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DeepIso: A Deep Learning Model 
for Peptide Feature Detection from 
LC-MS map
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Liquid chromatography with tandem mass spectrometry (LC-MS/MS) based quantitative proteomics 
provides the relative different protein abundance in healthy and disease-afflicted patients, which offers 
the information for molecular interactions, signaling pathways, and biomarker identification to serve 
the drug discovery and clinical research. Typical analysis workflow begins with the peptide feature 
detection and intensity calculation from LC-MS map. We are the first to propose a deep learning based 
model, DeepIso, that combines recent advances in Convolutional Neural Network (CNN) and Recurrent 
Neural Network (RNN) to detect peptide features of different charge states, as well as, estimate 
their intensity. Existing tools are designed with limited engineered features and domain-specific 
parameters, which are hardly updated despite a huge amount of new coming proteomic data. On the 
other hand, DeepIso consisting of two separate deep learning based modules, learns multiple levels of 
representation of high dimensional data itself through many layers of neurons, and adaptable to newly 
acquired data. The peptide feature list reported by our model matches with 97.43% of high quality MS/
MS identifications in a benchmark dataset, which is higher than the matching produced by several 
widely used tools. Our results demonstrate that novel deep learning tools are desirable to advance the 
state-of-the-art in protein identification and quantification.

The outstanding performance of deep learning on object recognition opens a new frontier in the domain of 
bioinformatics. As a continuation of that, our research on solving peptide feature detection problem using 
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) is the first attempt as per our 
knowledge. The CNN is a type of feed-forward artificial neural network in which the connectivity pattern between 
its neurons is biologically inspired by the organization of the animal visual cortex1,2. CNN became popular after 
the revolutionary breakthrough in ImageNet3 object recognition competition, 2012. RNN uses the internal state 
(memory) to exhibit temporal dynamic behavior which brings groundbreaking results in many natural language 
processing tasks, for instance, Google Neural Machine Translation system4.

On the other hand, proteomics based on liquid chromatography with tandem mass spectrometry (LC-MS/
MS) is a well-established research field for the discovery of disease biomarkers, drug target validation, mode of 
action (MOA) studies, and safety marker identification in drug research5. The latest advanced types of LC-MS 
technologies generate huge amounts of analytical data with high scan speed, and high resolution, which is almost 
impossible to interpret manually. Deep neural networks are found to be very effective and flexible to discover 
complex structures of the data through its many layers of neurons. Thus it has made its way into analyzing LC-MS 
data as well6. For instance, DeepNovo7,8 introduces deep learning to de novo peptide sequencing from tandem 
MS data. Bulik-Sullivan et al.9 creates a computational model of antigen presentation for neoantigen prediction 
using deep learning. DeepSig10 takes input protein sequence to detect signal peptides and predict cleavage-site. 
DeepRT11 provides improved peptide Retention Time prediction in liquid chromatography. The application of 
deep learning in this field is becoming a promising approach day by day.

Protein identification and quantification are fundamental tasks in proteomics and peptides are the building 
block of protein. Protein is first enzymatically digested into peptides, and then peptides are analyzed by LC-MS/
MS instruments. Typical analysis workflow of LC-MS/MS data includes peptide feature detection and intensity 
calculation from an LC-MS map, peptide identification from MS/MS spectra, and protein profiling12–14. The first 
step, peptide feature detection and intensity calculation from an LC-MS map is our target problem. The LC-MS 

1David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. 
2Bioinformatics Solutions Inc., Waterloo, ON, N2L 6J2, Canada. *email: mli@uwaterloo.ca

OPEN

https://doi.org/10.1038/s41598-019-52954-4
http://orcid.org/0000-0001-5186-8852
http://orcid.org/0000-0002-2157-2775
mailto:mli@uwaterloo.ca


2Scientific Reports |         (2019) 9:17168  | https://doi.org/10.1038/s41598-019-52954-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

map of a protein sample is a 3D plot where the three dimensions are: mass-to-charge (m/z) or Da, retention time 
(RT), and intensity (I) of peptide ions in that sample. Peptide feature is a multi-isotope pattern formed by dif-
ferent molecular isotopes, e.g. carbon-12 and carbon-13, of the same peptide. Detecting multi-isotope patterns 
in LC-MS map is a challenging task due to the overlapping peptides, several charges of the same molecule, and 
intensity variation. Moreover, a single LC-MS map may have gigapixel size containing thousands to millions of 
peptide features. However, CNN is found to be effective in similar pattern recognition problems, for example, 
in detecting cancer metastasis on gigapixel pathology images by Liu et al.15. Moreover, a combination of RNN 
with CNN can deal with the pattern spanning over multiple time frames. For instance, video classification16 
using FC-RNN model. Detecting peptide features in a highly sparse and noisy LC-MS map can relate to the 
problem of selecting frame of interests in a noisy and unsegmented sequence, which can be handled using tem-
poral attention-gated model17. Therefore, to address our target problem, we propose a deep learning based model 
DeepIso to detect peptide features along with their charge states and estimate their intensities in a LC-MS map. 
It works in two steps. In the first step, IsoDetecting module spots the multi-isotope patterns and generates a list 
of detected isotopes. In the second step, IsoGrouping module goes around the spotted region of interests, and 
groups multiple isotopes into a peptide feature. Our initial work is described in a technical report18, which uses 
only CNN for detecting isotopes and heuristics for grouping the isotopes into peptide features. On the other 
hand, the new model offered in this paper uses two separate deep learning module IsoDetecting and IsoGrouping, 
both developed by combining CNN and RNN without using any heuristics.

Traditional methods of detecting peptide features from LC-MS map apply different heuristics and none of 
them relies on deep learning to find out the appropriate parameters automatically from the available LC-MS data. 
MSight19 generates images from the raw MS data file for adapting the image-based peak detection. CentWave20 
identifies interesting centroids and then the centroids are collapsed into a one-dimensional chromatogram, and 
wavelet-based curve fitting is performed to separate closely eluting signals. In MaxQuant21, peaks (isotopic sig-
nals) are detected by fitting a Gaussian peak shape, and then the peptide feature is found by employing a graph 
theoretical data structure. AB3D5 first roughly picks all local maxima peaks whose intensity is larger than a given 
threshold, then applies an iterative algorithm to process neighboring peaks of each to form peptide feature. 
TracMass22 and Massifquant23 use a 2D Kalman Filter (KF) to find peaks in highly complex samples. Dinosaur is 
proposed by Teleman et al.24 where the workflow of feature finding involves centroiding on LC-MS map, assem-
bling centroid peaks into single isotope traces (hills), clustering of hills by theoretically possible m/z differences, 
and finally deconvolution of clusters into charge-state-consistent features. Evaluation of peptide feature detection 
algorithms is challenging because manual annotation of peptide features is out of scope due to the huge size of 
the LC-MS maps20. As a result, most of the literature mentioned above prepare the ground truth data by either 
taking a common set of peptide features generated by multiple algorithms or a list of MS/MS identified peptides. 
Some literature treat the ground truth data as true positives, and detection outside those ground truth data as 
false positives, thus report performance in terms of several statistical measures, e.g., sensitivity, specificity, etc. 
For instance, CentWave20 provides high sensitivity with high precision. AB3D5 gives good sensitivity but poor 
precision. Massifquant23 provides high sensitivity with high specificity. On the other hand, there are arguments 
supporting that we cannot label the peptide features as true positives or false positives in a LC-MS map perfectly. 
Because a multi-isotope pattern in LC-MS map that is not detected as peptide feature, nor identified later by 
peptide identification tools, might actually be a peptide feature or merely a noise. We are not definite about their 
existence since no peptide feature detection tool or identification tool is perfect. Therefore, the percentage of MS/
MS identified peptides matched with the peptide feature list produced by different algorithms is used for perfor-
mance evaluation. For instance, Dinosaur24 reports higher matching with MS/MS identified peptides than other 
existing tools.

In most of the existing algorithms for peptide feature detection, many parameters are set based on experience 
with empirical experiments, whose different settings may have a large impact on the outcomes. In contrast to 
these existing works, our research aims at systematically training a deep neural network using real dataset to auto-
matically learn all characteristics of the data, without human intervention. Last but not least, even if the model 
makes wrong predictions, the correct results can be put back as new training data so that the model can learn 
from its own mistakes. We believe that such models shall have superior performance over existing techniques and 
shall become the method of choice soon.

Results
We explain the intuition of our proposed model using the workflow shown in Fig. 1. It consists of two steps 
and works on raw LC-MS maps without any preprocessing for noise removal. In the first step, the IsoDetecting 
module scans the LC-MS map along the RT axis to detect the isotopes having the potential of forming features. 
The scanning window is large enough to see the pattern of the isotopes and determine their charge states (1 to 9) 
as well. The isotopes are recorded in a hash table. In the second step, the IsoGrouping module goes to the region 
of detected isotopes and slides another scanning window along m/z axis to determine the starting and ending 
isotopes of a feature. Thus it produces a feature table that reports the detected features along with the m/z of 
monoisotope (the first isotope of a feature), charge, RT range of each isotope, and intensity.

In the first step, our job of scanning the LC-MS map along the RT axis resembles the video clip classification, 
where the RT axis is the time horizon. Therefore, we build IsoDetecting module combining CNN and RNN in a 
FC-RNN fashion proposed by Yang et al.16, which achieved state-of-the-art results in the context of video clas-
sification on two benchmark datasets. In the second step, we develop the IsoGrouping module combining CNN 
with the attention-gated RNN proposed by Pei et al.17. We use attention gate in this module to concentrate more 
attention on the frame holding monoisotopes (first isotope in a peptide feature) while grouping the isotopes into 
peptide features. The IsoDetecting and IsoGrouping modules are trained separately using suitable training data. 
In the Method section, we elaborate each of the steps in detail along with the training procedure.
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We downloaded the benchmark dataset from ProteomeXchange (PXD001091) which was prepared by 
Chawade et al.25 for data-dependent acquisition (DDA). The samples consist of a long-range dilution series of 
synthetic peptides (115 peptides from potato and 158 peptides from human) spiked in a background of stable 
and nonvariable peptides, obtained from Streptococcus pyogenes strain SF37026. Synthetic peptides were spiked 
into the background at 12 different concentration points resulting 12 samples each having multiple replicates. 
We obtain LC-MS map from each replicate, totaling 57 LC-MS maps for the experiment. We cut peptide features 
from these maps for model training. We apply k = 3 fold cross validation27 technique to evaluate our proposed 
model. In each fold, we use 12 maps for model training, 4 maps for model validation, and 41 maps for model 
testing. Model validation step is a part of training that is used to choose the best state of the model. In the follow-
ing sections, we will first elaborate the training and validation sensitivity of the model. Then we will evaluate the 
performance of DeepIso by comparing it with existing tools. The ground truth is set differently for training and 
performance evaluation (testing) which are briefly mentioned in the following sections and justified in detail in 
Supplementary Note C.

Training of DeepIso.  Since CNN and RNN are supervised learning approaches, we need labeled data 
for training. Human annotation of peptide features is out of scope due to gigapixel size of the LC-MS maps20. 
Therefore, we run the feature detection algorithm of MaxQuant 1.6.3.3 and Dinosaur 1.1.3 on the LC-MS maps 
and then take the common set of feature lists generated by these two algorithms with a tolerance of 10 ppm m/z 
and 0.03 minute RT, as labeled samples for training and validation14,20,28. The total amount of samples collected in 
this way from each charge state is presented in Table 1.

First, we train the IsoDetecting module that tries to maximize the class sensitivity on validation dataset. Here 
the class sensitivity is the percentage of samples detected correctly from each class, where classes belong to charge 
states z = 0 to 9. The charge state z = 0 represents the absence of features. The sensitivity of this class indicates 
how well the model distinguishes actual features from noisy traces and separates the closely residing features as 
well. Because of inadequate training data for features with charge states 6 to 9 as presented in Table 1, we had to 
apply data oversampling and augmentation in order to increase training samples from these classes. The average 
sensitivity and precision of the trained model on training set and validation set are provided in Table 2. Due to the 
lack of variance in training data for charge states 6 to 9, the model’s validation sensitivity does not reach close to 
90% for these classes. However, since most of the peptide features appear with charge states <6, lower sensitivity 
for them does not impact the overall performance.

Figure 1.  Workflow of our proposed method to detect peptide features from LC-MS map of protein sample.

Class (charge state) 1 2 3 4 5 6 7 8 9

Amount 163,038 863,050 428,909 29,183 1,503 653 179 236 233

Table 1.  Class distribution of samples in our dataset consisting of 57 LC-MS maps.
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In the second step, the sensitivity of IsoGrouping module is defined as the percentage of features reported with 
the correct number of isotopes. The training samples were distributed in five classes denoted as A, B, C, D, and E. 
Class A associates with noisy traces which does not form any feature. Class B, C, D, and E correspond to features 
with 2, 3, 4, and 5 isotopes (to be a feature it must have at least two isotopes). Since the scanning window slides 
left to right, it can handle the cases when peptide features have isotopes over five (details are provided in Method 
section). We see the training and validation sensitivity in Table 3. We observe that the sensitivity of most of the 
classes is below 80%. To have a better perception we present the confusion matrix in Table 4. We see the model 
hardly misses the monoisotopes, but confuses about the last isotope of a peptide feature. Please note that report-
ing the monoisotope along with first few isotopes (having higher intensity peaks) of a feature is more important in 
the workflow. Because they dominate the feature intensity and used in the next steps of protein quantification and 
identification. Therefore we accept a feature if the monoisotope along with high intensity isotopes are reported 
correctly. Then we choose the state of IsoGrouping module that maximizes the percentage of feature-matched 
MS/MS identifications on validation dataset.

Performance Evaluation of DeepIso.  For performance evaluation, we present the percentage of high 
confidence (i.e., high quality) MS/MS peptide identifications matched with the peptide feature list produced by 

Class (z)

Training Validation

Dataset Size Sensitivity (%) Precision (%) Dataset size Sensitivity (%) Precision (%)

0 257,250 98.83 99.73 28,992 97.62 99.21

1 21,345 98.19 96.47 3126 94.53 96.23

2 131,951 98.94 96.94 26,480 98.18 95.91

3 59,045 99.26 95.95 10,903 97.95 94.12

4 6,765 99.38 96.07 646 95.72 92.23

5 4,140 98.28 97.36 20 86.59 82.32

6 8,446 99.91 96.48 30 40.36 18.04

7 3,324 94.28 97.87 10 50.00 16.00

8 4,060 99.66 97.44 15 61.79 61.80

9 4,203 99.69 96.58 14 28.21 76.74

Table 2.  Class sensitivity and precision of IsoDetecting module and amount of samples for training and 
validation. Training set for class 5 has some duplicated samples (oversampling). Training sets for class 6 to 
9 have both augmented and duplicated samples. Amount of samples from class 0 depends on our choice 
(discussed in Method section) and this is kept higher than other classes because the LC-MS map is very sparse. 
The validation set does not contain any duplicated data and there is no overlapping between validation dataset 
and training dataset.

Class
Sensitivity on 
Training Set (%)

Sensitivity on 
Validation Set (%)

A (noise) 95.06 94.68

B (2 isotopes) 56.49 57.52

C (3 isotopes) 72.24 72.41

D (4 isotopes) 72.69 74.23

E (5 isotopes or more) 72.41 72.67

Table 3.  Class sensitivity of IsoGrouping module on training set and validation set.

Class A B C D E

A 94.68% 2.77% 1.73% 0.57% 0.25%

B 3.4% 57.52% 33.86% 4.59% 0.62%

C 0.89% 5.59% 72.41% 20.19% 0.93%

D 0.31% 0.89% 16.18% 74.23% 8.39%

E 0.79% 0.37% 2.70% 23.46% 72.67%

Table 4.  Confusion matrix produced by IsoGrouping module on validation dataset. The diagonal values, e.g. 
[C, C] represent the sensitivity for class C. We say a feature is misclassified as class A when the monoisotope 
(first isotope) or all of the isotopes are missed, i.e., the feature is thought to be noise by mistake. The value of [C, 
A] indicates what percentage of features with three isotopes are either misclassified as noise, or monoisotope is 
missed. [C, B] indicates the percentage of features which actually have three isotopes but the third one is missed, 
and only first two are combined together. Similarly [C, D] shows the percentage of three isotope features, for 
whom IsoGrouping module finds ONE additional isotope at the end.
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our algorithm. Since the identified peptides must exist in LC-MS maps, therefore, the more we detect features 
corresponding to them, the higher the performance5,14,20,28. We run MASCOT 2.5.1 to generate the list of MS/MS 
identified peptides and the identifications with peptide score >25 (ranges approximately from 0.01 to 150) are 
considered as high confidence identifications5.

In this testing phase we first scan the LC-MS map by IsoDetecting module. Then another run of scan by 
IsoGrouping module goes through the potential patterns detected in the first step, and reports the final list of 
peptide features. In order to compare performance of our model with other existing tools, we run the peptide 
feature detection algorithm of MaxQuant 1.6.3.3, OpenMS 2.4.0, and Dinosaur 1.1.3 as well. We used the pub-
lished parameter for MaxQuant as reported by Chawade et al.25. For Dinosaur, default parameters mentioned at 
their github repository (https://github.com/fickludd/dinosaur) are used. For OpenMS, we use the python binding 
pyOpenMS28,29 and follow the centroided technique explained in the documentation (https://pyopenms.readthe-
docs.io/en/latest/feature_detection.html). For all of the feature detection algorithms, we set the range of charge 
state 1 to 9 (or the maximum charge supported by the tool). Then the produced feature lists are matched with the 
high confidence MS/MS identifications with tolerance of 0.01 m/z and 0.2 minute RT.

As mentioned earlier, we have 12 samples where sample 2, 3, and 4 have 7 replicates each and the remain-
ing samples have 4 replicates each. We show the average percentage of high confidence MS/MS identifications 
matched with the detected peptide features for 12 samples in Table 5 (entire result can be found in Supplementary 
Table S3).

Although the performances are quite close, however, DeepIso is still a little bit ahead of all others which 
indicates that deep learning tools are desired to advance the state of the art techniques. It is able to report some 
features not detected by other tools as provided in the Venn diagram of feature-matched MS/MS identification 
by different tools in Supplementary Fig. S2. In Discussion section we explain the scenario when our model might 
miss a feature, and propose potential solution to overcome the problem, thus increasing the sensitivity further 
as well.

We would like to mention how the retraining with misclassified cases promotes better learning in our model. 
As mentioned earlier, if a deep learning model does mistakes, we can collect those cases and retrain the model 
with those specific cases which improves the model’s ability in giving the correct result next time. We applied this 
retraining process while building the IsoGrouping module. The module was unable to separate adjacent features, 
e.g., feature 1 and 2, shown in Fig. 2(c). We collected such cases and retrained the model which improved the 
overall matching by about 4% (details are provided in Supplementary Note B). Therefore, such model can evolve 
as new cases appear.

Peptide Feature Intensity Calculation by DeepIso.  Next would like to verify the correctness of peptide feature 
intensity calculation by our model. For the statistical analysis of biological experiments the peptide feature inten-
sity is of interest and has to be calculated from raw data20. The technique is to first apply curve fitting over the bell 
shaped intensity signals of isotopes in a feature. Then the Area Under Curve (AUC) of all isotopes in a feature 
are calculated and added to get the intensity or AUC of that feature. Therefore the perfectness of peptide feature 
intensity depends on whether the bell shaped signals are detected nicely or not. We report the Pearson correlation 
coefficient of the peptide feature intensity between DeepIso and other existing algorithms in Table 6. It appears 
that our algorithm has a good linear correlation with other existing algorithms, which validates the peptide fea-
ture intensity calculation by our model.

Time Requirement of DeepIso.  Total time of scanning LC-MS map by IsoDetecting module and IsoGrouping 
module is considered as the running time of DeepIso model. The running time of different algorithms along with 
the platforms used in our experiment is presented in Table 7. It appears that our DeepIso model has a higher run-
ning time than Dinosaur and Maxquant. However, this running time can be improved if we increase the available 
GPU for parallel processing. We also propose some potential methods to speed up DeepIso model in Discussion 
section.

Finally, we would like to state that, although the common set of Dinosaur and MaxQuant was used to prepare 
training data, it does not imply that our model just learns to mimic their approach. We used the common set 
merely to replace human annotators to label the training data. DeepIso learns the appropriate parameters for 
peptide feature detection by stochastic gradient descent through several layers of neurons and backpropagating 
the prediction errors, a completely different approach than existing heuristic methods. Therefore the learning 
outcome of this deep learning model is quite different. Moreover, once we train a model on a protein sample, 
the same model should be applicable to all other protein samples from the same or other close species without 
further training. We believe our empirical results reveal the capability of deep learning networks in solving pep-
tide feature detection problem, as well as, discloses the area of improvements to make it more robust and high 
performing in the future.

Algorithms MaxQuant OpenMS Dinosaur DeepIso

Matching 96.83% 97.14% 97.23% 97.43%

Table 5.  Percentage of high confidence MS/MS identifications matched by feature list produced by different 
algorithms.
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Discussion
We propose DeepIso, a peptide feature detection algorithm that does not apply human designed heuristics involv-
ing centroiding, curve fitting, clustering, etc. Rather, it uses the power of deep neural networks to automate the 
learning of peptide feature detection by revealing the important feature characteristics from LC-MS data. We 
will first demonstrate the justification of different design strategies followed and the utility of our model from 
industrial perspective. Then we will discuss the shortages of the current model and propose potential solutions 
to overcome the problems.

We would like to explain the significance of using RNN along with CNN for peptide feature detection. In the 
initial stage of this research we used only CNN in IsoDetecting module and units were set to be 0.01 minute along 
RT axis. Only about 73% of the MS/MS identified features are reported in that technique, whereas, about 97% are 
reported in current model due to using RNN along RT axis. The RNN cells in the IsoDetecting module helps to 
detect the features having broken signals as shown in Fig. 2(a). Besides that, using MS-Scans as units of RT axis let 
us avoid human intervention caused by interpolating signals at the missing MS-Scans on some units of RT axis. 
It also makes the whole scanning faster and prevents the network from confusing broken features with the noisy 
traces. Please see Supplementary Table S2 for the experimental details.

Now we discuss about the reason of using simple RNN cells in IsoDetecting, instead of Long Short-term 
Memory (LSTM)30 cells. Although the span of LC-MS map along RT axis is very long, but the RNN does not need 
to look back very far in the past to detect an isotope, since each isotope’s RT range is not very long. After start 
detecting a feature (charge z with value 1 to 9), it has to remember the states upto the end of the feature (z = 0) 
only. After that it can refresh its memory. This is why we did not use LSTM cells to make the network unneces-
sarily complicated.

We do not use any pooling layers in the network of IsoDetecting module. In order to detect the sharp bound-
ary and location of the peptide features, we want the network to have the property ‘equivariant to translation’ 
(ensured by CNN filters) to generalize edge, texture, shape detection in different locations, but not ‘invariant to 
translation’ (ensured by pooling layers) that causes the precise location of the detected features to matter less, and 
give unexpectedly wider detection for isotopes (see Supplementary Fig. S5). So we avoid using pooling layer.

In IsoDetecting module the frame size of [15 × 211] (covering 15 scans and 2.11 m/z) ensures that it sees rea-
sonable area of a feature to decide about the existence of it along with the charge. If we reduce the frame size then 
we have to use two dimensional and bi-directional RNN in IsoDetecting module (in order to look at surrounding 
area). It prevents batch processing of multiple regions of LC-MS map making the whole process time consuming. 
Smaller frame size might also hamper the power of pattern detection by CNN.

If we use attention-gated RNN in IsoDetecting module then it results in lower class sensitivity as apparent 
from Table 8. Therefore we chose FC-RNN network for designing this module.

Figure 2.  (a) A peptide feature with broken signals; (b) Detection of overlapping peptide features; (c) Adjacent 
feature case.

Dinosaur MaxQuant OpenMS

DeepIso 87.73% 88.99% 91.46%

Table 6.  Pearson correlation coefficient of the peptide feature intensity between DeepIso and other tools.

Platform

Processor: Intel Core i7, 4 cores 
OS: Windows 10 for running the 
applications

Processor: Intel(R) Xeon(R) Gold 6134 CPU, 
NVIDIA Tesla OS: Ubuntu 16.04.5 LTS for running 
the python scripts

Algorithms Dinosaur MaxQuant DeepIso OpenMS

Running Time 15 minutes 30 minutes 1 hour and 40 minutes 2 hours and 50 minutes

Table 7.  Approximated running time of different algorithms. Here the platform used for OpenMS and DeepIso 
did not have support for running Windows application of MaxQuant and Dinosaur. So we used different 
machine for running those.

https://doi.org/10.1038/s41598-019-52954-4
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So far we have discussed the methodology for training ‘IsoDetecting’ module. Now we will discuss the same 
for IsoGrouping module, the second step in our DeepIso model. We present a brief progression of IsoGrouping 
module that we have gone through to achieve the current state of the model in Table 9. The first row shows the 
initial IsoGrouping module, designed using FC-RNN network with three convolution layers, one fully connected 
layer, without any pooling layer and state size 4. It reports peptide features for only about 87% of the MS/MS 
identified peptides. Then we retrain the model using the aforementioned adjacent feature cases which improves 
the match drastically by about 4%. Addition of max-pooling layer, more fully connected layers and increased 
state size gradually improve the performance further. Later we see the network gives better performance with 
attention-gated RNN instead of FC-RNN. We generate the final result by ensemble of multiple IsoGrouping 
modules, who differ in terms of initial weights, learning rates, and number of neurons in fully connected layers. 
We have included the details of each stage in Supplementary Note D.

Finally, we improve peptide feature detection for charge states 6 to 9 as presented in Table 10. This mostly 
involves IsoDetecting module. Since the original amount of samples from these classes were negligible according 
to Table 1, we had to apply data oversampling (equivalent to applying more penalty for misclassifying samples 
from lower abundant classes) and augmentation (Supplementary Note A for details) to train the module on these 
classes. It improves the final matching with MS/MS identification as presented in Result section.

From the industrial perspective it is important to detect peptide features with high intensity signals properly. 
To compare this property of different algorithms, we sort the peptide feature list generated by different algorithms 
based on ascending order of peptide feature intensity. Then we select the top 10,000 peptide features (about 20% 
of the existing peptide features in each LC-MS map, which is about 50,000) from each list and denote them as 
high confidence feature list. Finally we compare that list with the high confidence MS/MS identifications. DeepIso 
provides 89.32% matching which is higher than Dinosaur (89.24%), MaxQuant (87.65%), and OpenMS (60.44%). 
The performance of OpenMS is lower than others, because it produces some high intensity false positives. We 
believe, the good performance by DeepIso makes it a suitable model for industrial sector as well.

Now, we would like to mention some disadvantages in our proposed DeepIso model. Visual observations at 
some peptide features on LC-MS map discover that some features are missed due to the lower resolution con-
sidered for m/z axis. Although we are able to teach DeepIso to detect overlapping features as shown in Fig. 2(b), 
detection of some closely residing peptide features (with close monoisotopic peaks) in the LC-MS map, for 
instance, feature A and feature B in Fig. 3(a), are merged together. Since we do not want to use any heuristics on 
them, we are unable to separate such detection associated with A and B. However, if we increase the resolution 
as shown in Fig. 3(b), then the features are separated in LC-MS map and thus isolated by IsoDetecting module 
as well. Therefore, increasing the resolution will let IsoDetecting module see the LC-MS map better and result in 
higher performance. However, in that case we will need to sacrifice the time efficiency since increasing resolution 
by one decimal point, for instance 0.01 to 0.001 will make the input frames 10 times bigger in dimension and 
eventually resulting in larger feature maps, turning the model slower than before. Therefore we have to find an 
intelligent architecture that will let us increase the resolution without compromising running time.

Finally, we would conclude by proposing some potential future scopes. We believe there is still room for 
improvement in peptide feature detection context mostly owing to the overlapping peptides and the multi-isotope 
patterns that sometimes defy typical assumptions of peptide features. Deep learning networks are desirable for 
the ability of self learning from training data without human interventions. However, time efficiency is also an 
important factor considering the practical utility. The running time of DeepIso is dominated by the first step, 
IsoDetecting module. Because it has to scan the whole LC-MS map represented as a 2D image of gigapixel size 
(about [12,000 × 140,000] pixels). Therefore one of our next concern is to make the IsoDetecting module time 
efficient. At the same time we would like to consider increased resolution along the m/z horizon of LC-MS maps 
to improve the feature detection, as mentioned lately. One potential approach might be using PointNet31, which 

Class (z) 0 1 2 3 4 5

FC-RNN network (better) 96.43% 93.80% 96.98% 98.74% 97.94% 85.86%

CNN with attention-gated RNN 96.15% 89.00% 96.04% 96.46% 95.07% 54.29%

Table 8.  IsoDetecting module give better validation sensitivity with FC-RNN network than attention-gated 
RNN.

Model
Matching with MS/MS 
identified peptides

Initial model 87.55%

Retraining using Adjacent Feature cases 92.82%

Addition of max-pooling layers, one more fully connected layers and state size raised to 8 94.66%

Network with attention-gated RNN 95.08%

Same as above but trained with more data 95.13%

Ensemble of multiple instance of the model 95.46%

Table 9.  Performance of IsoGrouping module in different stages of the development (based on validation 
dataset).
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avoids 2D image representations of 3D objects, and directly works on the point cloud (set of data points in space). 
In addition to that, designing the IsoDetecting module as a segmentation network might be helpful as well. 
Besides that, whether using ‘BERT’32 technique (recent advancement in the context of natural language process-
ing) in implementing IsoGrouping module brings better performance is also left for future research. Application 
of DeepIso in Label Free Quantification (LFQ) can be another direction of work. We are looking forward to these 
research opportunities in the future.

Class (z) Initial Dataset
Oversampling was performed by duplicating training 
samples (z = 6 to 9) 10 times

Augmented samples were created from training 
samples (z = 6 to 9) and then duplicated 10 
times

Validation Sensitivity Training Sensitivity Validation Sensitivity Training Sensitivity Validation Sensitivity Training Sensitivity

 6 0% 0% 52.65% 98.32% 40.36% 99.9%

 7 0% 0% 0 96.53% 50% 94.1%

 8 0% 0% 31.67% 99.14% 61.80% 99.6%

 9 0% 0% 38.57% 98.12% 28.20% 99.7%

Comments Network does not learn anything due to 
negligible amount of original samples.

Although the network starts learning 
because of introducing higher penalty 
for lower abundant samples, however 
it still does not learn well due to lack 
of variance in samples. Network also 
overfits due to lack of data.

Various samples were created using augmentation 
which improves the validation sensitivity further. 
However, the network still overfits due to lack of 
data amount and variation.

Table 10.  Improvement of class sensitivity of IsoDetecting module for charge states 6 to 9 with increasing 
amount of training samples. We do not bother for further improvement (by including more data from different 
but similar dataset) since most of the peptide features generally appear in LC-MS map with charge states <6. 
Here the validation set does not contain duplicated data and there is no overlapping among the training set and 
validation set.

Figure 3.  Intuitive image showing the effect of resolution along the m/z axis of LC-MS map: (a) lower 
resolution merges the closely residing peptide features; (b) higher resolution separates the same feature and let 
the IsoDetecting module perform correct detection.
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Methods
Our model runs the processing on raw LC-MS map. We use the ProteoWizerd 3.0.1817133 in order to obtain the 
‘.ms1’ format of the raw LC-MS maps. Then we read the file and convert it to a 2D grey scale image (i.e. RT × m/z 
plot) by treating the third dimension ‘Intensity’ as a grey value scaled between 0 to 255.

Step 1: Scanning of LC-MS map by IsoDetecting module to detect isotopes.  According to our 
design, this step is basically a 10 category classification problem. Please refer to the LC-MS map represented as a 
RT × m/z plot shown in Fig. 4 for the clarification on the scanning process. Our network scans the LC-MS map 
as a sequence of [M × N] dimension frames, where each sequence is positioned at a point on the m/z axis (for 
instance X) and the time steps range from the first MS-scan to the last MS-scan along the RT axis. We name a 
scanning through each sequence like this as one round of ‘deep scan’. In this figure, we see a sequence passing 
over the isotopes of two features, feature ‘a’ and ‘b’ having charge ‘1’ and ‘2’ respectively. At each time step, the 
network outputs one of the classes in the range 0 to 9, 0 being the class indicating ‘No Feature Seen’, and 1 to 9 
being the classes indicating features seen having corresponding charges. For instance, in the figure we use some 
dotted arrows to indicate the network outputs (charge 1) at the corresponding time steps. The network outputs 
0 in the blank spaces or noisy traces. Please note that, the scanning window, that is the frame has dimension 
[M × N] = [15 × 211] which is large enough to see the second isotope (along the m/z axis) in a potential feature to 
take decision about the charges. We do this to avoid using bidirectional RNN. The frames are overlapping as well 
so that we can trace the RT range of the isotopes nicely.

Each unit of RT axis represents one MS-scan (who are at least 0.01 minute apart) and each unit of m/z axis 
equals to 0.01 m/z. However, each MS-scan does not hold signals from all m/z points. Therefore there are breaks 
in a sequence of ‘deep scan’ as shown in the LC-MS map (in Fig. 4) by a broken line, where we simply pass the 
current RNN state to the next available frame. Please note that, the states of one ‘deep scan’ are passed along 
the RT axis. Therefore, one ‘deep scan’ positioned at X m/z is independent of another ‘deep scan’ positioned at 
X + 0.01 m/z and vice versa. So we can process multiple ‘deep scan’s in a batch which makes the whole approach 
time efficient.

We keep nine hash tables for recording the detection coordinates (the points in RT × m/z plot) of features 
from nine classes (z = 1 to 9) during the ‘deep scan’. The m/z values of the isotopes are used as the key of these 
hash tables, and the RT ranges of the isotopes in a feature are inserted as values under these keys as shown in the 
block diagram of Fig. 1. Since the detection of wider isotopes may span over a range of m/z (i.e., multiple pixels 
along m/z axis as shown for feature ‘C’ in Fig. 3), we take their weighted average to select specific m/z of a isotope.

The deep learning network is shown in Fig. 4. The network is taking the frame at time step t = t1 as input. 
There are three convolution layers, followed by two fully connected layers (denoted as i and o), one FC-RNN 
layer, and output is generated at each time step. The dropout layer is added after third convolution layer and first 
fully connected layer i with a value of 0.50, which is considered ideal for many cases. We use state size 4 and the 
tanh activation function. Since we are dealing with FC-RNN model34, the state ft at time step t is defined as below:

= . + . +−f H W X W f b( ) (1)t io it hh t o1

Where in, H is the activation function, Wio is the weight matrix connecting the neurons of layer i to layer o (as 
shown in Fig. 4), Xit is the output of the layer i at current time step t, Whh is the weight matrix of RNN state, bo is 
the bias at layer o, and ft−1 is the previous state.

Training Procedure of IsoDetecting module.  Now we will discuss about the training procedure of the network. 
It is supposed to learn following basic properties of peptide feature35, besides many other hidden characteristics 
from the training data.

Figure 4.  Network of IsoDetecting module.
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	 1.	 In the LC-MS map, the isotopes in a peptide feature are equidistant along m/z axis. For charge z = 1 to 9, 
the isotopes are respectively 1.00 m/z, 0.5 m/z, 0.33 m/z, 0.25 m/z, 0.17 m/z, 0.14 m/z, 0.13 m/z, and 0.19 
m/z distance apart from each other12.

	 2.	 The intensities of the isotopes form bell shape within their retention time (RT) range as shown in the 
zoomed in view of Fig. 1.

	 3.	 Peptide features often overlap with each other.

Training sequences are 20 frames long. Positive samples are created by cutting a sequence that is aligned with 
the monoisotope of the peptide features. We cut sequences from blank or noisy areas, not aligned with any feature 
and treat them as negative samples. In this way we generate approximately 200,000 positive samples and 200,000 
negative samples. Since the IsoDetecting network produces output at each time step, we label each frame of a 
sequence with one of the classes ranging from 0 to 9. We deal with variable length sequences since the peptide 
features might not span over 20 frames (scans). We apply data augmentation for training samples having charge 
states 6 to 9. Details on training data generation are provided in Supplementary Note A. We use ‘Adam’ stochastic 
optimization36 with initial learning rate of 0.01. We use sparse softmax cross entropy as error function at the out-
put layer. We run about 100 epochs and the model starts converging after about 90 epochs.

Intermediate Step to Make Clusters.  We use an intermediate step that forms clusters of closely residing 
isotopes having same charge, overlapping RT extent, and equidistant along the m/z axis. In other words, the 
equidistant isotopes of same hash table are grouped into one cluster. For instance, we see two clusters ‘P’ and 
‘Q’ in Fig. 5. Look that, same cluster might hold multiple peptide features. This step is designed just to speed up 
the whole process by allowing batch processing in the second step. Each batch containing about 500 clusters are 
passed to the IsoGrouping module. Detecting the starting and ending of features in the clusters is handled by this 
module. Please note that, this step is optional and avoiding this step does not bring any significant change in the 
result. However, the running time of IsoGrouping module increases drastically due to not utilizing the power of 
batch processing. We do not set any limit on the maximum number of isotopes per cluster. Experiment shows that 
each cluster usually holds at most 16–20 isotopes.

Step 2: Scanning of LC-MS Map by IsoGrouping Module to Report Peptide Feature.  In this step 
the frames are placed at the isotopes of the clusters. For convenience please refer to Fig. 5. There are two major 
differences in IsoDetecting and IsoGrouping modules. First, the IsoDetecting module scans the LC-MS map 
along the RT axis, whereas IsoGrouping module scans left to right, along m/z axis. Therefore, the time steps span 
along the m/z axis. Second, IsoGrouping module generates one output after seeing through ‘5’ consecutive frames 
(after 5 time steps), unlike IsoDetecting module which generates output at each time step. Here, each cluster is 
processed in multiple rounds. Starting frame of one round depends on the output of previous round and the 
rounds can be overlapping as well. A step by step explanation of the scanning procedure with figure is provided 
in Supplementary Method A.

The network is shown in Fig. 6. It has four convolution layers, followed by two fully connected layers. This 
time we include pooling layers after first and second convolution layers. The dropout layers are included after 
each fully connected layers with dropout probability of 0.5. We input the charge z detected by the IsoDetecting 
module as a feature at the layer i as shown in the figure. We do this by concatenating z with the output Xi of layer 
i. We use state size 8 and tanh activation function. The current state ft at time step t is calculated using attention 
gate at

15 as follows:

= − . + . ′−f a f a f(1 ) (2)t t t t t1

Figure 5.  Intuition of scanning by IsoGrouping module on the clusters of features.
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wherein, ft−1 is the previous hidden state, f′t is the current state calculated in the conventional fashion and at 
denotes the importance of current frame to the final decision. The f′t and at are calculated as below:

′ = . + . +−f H W f W X b( ) (3)t hh t oh ot h1

σ= . ′ +a W f b( ) (4)t a t a

In Eq. 3, H is the activation function, Whh is the weight matrix connecting the previous hidden state ft−1 to 
the current state, Xot is the output of the layer o, Woh is the weight matrix connecting the Xot to the RNN layer, bh 
is the bias at the RNN layer. In Eq. 4, σ is the sigmoid activation function, Wa is the weight matrix that learns the 
attention mechanism and ba is the corresponding bias.

Training Procedure of IsoGrouping module.  Usually monoisotope’s intensity is the highest among the other iso-
topes in a feature and dominates the total intensity of the feature. This property should be learnt by IsoGrouping 
module. We generate the positive samples by generating a sequence of 5 frames for each peptide feature, where 
the sequence starts at the first isotope of the respective feature. Each frame has dimension [15x10], covering 15 
scans along RT axis and 10 units along the m/z axis. The frames are centered on the point associated with the 
peak intensity of the monoisotope, as shown in Fig. 6. Each sequence is labeled by the frame index holding the 
last isotope of the feature (indexing starts from 0). If the feature has more than 5 isotopes, than it is labeled as ‘4’. 
In this way we generate about 220,00 positive samples. We generate negative samples by cutting some sequences 
from the noisy or blank area. We also generate sequences that contain peptide feature, but the feature does not 
start at the first frame of the sequence. Those samples are labeled as ‘0’ and considered as negative samples as well. 
We do this to handle the cases where noisy traces are classified as isotopes by IsoDetecting module by mistake and 
thus clustered with the actual features in the intermediate step. We generate about 120,000 negative samples. We 
apply ‘Adagrad’ stochastic optimization37 with initial learning rate of 0.07. We use softmax cross entropy as error 
function at the output layer.

Ensemble of Multiple IsoGrouping Modules.  In order to reduce variance we use ensemble38 of multiple 
IsoGrouping modules to report the peptide features. We generate four instances of the IsoGrouping module, 
who are different in terms of initial weights, learning rate (0.07, 0.08), state size (6, 8, 10), and size of the second 
fully connected layer (80, 128). Their outputs are combined using soft voting39. Ensemble technique improves the 
matching with identified peptides by about 0.33%. Please see Supplementary Table S1 for details.

We would like to mention the common strategies followed for implementing and training both of the mod-
ules. We implemented our deep learning model using the Google developed Tensorflow library. However, we 
had to build the RNN network ourselves instead of using their built-in RNN cells, in order to reflect the gating 
mechanism proposed in FC-RNN16 and attention gated RNN cells17. During the training of both modules, we 
use minibatch size of 128 to ensure enough weight update in each epoch. We check the accuracy on validation 
set after training on every 10 minibatches. We perform data shuffling after each epoch which helps to achieve 
convergence faster. We continue training until no progress is seen on validation set for about 5 epochs. Including 
dropout layer in our model increases the validation sensitivity by about 1.5%. Although the Rectifier Linear Unit 
(ReLu) activation function is preferred over tanh in many literature, our model does not learn well with ReLu 
according to our experiments.

Figure 6.  Network of IsoGrouping module.
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Data availability
The benchmark dataset is available to download from ProteomeXchange using accession number PXD001091. 
The full experimental result on all the replicates of the samples are available in supplementary materials.
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