/dopa-MAL-c 
(RGDfC), corresponding to an IC50=9.9 µg mL-1 for 
DOX in the matrix (Figure 7).170

Hyaluronic acid (HA) is also used to target GO into 
cancer cells. GO with HA functionality (GO-HA) has 
been coloaded with DOX and paclitaxel (Ptx) and the 
obtained drug delivery system (GO-HA-DOX/Ptx) has 
been used for the efficient incapacitation of cancer 
cells.170

Another target drug delivery system is designed based 
on dopamine (DA) functionalized nGO nanocarrier (DA- 
nGO). DA improves the delivery of methotrexate (MTX) 
as an anticancer cargo into target cells.171 Song et al have 
produced a targeted drug delivery system by loading 
Fe3O4 nanoparticle on the surface of GO and conjugation 
of lactoferrin (Lf) as a targeting ligand to this platform. 
The results have shown that this system 
(Lf@GO@Fe3O4@DOX) has the ability to deliver drugs 
into C6 glioma cells effectively.172

Conjugation of polymers and targeting ligands onto the 
surface of graphene derivatives improves the therapeutic 

efficiency of these platforms by increasing their loading 
capacity and decreasing their side effect as well as efficient 
localization of drug delivery systems in the targeted cells 
(Figure 8).173

Smart Platforms
To overcome the limitations of conventional drug delivery 
systems such as poor tumor penetration, collateral damage to 
healthy tissues and uncontrollable drug release, stimuli- 
responsive drug delivery systems, in which therapeutic 
agents can be activated by endogenous or exogenous stimuli, 
have been developed.174,175 Graphene-based platforms can 
be excellent candidates in this regard, since they are sensi-
tive to changes in tumor microenvironment/intracellular sig-
nals and response to physical stimuli factors.175–179

Due to the conversion of glucose to lactose, cancerous 
tissues are more acidic (pH 6.5–7.2) than both blood and 
healthy tissues (pH 7.4). Therefore, conjugation of pH- 
responsive ligands to the platforms results in controlled 
drug release at tumor sites.180–182 Accordingly, graphene- 
polymer platforms with pH sensitive functional groups 
(COOH, -NH2, and -SO3H) have been widely explored 
to control the release of various therapeutic agents at 
tumor sites. An example of such systems has been recently 
reported by our group.14 Graphene-based drug delivery 
systems with charge conversional property was synthe-
sized through functionalizing polyglycerol-covered nano-
graphene sheets with 2,3-dimethylmaleic anhydride 
(GPTD) (Figure 6). The surface charge of this system 

Figure 7 Functionalized rGO with thiol-maleimide containing catechol (dopa-MAL) as a targeted drug delivery system for DOX to destroy human breast adenocarcinoma 
cancer cells (MDA-MB-231). 
Notes: Reproduced with permission from Oz Y, Barras A, Sanyal R, Boukherroub R, Szunerits S, Sanyal A. Functionalization of reduced graphene oxide via thiol–maleimide 
“click” chemistry: facile fabrication of targeted drug delivery vehicles. ACS Appl Mater Interfaces. 2017;9:34194–34203.170 Copyright © 2017, American Chemical Society.
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changed from negative at pH 7.4 to positive at pH 6.8. 
Therefore, it was negatively and positively charged in the 
blood stream and tumor tissue, respectively. These unique 
features resulted in a longer-term circulation and increased 
permeability and retention (EPR) effect of drug delivery 
systems in body and better localization and controlled 
release of payloads at tumor sites. This multifunctional 
drug delivery system showed significant synergistic 
hyperthermia and chemotherapy effects and showed 
a high potential in multidrug resistance chemotherapy.14

Charge conversional graphene platforms are promising 
nanocarriers for site-specific delivery of drug because of 
their charge conversion at reduced pH.183–185 Our group 
reported a charge conversional graphene platform to pro-
mote cellular uptake of loaded drugs166 (Figure 9). In this 
work, polyglycerol containing sulfate and amino groups 
were conjugated to GO surface, yielding charge-conver-
sional systems. The protonation of hPG amine in the acidic 
environment accelerated the release of DOX due to repul-
sion between protonated DOX and hPG amine. On the 
other hand, due to weakening π–π stacking and hydropho-
bic interactions between the graphene-polymer platforms 
and doxorubicin, as well as increasing solubility of drug in 
acidic conditions, effective release of drug occurred in this 
condition.166

It is known that antioxidant concentration (such as 
GSH) in intracellular microenvironment of tumor tissues 
(1−10 mM) is often higher than that in normal tissues (20 

−40 μM).186,187 This feature is important in the develop-
ment of graphene-based smart systems. Internalized gra-
phene-based platforms with disulfide bonds and redox 
properties are able to deliver drugs and release them at 
tumor sites efficiently. DOX has been linked to PEG/PCL 
copolymer via disulfide bonds and then decorated on gra-
phene surface through hydrophobic interactions. The 
release of drugs from this system was controlled by 
redox factors such as GSH.188

Apart from their ability to provide intracellular respon-
siveness, graphene platforms also have the capability to 
respond to some exogenous stimuli189 including light and 
magnetic fields, which will be discussed later.

Graphene-Polymer Platforms in 
Bioimaging
Bioimaging techniques have a broad range of biomedical 
applications, from diagnosing diseases to investigating 
body tissues at the cellular level.190 Previously, these tech-
niques were mostly used in orthopedic diagnosis. Upon 
development of imaging tools and methods, other techni-
ques such as magnetic resonance imaging (MRI), X-ray 
computed tomography (X-ray CT), ultrasound, radio wave 
technology etc. were also used in various medical 
fields.191,192 Bioimaging by both optical microscopy such 
as laser scanning confocal microscopy (LSCM) and elec-
tron microscopy such as liquid cell electron microscopy 

Figure 8 Synthesis of folic acid-functionalized PEGylated GO (GO-PEG-Fol), with small size and narrow size distribution (~30 ± 5 nm), and the ability of efficient converting 
NIR light into heat. 
Notes: GO-PEG-Fol is able to actively target MCF7 and MDA-MB-231 cells. Reprinted from Materials Science and Engineering: C, Vol 107, Mauro N, Scialabba C, Agnello S, 
Cavallaro G, Giammona G, Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug 
delivery, Pages No.,110201 Copyright (2020), with permission from Elsevier.173
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(LC-EM) helps to evaluate living tissues with high 
magnifications.193,194 Graphene and its derivatives, due 
to their interesting optical properties, have shown a high 
potential in this research field.195,196 They can be used for 
bioimaging in two ways: i) by inherent optical properties 
such as fluorescence quenching and Raman signals, ii) by 
loading fluorophores and fluorescent drugs onto their 
surface.197,198

Graphene due to its zero-bandgap energy is not photo-
luminescent but graphene derivatives such as GO possess 
a significant band-gap and show the photoluminescence 
property.199 They emit a broad range of fluorescence from 

ultra violet (UV) to NIR.200 One of the promising proper-
ties of graphene derivatives is their ability to quench most 
types of fluorescence materials.201 These two features 
make graphene and its derivatives unique platforms for 
bioimaging. It is shown that charge transfer from the 
fluorophore to GO is the main reason for the fluorescence 
quenching and FERT (resonance energy transfer).202,203 

Functionalization by a variety of materials, such as poly-
mers, proteins, nucleic acids, peptides, and nanoparticles 
improves the physicochemical properties of graphene- 
based bioimaging probes.204–206 These compounds 
improve biocompatibility, loading capacity, water 

Figure 9 (A) Schematic representation of the synthesis of the polyglycerol amine functionalized graphene sheets (GA), polyglycerol sulfate-functionalized graphene sheets 
(GS) and conjugation of pH-sensitive dye to the GA and GS (GAD, GSD). Information regarding the synthesis these graphene platforms can be found in ref.166 In vitro 
release profile of DOX from the GAD (B) and GSD (C) at 37 °C in various media. 
Notes: Reproduced with permission of Royal Society of Chemistry from Tu Z, Wycisk V, Cheng C, Chen W, Adeli M, Haag R. Functionalized graphene sheets for 
intracellular controlled releaseof therapeutic agents. Nanoscale. 2017;9:18931–18939.131 Copyright 2017, Advanced Functional Materials; permission conveyed through 
Copyright Clearance Center,Inc.
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solubility, specificity, or sensitivity of graphene-based plat-
forms and improve their performance as bioimaging 
tools.207 Dong et al have developed a multifunctional gra-
phene quantum dots-polymer for cell imaging.208 They 
have used poly(L-lactide) (PLA) and PEG-grafted GQDs 
for microRNAs imaging analysis (Figure 10). 
Functionalization of GQDs with these polymers has cre-
ated a nanocomposite with stable photoluminescence over 
a wide range of pH, which is extremely important for cell 
imaging. The results of cell experiments have shown low 
cytotoxicity and high biocompatibility for this nanocom-
posite, qualifying it for future bioimaging investigations.

Graphene-Polymer Platforms in 
Photothermal and Photodynamic Therapy
Graphene and its derivatives are able to absorb NIR laser 
irradiation and generate heat efficiently. Therefore, they have 
been widely used as photosensitizing agents for photothermal 
therapy. This technique in combination with chemotherapy 
shows synergic therapeutic effect.209–214 Cheon et al have 
developed a combinational photochemotherapy to enhance 
therapeutic efficacy of DOX.215 The bovine serum albumin 
(BSA)-functionalized rGO (BSA-rGO) nanosheets have 

exhibited a high loading efficiency for DOX and absorbance 
of NIR light (5.5 W/cm2, 808 nm for 300 s). Due to the 
increased medium temperature at the tumor site under NIR 
irradiation, drug has been released from BSA-rGO–DOX and 
low viability of brain tumor cells with reduced chemotherapy 
side effects has been observed (Figure 11).

Moreover, photochemotherapy of DOX loaded 
PEGylated GO nanosheets and DOX loaded PEGylated 
mesoporous carbon nanospheres (MCN) against 4T1 cells 
is investigated. MCN-PEG/DOX and GO-PEG/DOX have 
shown less toxicity against 4T1 cells than free DOX. 
However, when these systems are irradiated by NIR laser 
(1.0 W/cm2) for 3 min, an increase in toxicity has been 
observed. Additionally, due to higher photothermal conver-
sion efficiency (η) and drug release rate, MCN-PEG/DOX 
has shown higher anticancer effect than DOX/GO-PEG.216

A photothermal agent based on folic acid-CS functiona-
lized graphene oxide (FA-CS-GO) with high photostability 
and tumor-targeting ability has been reported by Jun et al.217 

The hybridization of GO and CS-FA hinders the aggregation 
of GO, promotes cellular uptake and light absorption in this 
platform, and enhances the PTT effects of FA-CS-GO. The 
surface temperature of tumors treated with FA-CS-GO 

Figure 10 Schematic presentation of the functionalization of QDs by poly(l-lactide)-PEG and their application for cell imaging. 
Notes: A strong signal for the functionalized QDs can be seen in HeLa cells. Low toxicity has also been observed for this material. Gene probes were loaded onto the 
surface of functionalized QDs with π-π interaction. The uptake of probes by HeLa cells can be controlled by the intrinsic photoluminescence of QDs, while the fluorescence 
of the gene probe applied to identify the target is used to monitor gene regulation. Probe 1 is an inhibitor probe of miRNA-21 and probe 2 is survivin antisense 
oligodeoxynucleotide. Reproduced with permission from Dong H, Dai W, Ju H, et al. Multifunctional poly (l-lactide)–polyethylene glycol-grafted graphene quantum dots for 
intracellular microRNA imaging and combined specific-gene-targeting agents delivery for improved therapeutics. ACS Appl Mater Interfaces. 2015;7:11015–11023.208 

Copyright © 2015, American Chemical Society.

International Journal of Nanomedicine 2021:16                                                                                   https://doi.org/10.2147/IJN.S249712                                                                                                                                                                                                                       

DovePress                                                                                                                       
5967

Dovepress                                                                                                                                                           Sattari et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


increased to 57.6 °C under laser irradiation (2.0 W/cm2) 
within 5 min. The viability of tumors treated with FA-CS- 
GO + laser decreased dramatically, in comparison with laser 
irradiation in the absence of this platform.

The combination of graphene mediated PTT with 
immunotherapy has resulted in very promising results 
for the treatment of metastatic tumors. Fe3O4 nanopar-
ticles (FNPs)/rGO/PEG (FNPs/rGO-PEG) nanocompo-
site are developed as multimodal agents for MRI- 
guided photothermal-immunotherapy. The combination 
of FNPs/rGO-PEG nanocomposite with NIR light 
through reduction of tumor macrophages and photother-
mal therapy has promoted antitumor immune 
response.218 The surface tumor temperature in FNPs/ 
rGO-PEG-injected mice has reached to 59°C after NIR 
laser irradiation (805 nm, 1 W cm2).218

Photodynamic therapy (PDT) is an efficient method for 
tumor suppression. In this strategy, reactive oxygen species 
(ROS) are generated by photosensitizer (PS) upon visible 
light or laser absorption and destroy tumor cells at target 
sites.219,220 To control ROS generation and enhance cellular 

uptake of photosensitizers, reactive agents including porphyr-
ins, chlorins, and dyes are conjugated to graphene 
platforms.219,221,222 Moreover, multimodal therapies com-
bined with PDT such as chemo-photodynamic therapy 
(PDT), immunotherapies-photodynamic therapy (PDT), and 
photothermal therapy (PTT)–photodynamic therapy (PDT) 
have been used for strong antitumor activity. Nanographene 
oxides (NGOs) with TPE (AIE) photosensitizers were synthe-
sized as powerful tool for multimodal imaging-guided 
PDT.223 NGP-TPEred nanoparticles under 450 nm laser irra-
diation have shown a significant tumor inhibition both in vitro 
and in vivo. In another study, the chemo-PDT mediated by 
photosensitizer indocyanine green (ICG) and folic acid con-
jugated GO-PEG co-loaded with MTH1 inhibitor (TH287) 
and DOX has been developed for the targeted therapy of 
osteosarcoma tumor. MTH1 protein with controlled ROS 
production has been shown to be a highly synergistic 
chemo-photodynamic therapy.224

Furthermore, graphene quantum dots (GQDs) and gra-
phene oxide quantum dots (GOQDs) with the size range of 
1.5–5.5 nm have reduced skin cancer (B16F10) cells and 

Figure 11 Schematic representation of the synthesis of DOX-BSA-rGO as a light sensitive drug delivery system for chemo-photothermal therapy. 
Notes: Albumin is attached onto the surface of exfoliated GO and DOX is loaded onto the surface of BSA-rGO nanosheets. This system has enhanced therapeutic efficacy 
of DOX drug due to the synergic effect of chemotherapy and photothermal therapy. Reproduced with permission from Cheon YA, Bae JH, Chung BG. Reduced graphene 
oxide nanosheet for chemo-photothermal therapy. Langmuir. 2016;32:2731–2736.215 Copyright © 2016, American Chemical Society.
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breast cancer (MCF-7) cell viability about 90% when 
combined with UV irradiation (365 nm) for 5 min.225

Graphene-Polymer Hybrids for Gene and 
Biomolecules Delivery
Some human diseases stem from defective genes. In gene 
therapy, effective treatments of genetic diseases, nucleic 
acids, and genetic materials are encapsulated by nanocarriers 
and delivered to the desired sites in the cell.226 Gene delivery 
is a process through which foreign DNA is transferred into 
target cells to express an exogenous gene.227 Due to low 
bioavailability and enzymatic degradation of DNA, it should 
be delivered to the cells by a suitable carrier. Gene delivery 
systems are categorized into: viral, non-viral, and oncolytic 
viral vectors.228 Viral gene delivery systems are composed of 
modified viruses which are not able to replicate. The most 
studied viral vectors for DNA delivery are including adeno-
viruses (AV), adeno-associated viruses (AAV), retroviruses 
(RV), lentiviruses (LV), and herpes simplex viruses (HSV). 
Their analogs for RNA delivery are human foamy virus 
(HFV), oncoretro-viral vectors, and lenti-viral vectors.229 

Another type of gene delivery system is oncolytic viral vectors 
that represent an ideal platform for gene delivery. These 
viruses can occur either naturally or can be engineered as 
natural viruses in the laboratory.230 The first oncolytic virus 
was approved by the US Food and Drug Administration in 
2015.231 In contrast, non-viral vectors are an alternative to 
virus-based systems, although they have poor transfection 
efficiency compared to viral vectors. Non-viral vectors, such 
as polymers, show significantly lower cytotoxicity. They are 
able to carry large DNA molecules and can be produced cost- 
effectively in large quantity.232,233 These vectors are generally 
prepared by both chemical and physical methods. Physical 
methods are usually performed via physical force to increase 
permeability of the cell membrane. The most important phy-
sical methods are microinjection, electroporation, ultrasound, 
and gene gun.234,235 Chemical methods utilize cationic poly-
mers, cationic lipids, liposomes, and cell-penetrating peptides 
to deliver genes into cells.236–238 Many gene delivery systems 
have been designed based on cationic polymers, such as 
PEI.239–241 Due to pH buffering capacity, this polymer is one 
of the most important non-viral polymeric vectors for gene 
delivery. This sustainable buffering capacity below physiolo-
gical pH helps condense DNA to escape the endosomal barrier 
while avoiding lysosomal degradation.242 PEI due to lack of 
degradability has high toxicity for biomedical applications. To 
solve this problem, a number of PEI polymers with 

biodegradable segments in their backbone have been synthe-
sized. Graphene is also used to design non-viral gene transfer 
systems. These systems have been proposed as efficient 2D 
non-viral gene transfer vectors, because their outstanding 
properties243 such as facile and versatile chemical functiona-
lization, protection of nucleic acid from enzymatic degrada-
tion, and fast cellular uptake result in efficient gene 
transfection into the target cells.244–246 In order to improve 
the biocompatibility and bio-stability of graphene platforms as 
well as their ability for the efficient transfection of genes, they 
have been modified with various polymers and ligands.247,248

There are a large number of studies regarding graphene- 
polymer platforms for gene delivery application. In 2018, an 
efficient non-viral gene delivery system was designed using 
PEI functionalized GO (GO-PEI) loaded with miR-7b by 
Dou et al which exhibited excellent transfection efficiency 
with low cytotoxicity.249 The results have shown that GO- 
PEI could efficiently deliver miR-7b plasmid into bone mar-
row macrophages. Animal study has demonstrated that pre-
served preosteoclast by GO-PEI-miR-7b enhanced bone 
vascularization in ovariectomized mice.

GO-PEI nanostructure has been fabricated as a gene 
delivery and bioimaging vector by Kim et al.250 

Polyethylenimine as a cationic polymer, which has been 
widely used as a non-viral gene delivery vector, is conjugated 
to GO surface to improve its interactions with negatively 
charged genes. Combination of branched PEI and GO results 
in a hybrid system with enhanced transfection efficiency and 
photoluminescence property for simultaneous gene delivery 
and bioimaging (Figure 12). Branched PEI exhibits high 
transfection efficiency due to enhanced cellular uptake and 
a high level of endosomal escape. However, due to the high 
cytotoxicity of high molecular weight branched PEI 
(HMWBPEI), their use as effective gene delivery systems 
is limited. In contrast, low molecular weight branched PEI 
(HMWBPEI) shows poor transfection efficacy, while it has 
low cytotoxicity. When LMW BPEI is conjugated to GO, it 
demonstrated good cellular uptake and transfection effi-
ciency with low cytotoxicity. The gene transfection effi-
ciency is evaluated using luciferase gene expression assays. 
The results exhibited a low gene transfection for the indivi-
dual pristine GO and LMW BPEI and a high transfection for 
HMW BPEI and BPEI-GO. High transfection efficiency of 
BPEI-GO is due to the effect of LMW BPEI conjugated to 
GO and formation of a stable polyelectrolyte complex with 
plasmid DNA.

In general, it can be concluded that polymer-functiona-
lized graphene-based carriers have been widely applied in 
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gene delivery to treat various diseases including cancer,251 

osteoporosis,252 and myocardial infarction.253 A variety of 
macromolecules including cationic polymers, dendrimers, 
chitosan, and peptides have been used to modify graphene 
derivatives for efficient gene transfection.254–256

Graphene-Metal Platforms
Graphene derivatives with high surface area provide ideal 
platforms to immobilize various metal nanoparticles 
(MNPs) including Au, Fe, Pt, Gd, Pd, etc. in a sheet-like 
structure.257,258 Graphene/metal hybrids are investigated 
extensively for cancer therapy and imaging including photo-
acoustic imaging, PTT, thermomechanical, and surface 
enhanced Raman signals (SERS). Various approaches 
including in situ reduction, hydrothermal, electrochemical, 
physical vapor deposition, ex situ and wrapping MNPs have 
been reported to synthesize graphene/metal hybrids.259

In this regard, graphene-AuNPs hybrids have attracted 
a great deal of attention for various medical applications 
owing to their unique optoelectronic properties.260–262 

Graphene-AuNPs hybrids are used as biosensors for the detec-
tion and diagnosis of cancer cells, due to their prominent 
surface plasmon resonance (SPR),263 NIR emission, quench-
ing effect, adsorption of bioreceptors, enzyme mimic- 

peroxidase activities, improved electron transfer rate, and con-
ductivity of both graphene and AuNPs.264 Moreover, GO- 
AuNPs are reported as electrochemical immunosensors for 
detection of various cancer markers including CEA, CA125, 
P53, PSA, AFP, and Vascular endothelial growth factor 
(VEGF) 150.265–267 As an example, rGO/thionine/AuNPs 
hybrid has been used to fabricate immunosensors for the 
detection of cancer antigen 125 (CA125).268 This fabricated 
immunosensor has demonstrated low detection limits (0.01 
U mL-1), high reliability and accuracy. Moreover, various 
hybrids of GO-AuNPs are explored for fabrication of geno- 
biosensors for detection of DNA, miRNA-21, and plasma 
miR-155.269–271 On the other hand, graphene/AuNPs are 
widely used for photothermal therapy (PTT) and photody-
namic therapy (PDT) owing to the synergic effect of both 
components such as strong NIR optical absorption, high NIR 
light-to-heat conversion, and ROS production.272,273

Magnetic graphene hybrids, particularly graphene/iron 
oxide, have shown synergistic therapeutic effect.274,275 It is 
demonstrated that graphene/Fe2O3 NPs hybrids can serve as 
MRI contrast and diagnosis agents.276,277 Besides efficient 
diagnostic applications, graphene/Fe2O3 NPs hybrids have 
been investigated as magnetically targeted drug delivery sys-
tems with simultaneous photothermal effect.278,279 Many 

Figure 12 Schematic presentation of fabrication of GO-based gene delivery system through covalent attachment of LMW BPEI to this platform. 
Notes: Conjugation of BPEI to GO enhances the photoluminescence properties of GO and improves the cellular uptake and transfection efficiency of the system. 
Therefore, BPEI-GO can be applied as bioimaging reagent and non-viral gene delivery vector simultaneously. Reproduced with permission from 
Kim H, Namgung R, Singha K, Oh IK, Kim WJ. Graphene oxide–polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug 
Chem. 2011;22:2558–2567.250 Copyright © 2011, American Chemical Society.

https://doi.org/10.2147/IJN.S249712                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2021:16 5970

Sattari et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


studies have shown that drug-loaded graphene/Fe2O3 systems 
can be effectively accumulated at the targeted tumor site by 
applying an external magnetic field.275,280,281 Moreover, under 
external magnetic field these systems have exhibited enhanced 
release of the drug at the targeted tumor site owing to heat 
generated by the Fe3O4 NPs and deformation of the nanocar-
rier. Based on these outcomes, magnetic graphene hybrids 
have been supposed as safe and excellent tools for imaging 
of cancer cells, drug delivery, and hyperthermia.279,282–285

Lanthanide-based nanomaterials, particularly gadolinium, 
are another class of widely explored metals as contrast agents 
in MRI.286–288 Conjugation of gadolinium onto the surface of 
graphene-based materials endows new properties and 
enhances their magnetic, luminescence, and therapeutic prop-
erties. Due to its outstanding properties, graphene/GdNPs 
hybrid is one of the most promising nanomaterials for biome-
dicine applications including photodynamic/photothermal 
therapy, biosensing, and bioimaging.289,290

Extensive studies have pointed out that Pd-based nanoma-
terials are excellent platforms for promoting the chemothera-
peutic effects of graphene drug delivery systems. Tumor 
model studies have shown a high performance of graphene/ 
PdNPs hybrids for diagnosis and treatment of cancers.291,292

Conclusion
This review aims to explain the advantages and recent pro-
gresses in graphene-based platforms for different biomedical 
applications including drug and gene delivery as well as 
bioimaging. There is a great deal of attention to use graphene 
and its derivatives in biomedicine. However, an extensive 
study on the toxicity and health risks of this class of nano-
materials should be performed to diminish the risk of their 
long-term side effects. To achieve this goal, the key point is 
to produce a highly defined graphene family in terms of 
number of layers, surface area, and functionality.
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