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Abstract

Background: Tamsulosin (TAM) and dutasteride (DUT) are ranked among the most frequently prescribed therapies in
urology. Interestingly, studies have also been carried out on TAM/DUT in terms of their ability to protect against recent
COVID-19. However, very few studies were reported for their simultaneous quantification in their combined dosage form

and were mainly based on chromatographic analysis. Subsequently, it is very important to offer a simple, selective,

sensitive, and rapid method for the quantification of TAM and DUT in their challenging dosage form.

Objective: In this study, a new chemometrically assisted ultraviolet (UV) spectrophotometric method has been presented for
the quantification of TAM and DUT without any prior separation.

Method: For the calibration set, a partial factorial experimental design was used, resulting in 25 mixtures with central levels
of 20 and 25 pg/mL for TAM and DUT, respectively. In addition, to assess the predictive ability of the developed approaches,
another central composite design of 13 samples was used as a validation set. Post-processing by chemometric analysis of

the recorded zero-order UV spectra of these sets has been applied. These chemometric approaches include partial least-
squares (PLS) and genetic algorithm (GA), as an effective variable selection technique, coupled with PLS.

Results: The models’ validation criteria displayed excellent recoveries and lower errors of prediction.

Conclusions: The proposed models were effectively used to determine TAM/DUT in their combined dosage form, and
statistical comparison with the reported method revealed satisfactory results.

Highlights: Overall, this work presents powerful simple, selective, sensitive, and precise methods for simultaneous
quantification of TAM/DUT in their dosage form with satisfactory results. The predictive ability and accuracy of the
developed methods offer the opportunity to be employed as a quality control technique for the routine analysis of TAM/

DUT when chromatographic instruments are not available.

Over recent years, tamsulosin (TAM), a selective a1A- and o1D- frequently prescribed therapies in urology, particularly for be-
adrenoceptor antagonist (Figure 1a), and dutasteride (DUT) a 5a- nign prostatic hyperplasia (1-4). In 2021, TAM/DUT were ranked
reductase inhibitor (Figure 1b), are ranked among the most as the 32nd and the 288th most prescribed medications in the
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Figure 1. (a) Chemical structure of tamsulosin and (b) chemical structure of dutasteride.

United States, with approximately 23 million and one million
prescriptions for TAM and DUT, respectively (5). Interestingly,
studies have also been carried out on TAM/DUT in terms of their
ability to protect against recent COVID-19 or identifying their po-
tential interaction with other COVID-19 treatments (6, 7).
Fortunately, the findings indicate that immediate anti-androgen
treatment with DUT may succeed to decrease inflammatory
responses, viral shedding, time to remission, and severity of
SARS-CoV-2 infections (8). Additionally, the findings also indicate
that TAM has potential interactions with the concomitant use of
lopinavir/ritonavir in patients with COVID-19, as both are potent
inhibitors of CYP3A4 (9). Hence, due to the vast clinical potential
of DUT/TAM, there is an urgent need for simple and economical
methods to quantify DUT/TAM in their dosage form.

A literature survey revealed that the main analytical tech-
nique used for DUT/TAM analysis is high-performance liquid
chromatography (HPLC) (10, 11). However, the reported HPLC
methods have some limitations, including the remarkable use of
hazardous organic solvents in their mobile phase, such as aceto-
nitrile, in addition to time-consuming separation procedures.
Furthermore, selecting proper stationary and mobile phases for
optimum peak resolution are critical parameters that must be
finely tuned. Alternatively, spectrophotometric techniques can
get rid of the problems above with intensified simplicity, efficacy,
and accuracy for drug analysis (12, 13). These include colorimet-
ric methods used for determination of DUT/TAM based on chem-
ical reactions to form ion-pair complex with reagents such as
bromothymol blue and 2,3-dichloro-5,6-dicyano-1,4-benzoqui-
none (DDQ) (14, 15). However, such methods suffer from a limited
linearity range, a long time for the reactions to be completed,
and low color stability. Other spectrophotometric methods
employed for DUT/TAM determination are mathematical manip-
ulation approaches such as univariate and bivariate methods
such as first derivative, second derivative of the ratio spectra,
Vierordt’'s method, and area under the curve (16-19). These
methods also suffer from disadvantages as these methods are in-
efficient to collect unused data; thus this wasteful data collection
might reduce analytical methodology’s throughput. In addition,
these methods have extreme sensitivity to interfering factors be-
cause of the difficulty to differentiate the signal of the analyte
from an interferent when only one or two points on a data spec-
trum are examined. Furthermore, a calibration curve is required
for each drug, and many tests are required for selecting the suit-
able divisor for proceeding derivative of the ratio spectra (20, 21).
Thus, in recent years, chemometrics has attracted a great deal of
attention as an effective post-processing technique that can
tackle the aforementioned disadvantages (22, 23). Of all chemo-
metric models, partial least-squares (PLS) has been widely used
for several analytes analysis based on its ability to acquire the
maximum variance and ensure that concentration and spectral
variables are in a maximum correlation (24, 25). Moreover,

incorporating a genetic algorithm (GA) as an effective variable se-
lection technique extremely improves the performance of the
PLS model owing to its ability to select efficient spectral regions
that exclude the obsolete variables; as a consequence, models
with greater stability are developed (26).

The aim of this study is to establish new simple chemomet-
rically assisted ultraviolet (UV) spectrophotometric methods for
the quantification of TAM/DUT without any prior separation in
their combined dosage form. The predictive ability and accuracy
of the developed methods offer the chance to be employed as a
quality control technique for the routine analysis of TAM/DUT
when chromatographic instruments are not available.

Experimental

Reagents and Materials

TAM and DUT were supplied by GlaxoSmithKline pharmaceuti-
cal company (Fifth District, New Cairo, Egypt), with certified pu-
rity of 99.2+0.5 and 99.4 = 0.6 for TAM and DUT, respectively.
Methanol HPLC grade was purchased from Sigma-Aldrich
(Germany). Duodart™ capsules (GlaxoSmithKline pharmaceuti-
cal company, Cairo, Egypt) containing 0.4mg and 0.5mg per
capsule for TAM and DUT, respectively, were purchased from a
local pharmacy.

Instrumentation

A UV-1601 PC double-beam Shimadzu UV-Vis spectrophotome-
ter, with UV probe software, was used. PLS and GA were imple-
mented in MATLAB® R2013b (8.2.0.701) employing the PLS
toolbox software version 2.1.

Standard Solutions

Powdered TAM and DUT equivalent to 100mg of each were
transferred into two separate 100 mL volumetric flasks. Finally,
methanol was used to complete each flask to 100 mL, resulting
in final concentrations of 1 mg/mL. Working solutions were ac-
quired by serial dilution using methanol. All stock and working
solutions were stable enough and can be used in a dark refriger-
ator bottle for about a week (5° C).

Procedures

(a) Experimental design—A well-planned experimental design
is arguably a significant step to increase the probability of
acquisition of representative and informative data. Ideally,
for the calibration set, a partial five-level/two-factor facto-
rial design was employed, employing five concentration
levels for each of the components, resulting in 25 labora-
tory-prepared mixtures with different concentration
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Table 1. The selected concentrations of TAM and DUT mixtures used
in the experimental design of the described models

Calibration set Validation set

No. No.

of mix Concentrations, pg/mL of mix Concentrations, pg/mL
TAM DUT TAM DUT

1 20 25 1 20 27.5

2 16 15 2 15 35

3 12 35 3 20 38

4 28 35 4 25 20

5 28 25 5 20 27.5

6 20 20 6 25 35

7 16 35 7 13 27.5

8 28 20 8 20 27.5

9 16 30 9 20 27.5

10 24 30 10 20 17

11 24 25 11 15 20

12 20 35 12 27 27.5

13 28 30 13 20 27.5

14 24 35

15 28 15

16 12 15

17 12 25

18 20 30

19 24 15

20 12 30

21 24 20

22 16 20

23 16 25

24 20 15

25 12 20

ranges: 12-28 pg/mL for TAM and 15-35 pg/mL for DUT. The
linearity and ratio of both drugs in the pharmaceutical for-
mulation were used to determine their concentration
ranges. The main levels of the design were 20 and 25 pg/mL
for TAM and DUT, respectively; the lower and upper levels
for this design were 12, 28 pg/mL for TAM and 15, 35 pg/mL
for DUT. To assess the predictive ability of the developed
approaches, another experimental setup based on the cen-
tral composite design of 13 samples was used as a valida-
tion set, as illustrated in Table 1.

(b) Application—The weight of 20 capsules was accurately
measured. Subsequently, in a dry, clean mortar, the con-
tents were pulverized. Thereafter, in a 100 ml volumetric
flask, a powder weight equivalent to 40 mg of TAM and 50
mg of DUT was separately transferred, and sufficient meth-
anol was used to dissolve it. The solution was shaken for
10 min on a rotatory shaker followed by sonication for 30
min. The obtained solution was subjected to centrifugation
at 3000 rpm for 30 min. Finally, it was filtered, and then the
final volume was adapted with methanol to obtain a final
concentration of 400 pg/mL TAM and 500 pg/mL DUT.
Aliquots from working solutions were employed for quan-
tification of TAM and DUT in their dosage form by directly
implementing the developed method.

Results and Discussion

The TAM/DUT UV spectral characteristics were determined over
a wavelength region of 200400 nm. After brief glance at these
spectra, a severe overlap is observed that clearly interprets the

challenge confronted for their direct simultaneous quantitative
determination, as shown in Figure 2. Such overlap is clearly ob-
served at three regions, approximately at 266, 234, and 215nm,
as both drugs are structurally related compounds and have vari-
ous related chromophores, making the utilization of the multi-
variate calibration models inevitable. However, before
employing such models, spectral data pre-processing is the cru-
cial step that must be performed. The wavelengths from 310-
400nm were expelled as there are no absorbance values for
TAM/DUT. Because of the noisy spectral composition, wave-
lengths below 210nm were also eliminated. As a result, the
TAM/DUT determination was performed using the presented
chemometric models, PLS and GA-PLS, on 101 wavelengths
ranging from 210 to 310 nm.

PLS and GA-PLS

The PLS model, a commonly used regression model, was imple-
mented to the spectral matrix of the calibration data in order to
imply it into new spaces’ dimensions known as latent variables
(LVs). It was essential to carefully determine the optimal num-
ber of these LVs to avoid losing important information and any
overfitting of the model due to insufficient or more LVs. As a re-
sult, the calibration set’s spectral data were submitted to a
cross-validation technique that excluded one analyte at a time,
and the root-mean-square error cross-validation (RMSECV) was
computed after incrementally adding various LVs to the model
(27). According to Haaland and Thomas’s criteria, the ideal
number of LVs was chosen (28). Two LVs were optimal for
modeling TAM and DUT, with RMSECV values of 0.2711 and
0.4782, respectively, as shown in Figure 3.

Interestingly, to enhance the predictive power of the PLS
model, the GA procedure as an informative variable’s selection
technique was used. The GA model was used on 101 variables
for TAM and DUT (210 to 310 nm) to remove unnecessary varia-
bles while keeping informative ones. The adjustment of GA
parameters, as shown in Table 2, is a significant issue for suc-
cessful GA performance. The population size is one of the most
essential elements in the use of GAs. The selection of popula-
tion size is a sensitive issue. Remarkably, the proper population
size for each drug was 36 as the use of smaller populations
resulted in poor performance and lower accuracy of the solu-
tion. Accordingly, this meant that little search space was avail-
able. Nevertheless, the ability to seek additional spaces
increased as the population size was larger than 36, resulting in
premature convergence to solutions. Another important charac-
teristic of GA was the mutation rate, as it adapted to retain the
variety of genetic populations by changing a single gene or even
more on the GA chromosomes, preventing quick convergence.
The proper mutation rate for each drug was found to be 0.005.
Other parameters include the number of subsets, the number of
iterations for cross-validation at each generation, and the maxi-
mum number of LVs using the full PLS model. Interestingly, it
was found that GA decreases the absorbance matrix to about
50% for TAM and 30% for DUT (53 variables for TAM and 35 vari-
ables for DUT). Interestingly, GA-PLS models for both TAM and
DUT in terms of standard deviation (SD) of the % recoveries
have lower values compared to the full model, as shown in
Tables 3 and 4.

Models Validation

Regarding the validation of the chemometric models, we used
an external validation set based on a central composite design
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Figure 2. Zero-order absorption spectra of 35 pg/mL DUT and 28 ug/mL TAM show severe overlapping in the wavelength range 210-310nm.
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Figure 3. Cross-validation of (a) DUT and (b) TAM employing the full PLS model, and (c) DUT and (d) TAM employing the GA-PLS model.

to test the predictive ability of the developed models. Hence, to In addition, percentage of the relative root MSEP (RRMSEP) was
evaluate the built models’ performance, statistical parameters used to measure the accuracy of the predictions (29), while bias-
such as root-mean-square error of calibration and predictions corrected MSEP (BCMSEP) was used to measure the precision or
(RMSEC and RMSEP) have been calculated, as shown in Table 5. variance of the predictions (30), as shown in Table 5. Specificity
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Table 2. Optimized parameters implemented for the GA applied for
variable selection selected for TAM and DUT full spectral data

Table 4. Different statistical parameters for TAM and DUT in the val-
idation set by the described models

Optimum values PLS GAPLS

Parameters TAM DUT Validation mixture TAM DUT TAM DUT
Population size 36 1 102.06 104.91 101.47 101.20
Maximum generations 100 2 100.08 99.32 100.02 98.76
Mutation rate 0.005 3 99.41 98.42 99.54 99.30
% wavelength used at initiation 15 4 101.57 99.89 101.55 99.27
The number of variables in a window 2 5 100.46 98.93 100.49 98.80

(window width) 6 100.23 98.91 100.45 100.94
Percent of population (% of convergence) 80 7 102.31 102.59 102.19 101.97
Cross-type Double 8 99.13 100.87 99.36 100.28
Maximum number of latent variables 2 9 100.18 99.42 100.20 99.38
Cross-validation Random 10 101.76 101.81 101.61 100.19
Number of subsets to divide data into for 4 11 100.33 99.51 100.18 98.32

cross-validation 12 98.51 98.08 98.64 99.44
Number of iterations for cross-validation 2 13 99.85 101.68 99.87 102.03

at each generation Mean 100.45 100.33 100.42 99.99

SD 1.164 1.952 1.023 1.223

Table 3. Different statistical parameters for TAM and DUT in the cal-
ibration set by the described models

Table 5. Assay validation sheet of TAM and DUT by the proposed
models

PLS GAPLS PLS GAPLS
Calibration mixture TAM DUT TAM DUT Validation parameters TAM DUT TAM DUT
1 103.03 103.66 102.47 99.72 RMSEC? 0.2519 0.4963 0.2343 0.2131
2 99.52 103.59 99.42 102.38 RMSEP® 0.2419 0.5303 0.2159 0.3262
3 102.11 99.12 102.08 99.19 RRMSEP¢ 1.2096 1.9284 1.0795 1.18636
4 98.33 96.02 98.63 98.65 BCRMSEP? 0.0585 0.2812 0.0466 0.1064
5 100.88 99.30 101.00 100.38 ¢ 0.9991 0.9979 0.9992 0.9996
6 99.72 99.95 99.71 99.25 Intercept® —-0.2997 -0.7627 —-0.2495  —0.1950
7 100.88 100.56 100.86 101.04 Slope® 1.0139 1.0283 1.0116 1.0072
8 100.30 101.67 100.33 101.41 LoDf 3.2017 4.2483 2.9653 4.1189
9 100.88 101.49 100.86 101.05 Loqf 10.5657 14.0196 9.7856 13.5924
10 98.57 102.66 98.28 100.42
11 98.34 99.74 98.40 99.80 2Root-mean-square error of calibration.
12 98.34 98.81 98.42 99.51 YRoot-mean-square error of prediction.
13 99.41 97.77 99.60 99.59 “Relative root-mean-square error of prediction.
14 99.20 97.72 99.31 99.17 dBias-corrected mean square error of prediction.
15 100.96 100.37 100.95 100.47 ¢Data of the st1"aight line plo'tted'between predicted concentrations versus ac-
16 101.93 103.81 101.59 101.10 Eual concentrations of the éallbratlon set. ‘

The LOD and LOQ calculations are based on the net analyte signals.

17 100.09 100.14 99.97 99.77
18 99.54 99.89 99.54 100.20
19 100.50 99.16 100.48 98.34 central composite design with axial points outside the range of
20 102.23 101.30 102.12 100.94 the factorial points. Such an approach can test the predictive
21 99.74 100.89 99.72 100.81 ability of the developed models even if some concentrations
22 101.84 100.97 101.78 99.87 were slightly outside the calibration range, thus ensuring the
23 98.95 101.03 99.04 100.08 robustness of the developed models. LOD and LOQ of the devel-
24 100.39 101.31 100.26 99.96 oped models have been calculated based on the net analyte sig-
25 101.25 101.07 101.14 100.06 nals, and the results are presented in Table 5. Interestingly, GA-
Mean 100.28 10048 100.24 100.13 PLS models transcended the full PLS models for both TAM and
SD 1.325 1.875 1.232 0.910

of the method has been assessed using the external validation
set, and good results were attained as indicated by their RMSEP.
Regarding the linearity and range parameters, the experimental
design of the calibration set was 12-28ug/mL for TAM and
15-35 ug/mL for DUT. In addition, regression parameters of the
predicted versus actual concentrations of the calibration set
have been presented in Table 5. Interestingly, the developed
models exhibit a linear pattern with slope values close to 1.
Robustness of the developed models has been assessed using a

DUT in terms of RMSEC, RMSEP, and other validation parame-
ters, as indicated by their lower values compared to the full
model, posing this approach as a powerful tool to enhance the
performance of the multivariate models.

Application of the Described Models for Quantitative Analysis
of Duodart Capsules

The proposed chemometrically assisted UV spectrophotometric
method was used and was successful in the quantification of
TAM and DUT in Duodart capsules. The results of the developed
methods were statistically compared to those acquired by the
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Table 6. Spectrophotometric quantitative analysis of TAM and DUT in Duodart capsules by the described models and statistical comparison

with the reported HPLC method

PLS GAPLS Reported method
Parameters TAM DUT TAM DUT TAM? DUT?
N 3 3 3 3 3 3
% Recovery * RSD, % 99.68 = 1.74 101.28 +1.13 98.44 = 0.96 101.13 +0.82 100.35 = 1.62 100.16 = 1.87
t-value (2.78)° 0.489 1315 1.756 1.429 — —
F-value (19)b 1.152 2.762 2.841 1.227 — —

#HPLC method using a C18 (250 x 4.6 mm, 5 um particle size) column, a mobile phase of phosphate buffer and acetonitrile (35:65, v/v), flow rate of 1.0 ml/min, and detec-

tion wavelength of 225 nm (31).

®The values in parentheses represent the corresponding tabulated values of t and Y at P=0.05.

HPLC reported methods (31), indicating that there are no signifi-
cant differences, as shown in Table 6.

Conclusions

In this work, a simple, sensitive, and precise chemometrically
assisted UV spectrophotometric method, PLS, and GA-PLS for
the quantification of TAM/DUT without any prior separation in
their pharmaceutical dosage forms has been presented with
satisfactory results. In terms of the results reported in this re-
search, the proposed methods can be confidently ranked be-
tween selective and accurate methods. The predictive ability
and accuracy of the developed method offer the chance to be
employed as a quality control technique for the routine analysis
of TAM/DUT when chromatographic instruments are not avail-
able. Furthermore, the results presented in this paper provide
an outlook for exploiting the chemometric techniques for the
quantification of pharmaceuticals using simple, readily avail-
able, and low-cost instruments devices such as the UV spectro-
photometer regarding the number of samples, number of
interfering components, or severely overlapped spectra.
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