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Tumor necrosis factor receptor-associated protein 1 (TRAP1), a member of the heat
shock protein 90 (Hsp90) chaperone family, protects cells against oxidative stress and
maintains mitochondrial integrity. To date, numerous studies have focused on
understanding the relationship between aberrant TRAP1 expression and tumorigenesis.
Mitochondrial TRAP1 is a key regulatory factor involved in metabolic reprogramming in
tumor cells that favors the metabolic switch of tumor cells toward the Warburg phenotype.
In addition, TRAP1 is involved in dual regulation of the mitochondrial apoptotic pathway
and exerts an antiapoptotic effect on tumor cells. Furthermore, TRAP1 is involved in many
cellular pathways by disrupting the cell cycle, increasing cell motility, and promoting tumor
cell invasion and metastasis. Thus, TRAP1 is a very important therapeutic target, and
treatment with TRAP1 inhibitors combined with chemotherapeutic agents may become a
new therapeutic strategy for cancer. This review discusses the molecular mechanisms by
which TRAP1 regulates tumor progression, considers its role in apoptosis, and
summarizes recent advances in the development of selective, targeted TRAP1 and
Hsp90 inhibitors.

Keywords: tumor necrosis factor receptor-associated protein 1, tumorigenesis, metabolic reprogramming,
apoptosis resistance, inhibitors, cancer therapy
INTRODUCTION

Molecular chaperones, including heat shock proteins (Hsps), are a class of ubiquitous intracellular
proteins. These proteins mediate the correct assembly of other proteins but are not components of
the final functional structure. Hsps perform important functions in maintaining protein
homeostasis, such as mediating protein folding, assembly, and intracellular localization and
regulating apoptosis. Failure of these processes may lead to disease (1).

Tumor necrosis factor receptor-associated protein 1 (TRAP1), a member of the Hsp90
chaperone family, is primarily a mitochondrial matrix protein (2). TRAP1 was initially identified
in a yeast two-hybrid screen as a novel protein that binds to the intracellular domain of the type I
tumor necrosis factor receptor (3). The mitochondrial chaperone TRAP1 plays an important role in
maintaining mitochondrial integrity and intracellular homeostasis and is closely related to
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apoptosis. To date, the main identified functions of TRAP1 include
(i) antagonizing the proapoptotic activity of cyclophilin D (CypD)
to subsequently inhibit mitochondrial permeability transition pore
(mPTP) opening (4, 5), (ii) reducing reactive oxygen species (ROS)
generation toprotect cells againstoxidative stress (6), (iii) regulating
endoplasmic reticulum (ER) stress (7), and (iv) inhibiting the
activity of succinate dehydrogenase (SDH), thus regulating
mitochondrial bioenergetics (8).

Recently, an increasing number of studies have shown that
the mitochondrial chaperone TRAP1 functions as either an
oncogene or a tumor suppressor in human malignant tumors
and regulates tumor development (9). Cancer is a group of
complex diseases with several hallmarks, which are considered
phenotypic adaptations to overcome all obstacles during disease
progression (10). Among these hallmarks, metabolic
reprogramming is required for tumor cell survival (10). TRAP1
is involved in metabolic reprogramming and affects the switch
between oxidative phosphorylation (OXPHOS) and aerobic
glycolysis (11). In addition, the TRAP1 protein is involved in
many other cellular processes. TRAP1 regulates the cell cycle to
modulate cell proliferation (12) and promotes tumor metastasis
by inducing mitochondrial fission (13). Furthermore,
interference with the function of TRAP1 may result in the
death of tumor cells but does not affect normal cells (13).
Thus, an approach that selectively targets TRAP1 might be a
promising strategy for the development of novel antitumor
drugs. This review explores the relationship between aberrant
expression of TRAP1 and tumorigenesis, including the molecular
mechanisms by which TRAP1 regulates tumor progression;
considers the role of TRAP1 in apoptosis; and evaluates the
potential therapeutic value of TRAP1 in cancers.
ABERRANT EXPRESSION OF TRAP1 IN
TUMORS

For decades, the expression of TRAP1 has been reported to be
closely associated with the occurrence and development of
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tumors (Table 1). TRAP1 expression is upregulated in various
human malignancies, including nasopharyngeal (23), breast (14),
and prostate (21) cancers, as well as non-small cell lung cancer
(16). For example, the first large-scale study of human colorectal
adenocarcinoma tissues revealed a statistically significant
positive correlation between pathological T stage and TRAP1
expression. This study also proposed that TRAP1 causes tumor
cells to invade stromal tissue by inducing epithelial-
mesenchymal transition (EMT) (20), which is implicated in the
metastasis of primary tumors (15). As shown in a study by Tian
et al., TRAP1 is expressed at significantly higher levels in
esophageal squamous cell carcinoma (ESCC) tissues than in
adjacent normal tissues, and TRAP1 expression is inversely
proportional to the degree of ESCC differentiation. TRAP1
knockdown in ESCC cells results in cell cycle dysregulation by
inducing G2/M arrest and causes a marked increase in the
proportion of apoptotic cells (24). Si et al. observed a
substantial increase in TRAP1 expression in kidney cancer
tissues compared with normal kidney tissues that was closely
related to lymph node metastasis, clinical stage, and patient
prognosis. Patients with high TRAP1 expression had a poor
prognosis (17). In addition, Wu et al. showed that TRAP1
knockout substantially decreased the proliferation and
migration of glioblastoma multiforme cells, induced apoptosis
and G2/M arrest, and inhibited neurosphere recovery and
secondary neurosphere formation through its regulatory effects
on metabolic reprogramming (18). These data indicate that the
TRAP1 protein may exert oncogenic effects, promoting the
proliferation, invasion, and apoptosis resistance of human
malignant tumor cells and affecting the prognosis of patients
with cancer.

However, TRAP1 may also function as a tumor suppressor in
certain tumor cells. Yoshida et al. reported a significant inverse
correlation between TRAP1 expression and tumor stage in
patients with cervical cancer, bladder cancer, and clear cell renal
cell carcinoma (11). In addition, TRAP1 knockdown was found
to increase ROS levels, promote mitochondrial c-Src activation,
and substantially increase cell motility and invasion (11),
TABLE 1 | Aberrant TRAP1 expression in different tumors.

Lineage Cancer subtype No. of
samples

TRAP1 expression characteristics Ref.

Nasopharynx Nasopharyngeal carcinoma
(NPC)

56 Higher expression in NPC tissues than in normal noncancerous nasopharyngeal tissues (14)

Colorectum Colorectal adenocarcinoma 714 Positive correlation with the pathological T stage (15)
Prostate Prostate cancer 61 High expression in localized and metastatic prostate cancer (16)
Esophagus Esophageal squamous cell

carcinoma (ESCC)
138 Higher expression in ESCC tissues than in adjacent normal tissues (17)

Kidney Kidney cancer 110 Higher expression in kidney cancer than in normal kidney tissues; significantly correlated with lymph
node metastasis, the clinical stage, and patient prognosis

(18)

Brain Glioblastoma multiforme
(GBM)

22 Higher expression in GBM specimens than in adjacent noncancer tissues; positive correlation with
GBM cell proliferation and migration

(19)

Lung Non-small cell lung cancer
(NSCLC)

71 Inverse correlation with the prognosis in patients with NSCLC (20)

Breast Breast cancer 42 Inverse correlation with the metastatic capacity (21)
Ovary Epithelial ovarian carcinoma

(EOC)
208 Positive correlation with the chemotherapeutic response and overall survival of patients with estrogen

receptor a (ERa)-positive tumors
(22)
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suggesting that cancers with low expression of TRAP1 may be
more likely to spread and disseminate from the primary site
(19). Furthermore, Aust et al. studied estrogen receptor a-
positive ovarian cancer cells and observed significant positive
correlations between high TRAP1 expression and estrogen
receptor a positivity with the chemotherapeutic response and
overall survival (25). In addition, Amoroso et al. documented a
high rate of TRAP1 gene deletion in high-grade serous ovarian
cancer, and the TRAP1 expression level was associated with the
gene copy number, which might partially explain the low TRAP1
expression observed in patients with ovarian cancer (19). In
summary, the role of TRAP1 in different types of cancers is
related to the disease state and prognosis of patients, suggesting
that TRAP1 constitutes a target for tumor treatment.
ROLES OF TRAP1 IN CANCER
METABOLISM

Most normal cells mainly generate a large amount of ATP
through the OXPHOS under aerobic conditions but obtain
energy by glycolysis under hypoxic or anoxic conditions.
However, even under conditions with a sufficient amount of
oxygen, glycolysis is also active in most malignant tumor cells,
which are characterized by a high rate of glucose uptake and high
lactic acid content among metabolites. The metabolic
characteristics of this shift toward aerobic glycolysis are called
the Warburg effect (22), and this reprogramming of energy
metabolism is essential for tumor growth, proliferation, and
metastasis (10). Several possible mechanisms contribute to the
Warburg effect, including the following: (i) Bioenergetics: ATP
production through glycolysis (two ATP molecules per glucose
molecule) is much less efficient than ATP production through
OXPHOS (36 ATP molecules per glucose molecule); thus, cancer
cells maintain energy homeostasis by substantially increasing
their glycolytic activity (26, 27), which is beneficial to the rapid
growth of cancer cells. (ii) Biosynthesis: The growth of tumors is
faster than normal tissue; thus it requires not only energy but
also biomacromolecules for growth. Glycolysis provides
metabolic intermediates and precursors for macromolecular
biosynthesis and then promotes the production of NADPH,
ribose 5-phosphate, and nonessential amino acids, thus
contributing to the biosynthesis of nucleic acids, lipids, and
proteins (28). (iii) Hypoxia: The unlimited proliferation of
tumor cells results in the disorder of tumor vascular
architecture, the defect of self-regulation ability, and the
change of hemorheology thus leads to the hypoxia of local
tumor tissue. Thus, the glycolysis may be increased in cancer
cells for adaptation to the hypoxic environment (26). Hypoxia-
inducible factor-1 (HIF-1) is a key regulator of hypoxia
adaptation in tumor cells, which increases tumor glycolytic
activity and angiogenesis (29). (iv) Microenvironment
acidification: Lactic acid accumulation caused by a high
glycolytic rate results in acidification of the tumor
microenvironment, which facilitates invasion via extracellular
matrix breakdown and inhibits the immune response to tumor
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antigens (30). In summary, to adapt to the surrounding
microenvironment and compete with surrounding normal cells
for limited resources such as glucose, cancer cells shift their
metabolic characteristics toward the Warburg phenotype to
preserve their growth. Cancer cells acquire and metabolize
nutrients in a way that facilitates proliferation rather than
efficient production of ATP.

As a key regulatory factor in tumor metabolic reprogramming,
TRAP1 is involved in a variety of mechanisms. TRAP1, as a Myc
target gene, maintains the folding and stability of mitochondrial
OXPHOS complexes II (SDHB) and IV (cytochrome c oxidase II),
promoting the growth of tumors (31). Under metabolic stress
conditions, particularly nutrient-poor and hypoxic conditions,
SDHB regulation with Hsp90/TRAP1-directed protein folding
produces sufficient energy to meet the energy metabolism
requirements of tumor cells (32). The mitochondrial chaperone
TRAP1 competitively binds to SDHA and then decreases SDH
activity, resulting in suppression of mitochondrial respiration and
an increase in the intracellular succinate concentration. Even
under normoxic conditions, succinate accumulation stabilizes
HIF-1a and then induces pseudohypoxia (8, 33). HIF-1 not
only contributes to the switch of tumor cell metabolism to the
Warburg phenotype but also regulates EMT, angiogenesis and
other processes to promote the occurrence and development of
tumors (34). Thus, TRAP1 results in accumulation of HIF-1a,
inhibits mitochondrial respiration and promotes the switch of
energy metabolism from OXPHOS to aerobic glycolysis through
its interaction with SDH. Consistent with the data described
above, Yoshida demonstrated that TRAP1 deficiency increased
mitochondrial respiration and the levels of tricarboxylic acid cycle
intermediates. The authors identified TRAP1 as a crucial regulator
of the metabolic switch of tumor cells between OXPHOS
and aerobic glycolysis, which correlated with the interaction of
TRAP1 and mitochondrial c-Src (11). Mitochondrial c-Src
modulates mitochondrial respiration and ROS generation by
phosphorylating respiratory chain components (35).

However, a study reevaluated the flux control and
distribution of OXPHOS and glycolysis in tumor cells
and proposed that not all types of tumor cells use aerobic
glycolysis as their primary metabolic pathway (36). As shown
in a study by Pastò et al., epithelial ovarian cancer cells
depend mainly on OXPHOS rather than glycolysis to maintain
tumor growth, indicating that epithelial ovarian cancer cells
escape the Warburg effect (37). As ovarian cancer progresses,
the expression of TRAP1 decreases, the cellular metabolic
characteristics shift to OXPHOS, and both the invasion and
cisplatin resistance of the cancer cells increase (38). Consistent
with the data described above, a recent study indicated a dual
function of TRAP1 as both an oncogene and a tumor suppressor
in human tumors; these functions are driven by different
histotype-specific energy metabolism characteristics (9). Thus,
aberrant expression of TRAP1 in human malignant tumors is
closely correlated with its role in metabolic reprogramming.
The identification of TRAP1 as a critical factor regulating the
metabolic switch of tumors might provide new insights into
cancer therapy.
January 2021 | Volume 10 | Article 585047
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ROLES OF TRAP1 IN APOPTOSIS
RESISTANCE

Apoptosis is regulated by proteins expressed by certain
evolutionarily conserved genes. Hsp90 is highly conserved from
bacteria to mammals and is closely associated with apoptosis.
During apoptosis, an interaction between mitochondria and the
ER involves the fusion of these two organelles, and the resulting
regions are called mitochondria-associated ER membranes
(MAMs). MAMs participate in the coordination of Ca2+ signal
transduction, triggering apoptosis (39, 40). TRAP1 exerts dual
regulatory effects on the mitochondrial apoptotic pathway
(Figure 1).

Mitochondrial permeability transition, which is regulated
mainly by the mPTP, is a key mechanism in apoptosis. An
increase in mPTP opening causes the release of cytochrome c
(Cyt-c), widespread swelling of mitochondria and loss of the
mitochondrial membrane potential (41). The release of Cyt-c is
an important signal of mitochondrial apoptosis and activates
apoptotic protease-activating factor 1 and procaspase-3. Cyt-c
and deoxyadenosine triphosphate (dATP) interact to form the
apoptosome. Activation of caspase-3 via its cleavage further
inhibits the expression of poly (adenosine diphosphate-ribose)
polymerase, thus triggering the apoptotic cascade (42, 43).
Furthermore, CypD, a cyclosporin A-binding protein located
Frontiers in Oncology | www.frontiersin.org 4
in the mitochondrial matrix, is a component and a key regulator
of the mPTP to maintain mitochondrial integrity. CypD and the
mPTP play essential roles in the mechanism regulating
mitochondrial Ca2+ homeostasis. Excess mitochondrial Ca2+

binds to the F1 domain of F1F0 ATP synthase, alters the
synthesis of ATP, increases the release of cytotoxic free
radicals, and causes CypD-mediated opening of the mPTP,
thus triggering cell death (44, 45). Overexpression of TRAP1
blocks the mitochondria-mediated apoptotic cascade to prevent
apoptosis, as manifested by the inhibition of CypD-dependent
mPTP opening, a reduction in mitochondrial Cyt-c release, and
a decrease in caspase-3 activity (4, 5). According to Xiang
et al., under hypoxic conditions, TRAP1 overexpression in
cardiomyocytes exerts a protective effect by regulating the
opening of the mPTP (46). In a study by Liu et al., TRAP1 was
found to decrease high glucose-induced apoptosis, increase cell
viability, ameliorate mitochondrial damage, and improve renal
function in diabetic rats by blocking mPTP opening (47).
Based on these findings, TRAP1 antagonizes the proapoptotic
effect of CypD to regulate mPTP opening, thus playing an
antiapoptotic role.

Mitochondria are the main source of ROS in vivo. In the
presence of oxidative stress, intracellular redox homeostasis is
disrupted, leading to the accumulation of ROS. ROS, effective
inducers of oxidative damage, cause general cellular damage by
FIGURE 1 | The dual regulatory effects of TRAP1 on the mitochondrial apoptotic pathway.
January 2021 | Volume 10 | Article 585047
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inducing the oxidation of proteins, lipids, polysaccharides, and
DNA (48). TRAP1 reduces the generation of ROS and
superoxide anions by inhibiting SDH and alters redox
equilibrium to protect malignant cells against oxidative stress
(8). TRAP1 interference induces ROS accumulation, whereas
TRAP1 overexpression antagonizes ROS production (6).
Overproduction of ROS is related to mitochondrial Ca2+

overload and Cyt-c release, subsequently triggering mPTP
opening and cell death (49). As shown in a study by Zhang
et al., during simulated myocardial ischemia/reperfusion,
overexpression of TRAP1 prevents apoptosis by decreasing
ROS generation and delaying mPTP opening (50). These data
indicate that TRAP1 protects cells against oxidative damage and
apoptosis by antagonizing ROS generation. However, nuclear
ROS induce DNA damage and mutation, leading to genomic
instability and promoting tumor progression (51). This
observation suggests that TRAP1 may inhibit the development
of certain tumors.

Based on accumulating evidence, the ER also functions as a
critical apoptosis control point (52). The ER is the main site of
protein synthesis, folding and transport. Many stress conditions,
including the destruction of intracellular homeostasis and
changes in the oxidative environment in the ER, induce ER
stress. The UPR is a signaling pathway that restores ER function
after ER stress activation; in addition, it interacts and
interconnects with various signaling pathways. However, under
conditions of excessive or irreversible ER stress, the UPR triggers
apoptosis (53). The antiapoptotic activity of TRAP1 also relies on
its functions in preventing ER stress and in the quality control of
specific mitochondrial client proteins, which is relevant to its
regulation of the mitochondrial apoptotic pathway (7). For
example, in the ER, TRAP1 interacts with the regulatory
proteasomal protein TBP7, which is involved in the quality
control of mistargeted/misfolded mitochondria-destined
proteins (54). Moreover, the Ca2+-binding protein Sorcin
exerts a specific effect on mitochondria that is closely related to
the antiapoptotic activity of ER-associated TRAP1 and maintains
the stability of TRAP1 (55). Takemoto et al. proposed that
downregulation of mitochondrial TRAP1 expression increases
the expression of ER-resident caspase-4, which is activated by ER
stress, to regulate the UPR pathway in the ER (56). Moreover,
TRAP1 knockout increases the expression of glucose-regulated
protein 78 (GRP78) mRNA and decreases the expression of
C/EBPb and C/EBP homologous protein (CHOP) in a time-
dependent manner (56). Matassa et al. examined TRAP1
knockdown cells and observed decreased activation of protein
kinase RNA-like ER kinase (PERK), an ER membrane-localized
sensor kinase, and a transient decrease in the level of
phosphorylated eIF2a (57). GRP78 is an ER chaperone and a
central regulator of the UPR that protects cells against ER stress-
induced apoptosis (58). Phosphorylation of eIF2a is the initial
response to ER stress; this phosphorylation step prevents eIF2a
from initiating protein translation and reduces global protein
synthesis in cells (57). Continuous blockade of protein
translation induces cell death. Thus, inhibition of TRAP1
enhances ER stress. Taken together, these observations indicate
Frontiers in Oncology | www.frontiersin.org 5
that TRAP1 may modulate the UPR in the ER. Its role in
mitochondria suggests that TRAP1 is involved in tumor cell
apoptosis to promote tumor progression.
THE AKT/MTOR/P70S6K SIGNALING
PATHWAY PARTICIPATES IN TRAP1-
MEDIATED REGULATION OF TUMOR
INVASION AND METASTASIS

AKT, also called protein kinase B (PKB), directly activates
mammalian target of rapamycin (mTOR). Both mTOR and
ribosomal protein S6 kinase (p70S6K) are cytoplasmic Ser/Thr
protein kinases, and the former activates the latter. The AKT/
p70S6K pathway is involved in regulation of the actin
cytoskeleton, which is important for cell migration (59). In
both normoxia and hypoxia, lack of TRAP1 expression is
associated with expression of genes involved in metastasis (12).
Similarly, the involvement of TRAP1 in the attenuation of
protein synthesis results in an inverse correlation between
TRAP1 expression and p70S6K expression (60). Low TRAP1
expression and high p70S6K expression increase cell motility and
promote tumor cell migration (19). However, Agliarulo et al.
indicated that the effects of TRAP1 on cell motility are partially
but not completely related to the AKT/p70S6K pathway, which
does not directly affect the actin cytoskeleton or cell-matrix
adhesion. p70S6K and glutamine endow TRAP1 knockdown
cells with increased migratory potential, while TRAP1 enables
cancer cells to migrate even under conditions of nutrient
deprivation (61). In addition, previous investigations have
shown that the expression of matrix metalloproteinases
(MMPs), a family of zinc-dependent endopeptidases—
particularly that of MMP2 and MMP9—is induced by the
PI3K/AKT signaling pathway (62). The major function of
MMPs is to degrade various protein components of the
extracellular matrix; thus, they disrupt the histological barrier
to tumor cell invasion and play crucial roles in tumor invasion
and metastasis (63). Low expression of TRAP1 was found to
induce upregulation of MMP2 and MMP9 mRNAs expression in
ovarian cancer cells, thus triggering EMT. However, in ovarian
cancer, the mechanisms by which TRAP1 induces EMT to
regulate cell migration are at least partially independent of the
p70S6K pathway (19), consistent with the results of the above
mentioned study by Agliarulo et al. Furthermore, activation of
the PI3K/AKT/mTOR signaling pathway upregulates the
expression of HIF-1a (64), thus triggering the transcription of
vascular endothelial growth factor (VEGF) mRNA and
increasing VEGF expression (65), which in turn enables
endothelial cells to migrate to form new blood vessels and
increase the blood supply to tumor cells. These results indicate
that TRAP1 signaling partially interacts with the AKT/mTOR/
p70S6K signaling pathway to regulate the invasion and
metastasis of cancer cells; however, the specific mechanism
linking these pathways remains to be studied (Figure 2).
January 2021 | Volume 10 | Article 585047
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THE BRAF/ERK SIGNALING PATHWAY
PARTICIPATES IN TRAP1-MEDIATED
REGULATION OF TUMORIGENESIS

The B-type RAF proto-oncogene (BRAF) is located on human
chromosome 7 and encodes a member of the RAF family of Ser/
Thr protein kinases. The BRAF protein regulates the MAPK/
extracellular signal-regulated kinase (ERK) signaling pathway,
affecting cell proliferation, differentiation, and secretion (66).
BRAF is one of the 12 most frequently mutated genes and
exhibits cancer subtype-specific mutation patterns (67). A recent
study proposed an interaction between TRAP1 and BRAF, and
TRAP1 was identified as a downstream effector of the
cytoprotective BRAF pathway in mitochondria. Activation of the
BRAF pathway increases Ser phosphorylation of TRAP1, which
may contribute to its antiapoptotic activity. TRAP1-dependent
BRAF activation antagonizes apoptosis by inhibiting mPTP
opening (68). Liang et al. suggested that both the rate of TRAP1
positivity and the rate of BRAFV600E mutation were increased in
papillary thyroid cancer (PTC) and that high TRAP1 expression
was closely correlated with the BRAFV600E mutation, both of
which may mediate the development of PTC (69). Moreover,
results of in vitro and in vivo studies of TRAP1 in human breast
and colorectal carcinoma indicated that TRAP1 is involved in the
mechanism regulating the synthesis/ubiquitination of BRAF but
does not influence its stability (70). The BRAF level is decreased
Frontiers in Oncology | www.frontiersin.org 6
upon TRAP1 interference, which reduces ERK phosphorylation,
inhibits cell cycle progression, and results in accumulation of cells
at the G0-G1 and G2-M checkpoints (70). In addition, TRAP1
maintains ERK1/2 activity as a mitochondrial chaperone; in turn,
ERK-dependent phosphorylation of TRAP1 inhibits SDH, which
is conducive to shifting the metabolic characteristics of tumor cells
toward the Warburg phenotype (71). Thus, the BRAF/ERK
signaling pathway participates in TRAP1-mediated regulation of
cell proliferation and metabolism (Figure 2).
THE AMPK/ULK1 SIGNALING PATHWAY
PARTICIPATES IN TRAP1-MEDIATED
REGULATION OF METASTASIS

AMP-activated protein kinase (AMPK) is a critical molecule
regulating bioenergetic metabolism that is necessary for internal
glucose homeostasis. Laker et al. were the first to discover that
acute exercise induces mitochondrial autophagy through AMPK-
dependent activation of UNC-51-like kinase (ULK1) in skeletal
muscle to resist mitochondrial oxidative damage induced by high
levels of acute exercise (72). Therefore, the AMPK/ULK1 signaling
pathway is involved in mediating mitochondrial autophagy,
thereby affecting mitochondrial homeostasis. AMPK
phosphorylation is inversely correlated with the motility of both
tumor and normal cells. TRAP1 inhibits the activation of AMPK
FIGURE 2 | Emerging roles of TRAP1 in tumor development and progression mediated by the regulation of several crucial factors involved in the signaling pathways.
January 2021 | Volume 10 | Article 585047

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xie et al. TRAP1: A Target for Oncotherapy
and its substrate ULK1, maintains cytoskeletal dynamics, releases
the cell motility effector FAK by limiting autophagy during
bioenergetic stress, further overcomes metabolic stress and
promotes tumor cell metastasis (73). The results described above
indicate that TRAP1 is involved in the AMPK-related energy
sensing pathway to facilitate tumor cell metastasis (Figure 2).
DEVELOPMENT OF TRAP1 INHIBITORS

To date, TRAP1 inhibitors, including gamitrinibs, shepherdin,
DN401, and honokiol bis-dichloroacetate (HDCA), have been
developed (Table 2). However, no TRAP1-targeted inhibitor has
entered the market as an antitumor drug.

Inhibitors Simultaneously Acting on Both
Hsp90 and TRAP1
Due to the lack of chemical tools for targeted selection of Hsp90
and TRAP1, the existing inhibitors simultaneously act on Hsp90
and TRAP1 and most of them have lower TRAP1 selectivity.
Gamitrinibs (geldanamycin mitochondrial matrix inhibitors)
and shepherdin are inhibitors of mitochondrial Hsp90 and
TRAP1 that do not upregulate Hsp70 expression; these agents
mediate cell death via CyD-dependent mPTP opening (80).
Gamitrinibs contain two main regions: a 17-AAG region and a
Frontiers in Oncology | www.frontiersin.org 7
mitochondrial targeting sequence of either one to four tandem
repeats of cyclic guanidinium (gamitrinib-(G1-G4)) or a
triphenylphosphonium (gamitrinib-TPP) (81). Gamitrinib-G4
limits the formation of localized and metastatic prostate cancer
and showed favorable tolerability in a mouse model of transgenic
adenocarcinoma of the prostate (TRAMP). It was a feasible long-
term systemic treatment for TRAMP mice, with no evidence of
weight loss or organ toxicity in the mice and no effect on
prostatic intraepithelial neoplasia or prostatic inflammation
(82). In glioblastoma cells, treatment with shepherdin, a
peptidomimetic that inhibits the Hsp90-Survivin interaction,
causes irreversible mitochondrial cleavage, degradation of
Hsp90 client proteins in the cytoplasm, and tumor cell death
through apoptosis and autophagy (83). Similarly, shepherdin
treatment of retinoblastoma cells decreases the stability of
Survivin, decreases the activity of MMP-2, and increases the
expression of the proapoptotic proteins Bax, Bim, and caspase-9,
which induces caspase-dependent apoptosis and autophagy (84).
Besides, DN401 is a derivative of the purine scaffold of the Hsp90
inhibitor BIIB-02112 with strong TRAP1 binding affinity but
weak Hsp90 binding affinity (85). DN401 degrades client
proteins of Hsp90 and TRAP1 without inducing Hsp70 in
different cancer cells; this mechanism increases mitochondrial
fragmentation and cell apoptosis, thus enhancing the anticancer
activity of the drug (86).
TABLE 2 | The inhibitors partially or completely acting on TRAP1.

Drug Structure Properties Types of cancer Refs.

Gamitrinib-G4 Hsp90 inhibitor and
TRAP1 inhibitor

Prostate cancer (74)

Shepherdin Hsp90 inhibitor and
TRAP1 inhibitor

Glioblastoma, retinoblastoma (75, 76)

DN401 Strong TRAP1 inhibitor
but weak Hsp90
inhibitor

Cervical cancer, liver cancer, brain cancer,
kidney cancer, lung cancer, prostate
cancer

(77, 78)

Honokiol bis-
dichloroacetate
(HDCA)

TRAP1-specific inhibitor (79)
January 2021 | Volume 10 | Article
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TRAP1-Specific Inhibitors
Atpresent,manystudieshavebeendevoted to the specific inhibitors
which act on TRAP1 but not Hsp90. Inhibitors that selectively
inhibit the function of TRAP1 but not other Hsp90 proteins could
positively affect the treatment of TRAP1-dependent diseases and
provide new insight into antitumor strategies. HDCA is a novel
TRAP1-specific inhibitor with antitumor activity. By binding an
allosteric site in TRAP1, HDCA inhibits TRAP1 but not Hsp90
ATPase activity in a concentration-dependent manner to enhance
SDH activity, thus decreasing tumor cell proliferation and
tumorigenic growth (87). Rondanin et al. envisaged a potential
strategy for inducing apoptosis by targeting the TRAP1 ATPase
domain, with cationic appendages selected as carriers for drug
delivery to the mitochondria. This group confirmed that the
accumulation of guanidine-based compounds in mitochondria
inhibited the expression of recombinant TRAP1 ATPase, thus
limiting the proliferation and inducing the apoptosis of colon
carcinoma cells (88). Sanchez-Martin et al. reported that
structure- and dynamics-based allosteric ligands for selective
targeting of TRAP1 could be considered a novel therapeutic
strategy for cancer. This recent study provides additional
prospects for the development of TRAP1-specific inhibitors (89).
How to design a novel tool for efficient selection of TRAP1 site is a
problem that needs to be solved.
ANTICANCER POTENTIAL OF TRAP1
INHIBITORS COMBINED WITH
CHEMOTHERAPEUTICS

TRAP1 upregulation protects against oxidative stress-/cisplatin-
induced DNA damage and apoptosis (90). TRAP1 overexpression
prevents HT-29 colorectal cancer cells from undergoing apoptosis
induced by 5-fluorouracil, oxaliplatin, and irinotecan, while
shepherdin overcomes the resistance to these chemotherapeutic
drugs by inhibiting the TRAP1 ATPase (91). As shown in a study
by Kuchitsu et al., TRAP1 interference reduces the proliferation
of lung adenocarcinoma cells and increases their sensitivity
to cisplatin, indicating that TRAP1 expression may affect
recurrence and chemotherapeutic resistance in patients with
lung adenocarcinoma (74). These results indicate that TRAP1
increases tumor resistance to chemotherapeutic drugs. Based
on the role of TRAP1 in promoting a multidrug-resistant
phenotype, combined targeting of TRAP1 and treatment with
chemotherapeutic drugs may exert synergistic anticancer activity
toward a broad range of humanmalignant tumors. The purpose of
combination therapy is to improve the therapeutic effect and avoid
unwanted side effects (75). Taken together, these findings indicate
that TRAP1 inhibitors treatment combined with chemotherapy
Frontiers in Oncology | www.frontiersin.org 8
may become a new therapeutic strategy for cancer. At present,
most of the studies have focused on the combination of Hsp90
inhibitors and chemotherapy drugs (76–79), so further studies are
required to the synergistic effect of TRAP1-specific inhibitors
and chemotherapy.
CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

TRAP1, a molecular chaperone that is ubiquitous and abnormally
expressed in tumors, has recently become the focus of numerous
studies as an oncotherapeutic target. A close association between
TRAP1-dependent regulation of metabolic characteristics and the
role of TRAP1 in cancer progression has been identified. Thus, the
functions of mitochondrial TRAP1 in both normal and tumor
cells are likely more complex than previously recognized. In
addition, TRAP1 can promote the proliferation, increase the
motility, and facilitate the invasion and metastasis of tumor cells
by regulating several signaling pathways. Selective TRAP1-
targeted inhibitors have facilitated the development of
antineoplastic drugs, and several drugs with targeted selectivity
for Hsp90 and TRAP1 have been developed. These drugs have
shown good tolerability, strong cytotoxic activity, and no organ
toxicity in preclinical studies. The efficiency of TRAP1 inhibitors
combined with chemotherapeutic agents for cancer treatment is
being investigated in clinical trials. Due to the lack of chemical
tools for targeted selection of Hsp90 and TRAP1, additional
studies are needed to improve TRAP1 selectivity and achieve
improved therapeutic effects. However, researchers have not yet
determined whether prolonged inhibition of Hsp90 induces drug
resistance (92). Suitable in vitro and in vivo models must be
established to elucidate the mechanisms of TRAP1 and to develop
specific inhibitors.
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