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Abstract

Although many mathematical methods were used to analyze the neural activity under sinu-

soidal stimulation within linear response range in vestibular system, the reliabilities of these

methods are still not reported, especially in nonlinear response range. Here we chose non-

linear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response

of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a

nonlinear response range. Our aim was to acquire a reliable mathematical method for data

analysis under SRS in vestibular system. Our data indicated that the reliability of this method

in an entire SCNs population was quite satisfactory. However, the reliability was strongly

negatively depended on the neural discharge regularity. In addition, stimulation parameters

were the vital impact factors influencing the reliability. The frequency had a significant nega-

tive effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA

with sinusoidal model resulted a reliable mathematical tool for data analysis of neural

response activity under SRS in vestibular system and more suitable for those under the

stimulation with low frequency but high amplitude, suggesting that this method can be used

in nonlinear response range. This method broke out of the restriction of neural activity analy-

sis under nonlinear response range and provided a solid foundation for future study in non-

linear response range in vestibular system.

Introduction

The vestibular sensory system is termed the “sixth sense” and plays a vital role in daily life by

contributing to visual stabilization [1–3], head and body posture maintenance [4–6], cognition

[7–9], spatial orientation construction [10] and navigation [11]. Efficient processing of
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vestibular neurons input is critical for an animal’s survival. Therefore, a good understanding

on how vestibular sensory pathways encode and transmit information to the upstream neu-

rons and brain under various conditions is a major goal in neuroscience. Generally, neural

response property and information transformation, the basics of a sensory pathway, are

explored through the activities of each neuron in response to stimulation or downstream neu-

ral inputs. Therefore, a reliable mathematical method describing neural response under stimu-

lation is extremely vital to analyze the response properties and strategies of information

decoding and encoding in neurons at each stage within a hierarchical system.

Over the past 50 years, the neural processes of the vestibular sensory system responding to

outside stimulations have been studied through sinusoidal systems analysis tools and methods

[12–18], because the free head motions in daily life were similar to sinusoidal motions in most

of the situations. Within these analysis tools and methods, least-squares regression analysis

[19], Fourier analysis [13], Discrete Fourier transforms [14], Levenberg-Marquardt methods

[17,18], maximum likelihood estimation method [20] and hierarchical least squares methods

[21] were chosen, aiming to describe the dynamic neural response activity in linear response

range during sinusoidal stimulation. However, although these methods are widely used for

data analysis of neural response activity in vestibular system, there is no study reporting the

reliability of these methods. Additionally, most of the previous studies using these methods for

data analysis were under the data inclusion criteria of low head angular velocity, low linear

acceleration and no neural activity silence (cutoff) during inhibitory stimulation [12–14,17–

19,22]. These criteria restrict the neural response activity within a narrow linear response

range and limit our understanding regarding the properties underlying more widely nonlinear

response range. Furthermore, the peculiar characteristics of the vestibular system also make us

concern about the reliability of these methods: the response-intensity and information encod-

ing between excitatory and inhibitory stimulation within the same magnitude are asymmetric

[14,17,23–25], especially significant under large magnitude [19,22,26–29]. Considering these

problems above, these data analysis methods may encounter challenge, especially in nonlinear

response range in vestibular system.

In order to acquire a reliable method for data analysis of neural response under sinusoidal

stimulation in the vestibular system, we chose nonlinear least-squares algorithm with sinusoi-

dal model (NLSA) and verified its reliability on describing SCNs response activity during head

SRS in an extended nonlinear neural response range. NLSA is a mathematical optimization

technique, which can be used to find the optimum matching function for a set of observed

data with a model that is nonlinear in unknown parameters trough minimized error of sum of

squares [30]. The idea is to approximate the model by a linear one and to refine the parameters

by successive iterations [31]. Finally, the coefficient determination (R2) providing a measure of

how well observed outcomes are replicated by the model [32], is used to assess how reliable

each optimized fitting function is to describe the neural response activity under a special

stimulation.

Materials and methods

Animals

In the present study, a total of 30 adult female chinchillas (C. laniger), 480–550 g body weight,

were housed in groups of two per metallic cage with ad libitum access to food and tap water.

All the animal surgeries and single unit recording procedures were approved by the Johns

Hopkins University Animal Care and Use Committee, and in compliance with the National

Institutes of Health guide for the care and use of Laboratory animals.

Nonlinear least-squares algorithm and neural response analysis
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Orientation assessment

A coordinate system to assess the orientation of animal head and each semicircular canal in

three-dimensional space was constructed, as reported by previous studies [13,14]. In this coor-

dinate system, the XY-plane was always paralleled to the horizontal plane, the XZ-plane and

the YZ-plane were perpendicular to the XY-plane, and also vertical to each other. The animal

head was fixed in a stereotaxic platform mounted within a gimbal atop a servo-control earth-

vertical rotating table (Kollmorgen goldline direct drive rotary servo motor, model D083M-

22-1310) whose rotation plane was paralleled to the horizontal plane. Therefore, the orienta-

tion of the animal head could be freely adjusted. The original orientation of the animal head

for the angular measurement of three canal planes was the Y-axis perforated from the right

external auditory canal to the left of two ears, the X-axis perforated from the center of the con-

nection-line between left and right external auditory canals to the posterior edge of the incisors

meeting and entering the maxillary bone [33]. Therefore, the longitudinal axis of the animal

body and the head line connecting centers of left and right external auditory canals both run

through the rotation axis.

Surgery and recording techniques

The surgical approach was similar to previously studies [13,14]. Animals were maintained

under general anesthesia by inhaling 1–5% isoflurane [34] before and during surgery and sin-

gle unit recording. Vestibular nerves and Scarpa’s ganglion were exposed approximately at

0.5–1.0 mm anterior to the facial nerve canal and 1.0–2.0 mm medial to the superior ampulla

through extracranial approach.

To record neural activity, glass micropipette electrode (WPI, model M1B100F-4) was pulled

and afterward filled with 3M NaCl solution to achieve 20–40 mO impedance. Then, the glass

electrode was held in position over the nerve using a three-dimensional manipulator (You,

model US-3F) fixed on a hydraulic microdrive (Narishige International USA, models MO-22).

Next, the glass electrode driven by the microdrive was carefully inserted into the vestibular

nerve. Then the microdrive was slowly advanced until the glass electrode isolated a single

nerve fiber or neuron cell body and identified extra axonal activity of neuron (spikes). Neuron

signals were inputted into an extracellular amplifier (Dagan, model 2400A) at a gain from 500

to 5,000 and the band-pass filter from 300 to 3,000 Hz. Finally, neural activities were recorded

by the CED Spike2 neural signal acquisition software.

SCNs innervation identification and canal plane adjustment

Once a neuron was well isolated, a combination of stimuli consisting of yaw and pitch animal

head rotation by hand were performed, and afterwards the innervating semicircular canal was

immediately identified through monitoring the response activity during rotations [13]. Then

the platform was adjusted to make sure that the plane of the identified semicircular canal was

brought into the rotation plane according to Hullar’s measure [33]. In this situation, the spon-

taneous activity of each neuron was recorded at least 20 seconds before the start of the stimula-

tion. To describe a sinusoidal stimulation, two parameters are needed, frequency and

amplitude. Thus, frequency and amplitude test were designed for SCNs to investigate the reli-

ability of NLSA.

Neural response activity in response to frequency

Neural activity in response to frequency was measured through constant amplitude (80 deg/s)

SRS applying multiple frequencies. For a complete frequency trial to a neuron, all three

Nonlinear least-squares algorithm and neural response analysis
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sequentially increased frequencies (0.2, 0.5 and 1 Hz) were applied in this test. The stimulus

with any frequency was repeated 10–20 cycles.

Neural response activity in response to amplitude

Neural activity in response to amplitude was tested through constant frequency (0.2 Hz) SRS

applying sequentially increased amplitudes (peak head angular velocity). A complete ampli-

tude trial to a neuron must include all the 6 amplitudes (60, 80, 100, 120, 150, 180 deg/s). Addi-

tionally the stimulus with any amplitude was repeated 10–20 cycles.

Nonlinear least-squares algorithm with sinusoidal model

The nonlinear least-squares algorithm is a mathematical method for parameters estimation of

static nonlinear model, where the minimum of error sum of squares is the criterion [30]. In

the present study, the static nonlinear model was a sinusoidal model and possessed the follow-

ing form:

y ¼ Asinðox þ φÞ þ B ð1Þ

where x was the given system input, y was the observed system output, A was the amplitude, ω
was the frequency, φ was the phase and B was the offset. When a set of n data points, (x1, y1),

(x2, y2), � � �, (xn, yn), were observed during the system test, the parameters, A, ω, φ and B, were

calculated. The amplitude A and offset B could be acquired straightly from the measurement

of the range of y1 to yn in raw data, the ordinary frequency ω was already known as the stimula-

tion frequency (SRS). Therefore, only the last parameter, φ, needed to be estimated through

the following equation based on these data:

S ¼ min
Xn

i¼1
½yi � ðAsinðoxi þ φÞ þ BÞ�2 ð2Þ

where S was the least error sum of squares, and 1� i� n. Then, the lower and upper bound

were set for the starting value of the phase. The algorithm for sinusoidal fitting was imple-

mented through function lsqnonlin in Matlab (version 9.2.0, MathWorks, Natick, MA). After

each time of fitting, the returned phase value (φ) was used as the starting point for the next iter-

ation of fitting until the standard deviation was under the threshold set before the experiment.

Data analysis

All data were imported into Matlab (version 9.2.0, MathWorks, Natick MA) to calculate mean

spontaneous discharge rate (MSDR, spikes/s), interspike interval (ISI, ms), standard deviation

(SD) of ISI, coefficient of variation (CV) and normalized coefficient of variation (CV�). Based

on the regularity of neural discharge activities in resting state, SCNs were classified into differ-

ent groups. The regularity was quantified by CV� and calculated from the distribution of ISI

within a section of spontaneous activity of 20 seconds. SD was indicated by σISI, ISI mean was

symbolized by μISI, and CV was defined as CV = σISI / μISI, which could be straightly used to

show the discharge regularity of a neuron. However, CV varied with the mean of ISI [27], thus

CV�, when ISI mean was normalized to 15 ms, was chosen to quantify the discharge regularity

and classify SCNs into regular (CV� < 0.10) and irregular group (CV� > 0.10) [14,29,35] in

the present study. To address the reliability, NLSA was used to fit both neural response activity

data and stimulation with sinusoidal function within each rotation section. Only the neural

response activity to SRS for more than 5 complete cycles was collected for further analysis

(Data inclusion criteria). Then R2 was used to assess how reliable each fitting function was to

Nonlinear least-squares algorithm and neural response analysis
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describe the neural response activity, which ranged from 0 to 1. The more reliable the fitting

function, the more approximated R2 to 1.

Statistical analysis

Data were presented as mean ± SD. Student’s t-test was used to determine whether the average

results of two groups differed significantly from each other. The repeated measures ANOVA

(RANOVA) was used to compare the different results among different frequencies and ampli-

tudes (more than two groups) within the paired neuron response.

Results

262 SCNs were recorded, divided into 152 horizontal, 75 anterior and 35 posterior SCNs.

According to the discharge regularities in resting state, 189 neurons were classified into regular

SCNs and other 73 neurons were irregular SCNs. Under the data inclusion criteria (see Meth-

ods), a number of 265 and 182 fittings were implemented on regular and irregular SCNs sepa-

rately based on different stimulation.

Description of neural response activity and fitting function

The goal of the present study was to evaluate how reliable the neural response activity can be

when described by NLSA with sinusoidal model. According to the experimental protocol used,

SCNs were tested by frequency test or amplitude test and some examples are shown in Fig 1.

Fig 1A shows examples of a regular SCN (medium, CV� = 0.024) and an irregular SCN (bot-

tom, CV� = 0.127) responding to SRS in frequency test (0.2, 0.5 and 1.0 Hz). All the fitting

functions (red solid curves) described the dynamic neural response activity quite precisely dur-

ing SRS. R2 values for each fitting function also confirmed the above results: R2 > 0.98 for reg-

ular and R2 > 0.91 for irregular. Fig 1B exhibits examples of a regular SCN (medium, CV� =

0.036) and an irregular SCN (bottom, CV� = 0.364) responding to SRS in amplitude test (we

just chose 60, 120 and 180 deg/s as examples). All the fitting curves were also well qualified to

describe the corresponding neural response activity data (R2 > 0.85 for regular and R2 > 0.67

for irregular).

NLSA reliability assessment in SCNs

Fig 2 shows the R2 distribution of all fitting functions based on neural response activity data

recorded under different stimulation. R2 in the entire SCNs population was quite satisfactory,

especially for regular neurons. In the regular group, a percentage of 81.1 neurons showed an

R2 larger than 0.9 and 96.2% were above 0.8. Although the R2 in the irregular group was not as

well as that in the regular group, it was still good. A percentage of 60.4 irregular SCNs showed

an R2 larger than 0.8, and more than 81.3% of irregular SCNs showed an R2 above 0.7. There-

fore, most of R2 aggregated in the high value range (0.7–1.0) although the stimulation variation

was particularly large. As a conclusion, NLSA with sinusoidal model was qualified to describe

the neural response activity during SRS in a wide response range.

Effect of CV* on reliability

In order to address the impact factors associated to NLSA reliability and further extend the

application range, we tested R2 with some potential related factors. Since we noticed that R2 of

regular neurons tended to dominate a higher value range than that of irregular, as shown by

Fig 2, CV� was the first impact factor to be investigated. All the data of neuron response activ-

ity to 0.5 Hz SRS with 80 deg/s were collected, and then a plot for R2 as a function of CV� was

Nonlinear least-squares algorithm and neural response analysis
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Fig 1. Description of neural response activity and fitting functions in frequency test (A) and amplitude test (B). The upper black solid curves

indicated the dynamic head instantaneous angular velocity. The black circles in the medium and bottom rows show the dynamic instantaneous neural

response activity (instantaneous fire rate) to the corresponding stimulation for regular and irregular SCNs separately. The red solid curves over the data of

neural response activity indicate the fitting function calculated by nonlinear least-squares algorithm with sinusoidal model.

https://doi.org/10.1371/journal.pone.0190596.g001

Nonlinear least-squares algorithm and neural response analysis
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Fig 2. R2 distribution in the entire SCNs population. 256 and 182 fittings were implemented on regular and irregular SCNs separately. Most

of R2 of the fitting function calculated by NLSA with sinusoidal model aggregated within high value range (0.7–1.0). Furthermore, the R2 in

regular group was significantly higher than that in irregular group (t-test, P < 0.001).

https://doi.org/10.1371/journal.pone.0190596.g002
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illustrated in Fig 3. R2average value for regular SCNs (0.95 ± 0.06) was higher than that for

irregular (0.75 ± 0.14), and the difference was significant (t-test, P = 0.004). Further, R2 exhib-

ited a strong dependence on discharge regularity quantified by CV�: the more irregular (larger

CV�) the discharge regularity, the smaller the value of R2. In conclusion, R2 of the fitting func-

tion for neural response activity description has a negative correlation with CV�.

Fig 3. Effect of discharge regularity on the reliability of NLSA (n = 98). R2 of fitting function based on the data of neural response activity under

constant SRS (frequency = 0.5 Hz, amplitude = 80 deg/s) as a function of CV*. The more regular the discharge regularity (quantified by CV*), the more

reliable the NLSA.

https://doi.org/10.1371/journal.pone.0190596.g003

Nonlinear least-squares algorithm and neural response analysis
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Effects of frequency and amplitude on reliability

Generally, the modulation of neural response activity can be driven by stimulation. Thus, SRS

frequency and amplitude (peak head velocity) are other potential impact factors. First, we

investigated the relationship between R2 and frequency based on the data of SCNs completing

the complete frequency trial, and then R2 was plotted as a function of frequency for regular

and irregular neurons in Fig 4A and 4B respectively. Although R2 values changed slightly fol-

lowing the increased frequency both in regular and irregular group, statistical analysis exhib-

ited a significant negative effect of frequency on R2 from 0.2 to 1.0 Hz (RANOVA, P = 0.001),

which indicated that increased frequency reduced the reliability of this method for neural

response activity description. Additionally, this negative effect was stronger in irregular group

than that in regular (RANOVA, P = 0.028). Second, we examined the effect of amplitude on

reliability of NLSA based on neural response activity data acquired from complete amplitude

trial, which is shown in Fig 4C and 4D. R2 increased continuously as amplitude increased from

60 to 180 deg/s, which was more conspicuous in irregular group. Statistical analysis further

confirmed this conclusion of a significant positive effect of amplitude on R2 within this range

(RANOVA, P< 0.001), which indicated that large amplitude could improve the reliability of

NLSA for neural response activity description. Furthermore, the positive effect of amplitude

on irregular group was stronger than that on regular (RANOVA, P = 0.002). Additionally, R2

distribution range (variation) was reduced by increased amplitude in both regular and irregu-

lar group (Fig 4C and 4D), which was the opposite as in frequency analysis (Fig 4A and 4B).

All the above results implied that NLSA with sinusoidal model was qualified to analyze neural

response activity data in a wide response range but not suitable for the data analysis under

extreme high frequency.

Discussion

Exploration of neural response properties and neural information transformation through

neural activity under stimulation is a main work in neuroscience. Therefore, a reliable mathe-

matical method for data analysis of neural response activity is extremely vital.

In the present study, we reported for the first time the reliability of NLSA with sinusoidal

model on the description of neural response activity during SRS in the vestibular system. Our

data showed that R2 of the fitting function in the entire population of SCNs were quite satisfac-

tory, more than 96.6% of regular SCNs had an R2 above 0.8 and more than 81.3% of irregular

was above 0.7, suggesting that NLSA was a reliable mathematical tool and could be used to

analyze the data of neural response activity under SRS.

Furthermore, current study investigated for the first time the reliability variation of a math-

ematical method under different situations, which could guide us to use the analysis method

correctly and finally acquire reliable results. In most previous studies [12–14,35], a mathemati-

cal method was usually chosen to analyze the neural response activity within a wide response

range ignoring the reliability variation, usually leading us to ignore the reliability of the final

results. Thus, it was necessary to investigate the potential reliability impact factors for NLSA

with sinusoidal model. Here we demonstrated that not only discharge regularity (internal fac-

tor) but also stimulation (external factor) could impact the reliability of this analysis method.

The effect of discharge regularity on reliability was significantly negative, suggesting that this

method was more qualified to analyze the data of regular SCNs. This conclusion is in accor-

dance to previous findings on larger variation of neural electrophysiological activity in more

irregular neuron [14,29,35]. The effect of frequency and amplitude on reliability was negative

and positive respectively, which indicated that this method was more suitable for the data anal-

ysis of neural response activity under rotational stimuli with low frequency and high

Nonlinear least-squares algorithm and neural response analysis
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amplitude. These conclusions are very important for the application range selection of this

mathematical method.

It is also the first time that the reliability of a mathematical method was revealed within

nonlinear neural response range [19] in the vestibular system. Although within linear response

range, vestibular neurons have been characterized in terms of dynamic response property

Fig 4. Effects of stimulation on NLSA reliability. A (n = 30) and B (n = 20) exhibited the negative effect of frequency on the reliability for data analysis of

regular and irregular SCNs separately. C (n = 18) and D (n = 18) showed the positive effect of amplitude on the reliability for data analysis of regular and

irregular SCNs respectively.

https://doi.org/10.1371/journal.pone.0190596.g004

Nonlinear least-squares algorithm and neural response analysis
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from relatively low to extreme high frequency [12–14,35], neural response detection threshold

[17,18], preferred rotation plane in three-dimension space [33,36], and linear information

encoding for upstream neurons or brain [13,15,16,37–39], we still don’t have enough informa-

tion regarding neural response property in the broader nonlinear response range because of

lacking a reliable method for data analysis of asymmetric neural response activities between

excitatory and inhibitory stimulation under the same stimulation intensity. Therefore, a reli-

able method is urgently needed in nonlinear response range. Our current work confirmed that

NLSA with sinusoidal model was more qualified to analyze the data under stimulation with

higher amplitude (peak angular velocity), indicating that it could be used in nonlinear

response range, helping us to explore the undiscovered neural response properties and infor-

mation transformation in nonlinear response range.

Overall, NLSA with sinusoidal model resulted to be a pretty reliable mathematical method to

analyze neural activity in response to SRS in SCNs. This mathematical method was more reliable

for the data analysis of regular neurons and neural response activity under low frequency stimu-

lation in nonlinear response range. All these conclusions reduced the previous restrictions and

extended the application into nonlinear response range, providing a solid foundation for our fur-

ther study in vestibular system. However, this just creates a new beginning for the reliability dis-

cussion of mathematical methods used in neural activity analysis. Further studies are needed in

the future to compare the results of NLSA to other mathematical methods, for revealing more

accurate characteristics of neuron system based on superior analysis method selection.
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