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Epithelial and mucosal barriers are critical interfaces physically separating the body

from the outside environment and are the tissues most exposed to microorganisms

and potential inflammatory agents. The integrity of these tissues requires fine tuning

of the local immune system to enable the efficient elimination of invasive pathogens

while simultaneously preserving a beneficial relationship with commensal organisms and

preventing autoimmunity. Although they only represent a small fraction of circulating

and lymphoid T cells, γδ T cells form a substantial population at barrier sites and

even outnumber conventional αβ T cells in some tissues. After their egress from the

thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal

and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and

Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because

of their preferential location in barrier sites, γδ T cells are often directly or indirectly

influenced by the microbiota or the pathogens that invade these sites. More recently, a

growing body of studies have shown that γδ T cells form long-lived memory populations

upon local inflammation or bacterial infection, some of which permanently populate the

affected tissues after pathogen clearance or resolution of inflammation. Natural and

induced resident γδ T cells have been implicated in many beneficial processes such as

tissue homeostasis and pathogen control, but their presence may also exacerbate local

inflammation under certain circumstances. Further understanding of the biology and role

of these unconventional resident T cells in homeostasis and disease may shed light on

potentially novel vaccines and therapies.
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INTRODUCTION

Epithelial and mucosal tissues form physical barriers separating the body from the outside world.
They are constantly exposed to a wide range of stressors such as infectious agents and their
toxins capable of damaging barrier tissues. Barrier surface interactions with microorganisms
extend far beyond encounters with pathogenic microbes; indeed, these tissues are typically
mutualistic ecosystems that maintain beneficial relationships for resident commensal organisms
while providing support to the tissue (1). Because of the complexity of these interfaces, the immune
system is tightly regulated in order to eliminate invading pathogens while maintaining a robust
commensal environment. It is now well established that the microbiota plays a significant role in
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educating immune cells and promoting protective anti-infectious
responses (2–4). However, the microbiota may also play an
important role in aberrant inflammation (5, 6). In addition,
pathogenic agents also leave their imprint on the immune
system and generate long-lasting memory responses. Protective
immunity has mainly been the purview of conventional effector
memory (TEM) or central memory (TCM) T cells and B cells.
More recently, the discovery of conventional resident memory T
cells (TRM) (7, 8), innate immune memory also known as trained
immunity (9, 10), and other unconventional memory responses
(11, 12) has focused attention on tissue-specific immunity at
barrier locations.

γδ T cells are an unconventional T cell population that display
immunologic features common to both the innate and adaptive
immune systems (13). This dual nature of γδ T cell biology
is typified by their non-MHC-restricted antigenic specificity
while mounting rapid immune responses to a wide range of
tissue stressors (14), generally referred to as “lymphoid-stress
surveillance” (15). γδ T cells are the first T cells generated during
embryonic development and quickly seed peripheral tissues
where specialized subsets are maintained for life in residence.
These unconventional T cells are only found at low frequencies
in lymphoid tissues and the blood in adult humans and rodents;
however, they are enriched in epithelial and mucosal tissues
(16–19). Generally, distinct barrier tissues harbor mostly non-
overlapping γδ T cell subsets with non-redundant functions
(17). Some tissues contain unique and highly specialized γδ

T cell subsets that are not found elsewhere in the body. For
example, Vγ3Vδ1+ skin dendritic epidermal T cells (DETC)
reside exclusively in the skin epidermis while Vγ5+ T cells
reside exclusively in the intestinal epithelium [the Garman
nomenclature (20) is used throughout this review for murine
γδ T cells] (21). The development and selection processes that
regulate the differentiation of these cells are unique and result
in the generation of highly adapted cells that actively survey
neighboring cells, sense and respond to stresses of various nature
and participate in many tissue processes. Thus, these natural
tissue-resident γδ T cells are programmed sentinels that are also
shaped by and highly adapted to their tissue environment.

Because of their preferential location in barrier sites, γδ T cells
are often directly or indirectly influenced by the microbiota or
the pathogens that invade these sites. The steady-state microbiota
may influence the generation, effector functions, or maintenance
of γδ T cells (22–24). These commensal-induced γδ T cells adapt
to their tissue of residence where they add another level of
immune surveillance andmay be mobilized in many pathological
contexts including inflammation (25–27) and cancer (28, 29).
These tissue-resident γδ T cells are also mobilized during
infection to promote anti-pathogen immunity (30) and represent
innate first responders during infection. Alternatively, pathogen-
induced adaptive γδ T cells appear to follow a more conventional
T cell maturation pathway, resulting in delayed activation
and expansion while favoring the establishment of long-lasting
memory and heightened protective potential upon pathogen re-
exposure. Throughout this review, the term “adaptive” will be
utilized to describe γδ T cells having features consistent with
conventional αβ T cells. This review will focus on the tissue

adaptation of tissue-resident natural γδ T cells and adaptive γδ

TRM cells in barrier tissues while highlighting their development,
maintenance and role in health and disease.

γδ T CELLS OF HUMANS AND MICE

Murine γδ T cells are often segregated into different subsets
based on their Vγ T cell receptor (TCR) chain, as it is generally
associated with tissue tropism and a bias in effector function
(31, 32) (Table 1). It is well established that γδ T cell ontogeny is
temporally controlled andmanifested by “waves” of development
(76). The factors regulating γδ T cell development have been
recently reviewed (77, 78). Most barrier tissue γδ T cells develop
early during fetal development in the fetal/neonatal thymus with
the first thymic wave of γδ T cells starting at embryonic day
13 and giving rise to DETC characterized by surface expression
of an invariant Vγ3Vδ1 TCR (16). Vγ3Vδ1+ DETC migrate
to the skin epidermis (18, 76, 79) and produce IFNγ (80) and
other cytokines (81, 82), and growth factors (83, 84). From
embryonic day 14 to the perinatal period, the fetal/neonatal
thymus generates other innate-like [also called “natural” (85)] γδ

T cells, including the IL-17A biased quasi-invariant Vγ4Vδ1+ T
cells which preferentially migrate to the genital tract, the tongue
and the lungs (16, 76, 86). Fetal-derived γδ T cells are typically
considered innate-like due to their reduced TCR sensitivity (87)
and rapid functional response to innate stimuli like cytokines and
pathogen- or danger-associated molecular patterns (72, 88, 89).
IL-17A-producing γδ T cells (referred to as γδ17 T cells in this
review) are characterized by the expression of the transcription
factor RORγt (90), chemokine receptor CCR6 (86, 90, 91),
scavenger receptor SCART2 (92), CD25 (93), but lack CD27
(86, 90, 94). In contrast, IFNγ-producing γδ T cells express
the transcription factor T-bet and surface receptors NK1.1 and
CD27. Consistent with other IFNγ producing lymphocytes, they
also express high levels of the IL-2/IL-15 receptor β chain CD122
(93, 95). It was initially thought that γδ17 T cells acquired their
peripheral effector fate due to a lack of antigenic selection in
the thymus; antigen-experienced cells were programmed tomake
IFNγ in the periphery while antigen-inexperienced cells were
programmed to make IL-17A (80, 87, 95, 96). However, recent
evidence suggests that signaling through the TCR is required for
γδ17 T cells development and that the strength of the signal is
the critical factor determining their functional lineage. A strong
TCR signal promotes an IFNγ-dominant lineage whereas a weak
TCR signal promotes an IL-17A-dominant lineage (97–99). An
additional level of regulation comes from the thymic cytokine
milieu: while signaling through IL-15Rα restrains γδ17 T cell
development in cis (100), IL-7 promotes their expansion (101).
An interesting feature of γδ17 T cells is their functional plasticity,
which allows them to co-produce IL-17A and IFNγ under certain
circumstances (61, 102). Although CD27− γδ T cells have a
permissive chromatin state at the Il17a and Ifng loci, only a
handful of situations have been associated with IL-17A and IFNγ

co-production in vivo, including oral Listeria monocytogenes
(L. monocytogenes) infection (61, 62) and peritoneal tumor
(102). Post-transcriptional repression of IFNγ production has
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TABLE 1 | Memory and tissue resident γδ T cells in infection and disease.

Tissue Subset(s) Role Response Cytokines Other features Context References

Systemic Vδ2− Protective Memory? IFNγ Stress surveillance against CMV and

cancer

CMV (33–37)

ND Protective Memory? IFNγ Antigen specific expansion Vaccinia (38)

Vγ9Vδ2 Protective Memory IFNγ Cross-reactive to HMBPP Monkeypox (39)

Vγ9Vδ2,

Vδ1

Protective Memory? IFNγ Late expansion after initial exposure P. falciparum (40–43)

Vγ1.1Vδ6.3 Protective Memory? M-CSF,

CCL5, CCL3

Oligoclonal expansion P. chabaudi (44)

Vγ9Vδ2 Protective Memory IFNγ Cross-react with M. tuberculosis BCG (45, 46)

Lungs Vγ9Vδ2 Protective Memory Granzyme B Activated by HMBPP M. tuberculosis (45–47)

Vγ1.1−,

Vγ2−
Protective Innate IL-17A High expression of IL-1R1, IL-18R, and

IL-23R

B. pertussis (48)

Vγ2 Protective RM IL-17A B. pertussis-specific B. pertussis (48)

Peritoneum Vγ4 Protective RM IL-17A CD27-CD44+ Effector memory phenotype S. aureus (49)

Vγ1.1,

Vγ2

Protective Innate ND Polyclonal response S. aureus (49)

Skin Vγ4Vδ1 Protective RM IFNγ, TNFα TLR2/IL-1β dependent response S. aureus (50)

Vγ2Vδ4 Pathogenic RM IL-17A/F CCR2-dependent recruitment to tissue Psoriasis (25, 26)

Vγ2 Pathogenic RM IL-17A Constitutive expression of CCR6, RORγt,

and IL-23R

Dermatitis (51)

Vγ9Vδ2,

Vδ1

Variable Memory IL-17A, IFNγ,

TNFα

Pathogenic IL-17A; Protective IFNγ SCC/Melanoma (52, 53)

Vγ3Vδ1 Protective Innate IFNγ,

KGF-1/2

Immotile; semi-activated Wound, dermatitis,

S. aureus, cancer

(54–58)

Intestine Vγ9Vδ2 Protective Memory IL-17A, IFNγ,

IL-4, TNFα

Multifunctional cytokine production L. monocytogenes (59, 60)

Vγ4Vδ1 Protective RM IL-17A, IFNγ Multifunctional cytokine production L. monocytogenes (61, 62)

Vδ1 Pathogenic Infiltrating IFNγ Interacts with colonic fibroblasts IBD (63, 64)

Vγ9Vδ2,

Vδ1

Pathogenic RM GM-CSF,

IL-17A

Pathogenicity dependent on MDSC

regulation

CRC (65)

Vγ5,

others

Protective Innate IFNγ,

Granzymes

Highly motile; semi-activated S. enterica, T.

gondii

(66–69)

Breast Vγ2 Pathogenic RM G-CSF,

IL-17A

Pathogenicity dependent on MDSC

regulation

Breast Cancer (70)

Brain Vδ2, Vδ1 Protective Memory IFNγ, TNFα,

Granzyme B

Found in the context of γδ expansion

methodology

Neuroblastoma (71)

Vγ2 Pathogenic Innate IL-17

cytokines,

IL-21

IL-23- and IL-1β-dependent activation EAE/MS (72)

ND Pathogenic Innate IL-17A Part of a microbiota-gut-brain axis Ischemic stoke (27)

Joints Vγ1.1,

Vγ1.2

Pathogenic Innate IL-17A IL-23- and IL-1β-dependent activation CIA (73)

ND Pathogenic Innate IL-17A IL-23-dependent activation Ankylosing

spondylitis

(74)

Eyes Vγ1.1,

Vγ2

Pathogenic Innate? IL-17A Enhanced uveitogenic αβ T cell

development

Uveitis/EAU (75)

Vy2 Protective Resident IL-17A Induced by C. mastidis colonization Ocular P.

aeruginosa/

(24)

CD1d- and IL-1β-dependent Candida albicans

Primate γδ T cells Rodent γδ T cells

Tissue Subset(s) Role Response Cytokines Other features Context References

Systemic Vδ2− Protective Memory? IFNγ Stress surveillance against CMV and

cancer
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Vγ9Vδ2 Protective Memory IFNγ Cross-reactive to HMBPP Monkeypox (39)
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CCL5, CCL3

Oligoclonal expansion P. chabaudi (44)

Vγ9Vδ2 Protective Memory IFNγ Cross-react with M. tuberculosis BCG (45, 46)
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Vγ9Vδ2,
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Vγ4Vδ1 Protective RM IL-17A, IFNγ Multifunctional cytokine production L. monocytogenes (61, 62)

Vδ1 Pathogenic Infiltrating IFNγ Interacts with colonic fibroblasts IBD (63, 64)

Vγ9Vδ2,

Vδ1

Pathogenic RM GM-CSF,

IL-17A

Pathogenicity dependent on MDSC
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CRC (65)

Vγ5,

others

Protective Innate IFNγ,

Granzymes

Highly motile; semi-activated S. enterica, T.

gondii

(66–69)

Breast Vγ2 Pathogenic RM G-CSF,

IL-17A

Pathogenicity dependent on MDSC

regulation

Breast Cancer (70)

Brain Vδ2, Vδ1 Protective Memory IFNγ, TNFα,

Granzyme B

Found in the context of γδ expansion

methodology

Neuroblastoma (71)

Vγ2 Pathogenic Innate IL-17

cytokines,

IL-21

IL-23- and IL-1β-dependent activation EAE/MS (72)

ND Pathogenic Innate IL-17A Part of a microbiota-gut-brain axis Ischemic stoke (27)

Joints Vγ1.1,

Vγ1.2

Pathogenic Innate IL-17A IL-23- and IL-1β-dependent activation CIA (73)

ND Pathogenic Innate IL-17A IL-23-dependent activation Ankylosing
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ND, not determined; RM, resident memory; CMV, cytomegalovirus; BCG, M. bovis BCG strain; SCC, squamous cell carcinoma; IBD, inflammatory bowel disease; CRC, colorectal

cancer; EAE/MS, experimental autoimmune encephalomyelitis/multiple sclerosis; CIA, collagen-induced arthritis; EAU, experimental autoimmune uveitis.
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recently been reported in γδ17 T cells (61); however, whether co-
production of IL-17A and IFNγ is regulated by derepression has
not been evaluated.

Although most γδ17 T cells fall into the innate-like category,
adaptive-like differentiation of naïve γδ T cell precursors
into mature γδ17 T cells in peripheral lymphoid organs has
also recently been reported in multiple models. After the
identification of phycoerythrin (PE) as a γδTCR antigen, PE-
specific γδ T cells were shown to transition from a naïve CD44lo

CD62Lhi to an activated CD44hi CD62Llo phenotype after
immunization with PE (103). These γδ T cells expressed RORγt
and inflammatory cytokine receptors IL-1R1 and IL-23R which
drove production of IL-17A without extensive proliferation
(103). Similarly, imiquimod (IMQ)-induced skin inflammation
andMOG-induced experimental autoimmune encephalomyelitis
(EAE) induced the de novo generation of γδ17 T cells in draining
lymph nodes (104, 105). These unrelated models demonstrate
that the differentiation of some γδ17 T cell subsets is optimal
with a TCR signal and in the presence of IL-23, reminiscent of
the multistep development of naïve CD4+ T cells. In contrast
to natural γδ17 T cells, these de novo generated cells are often
referred to as inducible γδ17 T cells (14).

γδ T cell subsets in human and non-human primates are
generally divided into two major populations based on the Vδ

TCR chain: Vδ2+ and Vδ2− γδ T cells. Vδ2+ T cells appear
to develop almost exclusively in the fetal liver and fetal thymus
(106, 107) and form the predominant γδ T cell population
in the peripheral blood of adult humans (108, 109). Most
fetal, cord blood and adult Vδ2+ T cells express the semi-
invariant Vγ9Vδ2 TCR with a public germline encoded CDR3γ
sequence and a more diverse CDR3δ sequence (110). Despite
their preferential localization in the blood, Vγ9Vδ2+ T cells can
also be recruited to inflamed tissues where they can participate
in pathogen clearance or promote inflammation (39, 45, 47)
(Table 1). The TCR combination allows themajority of Vγ9Vδ2+

T cells to recognize prenyl pyrophosphate metabolites (111),
broadly referred to as phosphoantigens (PAgs), presented in
the context of butyrophilin (BTN)3A1 and BTN3A2 (112–115).
PAgs are metabolic intermediates produced by the eukaryotic
mevalonate pathway and the microbial 2-C-methyl-D-erythriol
4-phosphate (MEP) pathway, which generates one of the most
potent Vγ9Vδ2+ T cell activator (E)-4-hydroxy-3-methyl-but-
2-enyl pyrophosphate (HMBPP) (111). Fetal Vγ9Vδ2+ T cells
express genes found in adult cells and can expand and produce
IFNγ in response to HMBPP stimulation (110). By 1 year of age,
almost all Vγ9Vδ2+ T cells have acquired a memory phenotype
and can rapidly produce IFNγ and cytotoxic molecules (108,
116), similar to circulating adult cells (108, 116, 117). These
data suggest that human Vγ9Vδ2+ T cells are preprogrammed
fetal-derived effectors with a restricted TCR specificity. Thus,
Vγ9Vδ2+ T cells seem to belong to the natural, innate-like
population of lymphocytes.

In contrast to Vγ9Vδ2+ T cells, the Vδ2− γδ T cell subset
is heterogenous (106) and preferentially resides in epithelial
tissues such as the skin (118) and intestines (119) and appears
to form resident populations in the liver (120) (Table 1). Vδ2−

γδ T cells mainly consist of Vδ1+ T cells, with fewer Vδ3+ and

Vδ5+ T cells. While most antigens recognized by Vδ2− γδ T
cells remain unknown, the antigens identified to date suggest a
broad reactivity to MHC-like molecules like endothelial protein
C receptor (EPCR) (33) and CD1molecules (33, 121, 122), stress-
induced ligands (123) and algal phycoerythrin (103). Vδ2− γδ T
cell TCR are highly diverse in cord blood but their TCR repertoire
becomes more restricted into adulthood (124). Furthermore,
they clonally expand in response to cytomegalovirus (CMV)
infection and differentiate into CD45RA+ effector memory T
(TEMRA) cells (34, 35, 125–127). Thus, the Vδ2− γδ T cell
repertoire appears to be shaped by TCR-dependent selection
events mediated by microbial encounters throughout life. As
Vδ2− γδ T cells can recognize stress antigens, non-infectious
events that trigger a response, such as cancer development, may
also shape their repertoire (36, 128).

γδ T cells can provide different physiologic roles depending
on the nature and context of the insult, the tissue involved and
the γδ T cell populations mobilized. At steady state, γδ T cells
are involved in many biological processes aiming at maintaining
barrier integrity (e.g., by promoting epithelial cell survival
and homeostasis) (82–84, 129) and regulating thermogenesis
(130). Because of their rapid sensing of stress and recruitment
to inflamed sites, γδ T cells are often involved in shaping
early immunologic events. They can promote the activation,
maturation, and recruitment of dendritic cells (DC), neutrophils,
B cells, and conventional T cells [for a detailed review see
(131)]. γδ T cells are also a direct and potent source of critical
inflammatory cytokines like IFNγ, TNFα and IL-17A in many
pathological contexts, including infection (59, 111, 132–134),
autoimmune disease (25, 26, 72, 135) and cancer (29, 136–
138). As such, they are also an integral part of the effector
response. At later phases, γδ T cells can promote the resolution of
the inflammation through the production of anti-inflammatory
molecules like TGFβ (139, 140). Finally, they sustain tissue repair
and remodeling after infection or injury (54, 83, 132, 141). Thus,
γδ T cells are critically involved in regulating health during
homeostasis and disease.

THE FIRST TISSUE-RESIDENT T CELLS:
INTESTINAL AND EPIDERMAL γδ T CELLS

Many γδ T cell subsets are constrained to specific tissue locations.
DETC and intestinal intraepithelial lymphocytes (IEL) with a
γδTCR (γδ IEL) populate the two largest interfaces of the body,
the skin and the intestines, respectively. DETC and γδ IEL are
shaped within their respective tissues where they provide adapted
support to maintain tissue homeostasis and respond to stresses
or invading pathogens. These populations have recently been the
focus of an in-depth review (21). Thus, only features relevant to
this review will be discussed here.

Dendritic Epidermal T Cells– DETC
DETC are the first T cells to develop during embryogenesis and
by far the most abundant T cell subset present in the mouse
skin epidermis (142). Their name stems from the unique DC-
like morphology observed during homeostasis. DETC form a
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highly uniform population characterized by the expression of
a canonical Vγ3Vδ1 TCR with no junctional diversity. The
mouse fetal thymus supports the generation of the entire DETC
precursor pool between embryonic day 13 and 18, after which
mature DETC are maintained life-long in the skin epidermis
by self-renewal (18, 76, 79, 143). The narrow developmental
window of DETC progenitors may result from the temporally
restricted expression of a Btn-like protein, Skint-1, by embryonic
medullary thymic epithelial cells (144–146). Expression of Skint-
1 is required at various stages of DETC thymic development
to regulate their biology. First, Skint-1 promotes the thymic
maturation of Vγ3Vδ1+ T cell progenitors, without which the
skin epidermis would be devoid of mature DETC (144–146).
Second, Skint-1 educates DETC precursors by promoting IFNγ

production over IL-17A (80), instructing skin-homing (147),
and attenuating TCR responsiveness by increasing its activation
threshold (87). Similarly, TCR signaling seems required for the
maturation of DETC precursors (148–150) and the establishment
of a mature population with innate-like properties in the skin
epidermis (87, 148–151). It is also indirectly involved in the
thymic egress and subsequent migration to the skin of positively
selected progenitor cells. Indeed, TCR signaling induced the
expression of sphingosine-1-phosphate receptor 1 (S1P1) and
the skin-homing chemokine receptor CCR10, which mediates T
cell exit from the thymus and migration toward keratinocyte-
derived CCL27, respectively (152, 153). Additional molecules like
E- and P-selectin ligands and CCR4 may also play a role in the
establishment or maintenance of the DETC population in the
skin (154).

During homeostasis, mature DETC are maintained in a semi-
activated state and constantly survey the epidermis through the
extension of motile basal dendrites and by projecting dendrites
toward the apical epidermis. These dendrites establish stable
synapses at the squamous keratinocyte junctions that allows
DETC to survey several surrounding cells simultaneously (155).
Each apical dendrite ends with phosphorylated tyrosine–rich
aggregates in synapse-like structures enriched with TCR and
phosphorylated TCR signaling intermediates. Therefore, mature
DETC might receive continuous TCR-mediated signals from
neighboring cells residing in the epidermis, which are necessary
for their long-term maintenance in the tissue (156). Although
healthy skin does not appear to express DETC TCR ligand
detectable by soluble Vγ3Vδ1 TCR tetramers (157), exposure of
the skin to low grade stresses might sustain basal expression of
ligands sufficient for their survival but below the sensitivity of
this detection method. Indeed, DETC express basal levels of the
type-2 cytokine IL-13 in resting skin, consistent with some level
of activation at steady state (82). Absence of DETC-derived IL-
13 induces an epithelial cell stress response that disrupts barrier
integrity. As such, DETC play a key role in preserving skin
homeostasis at steady state.

The skin is constantly exposed to a variety of pathological
conditions and stresses. Superficial damage to the epithelium
induces a stress response associated with upregulation of the
NKG2D ligand Rae-1 and leads to the further activation of
DETC (82, 158). Enhanced production of DETC-derived IL-
13 induces keratinocyte maturation, which promotes efficient

epithelial cell renewal, restoring tissue integrity (82). Shortly after
deep wounding, damaged keratinocytes in close proximity to the
lesion quickly and transiently upregulate a yet unidentified stress
antigen (156, 157, 159). DETC rapidly become activated in a
TCR dependent-manner and their activation is associated with
retraction of their dendrites and cellular rounding (54, 155, 159).
Full activation of DETC in this context requires engagement
of the TCR and costimulation provided by the junctional
adhesion molecule JAML (81), CD100 (semaphorin-4D) (160)
or NKG2D (161, 162), whose ligands are all upregulated in
damaged skin. Activated DETC provide anti-apoptotic signals to
keratinocytes and promote their survival through the production
of insulin-like growth factor-1 (84). DETC also produce many
additional growth factors, including keratinocyte growth factor
(KGF)-1 and KGF-2 (54, 83), inflammatory cytokines like
IFNγ and TNFα (81, 163) and chemokines (164) that favor
epithelial regeneration and wound closure. The important
and non-redundant contribution of DETC to wound repair
was demonstrated in Tcrd−/− mice or animals deficient in
DETC costimulatory signals. Lack of DETC or their impaired
activation led to a substantially delayed wound healing (54,
81, 160–162). Additional roles of DETC include regulation of
aberrant inflammation in a model of contact dermatitis (55) and
protection against UV-mediated DNA damage (165), cutaneous
infection (56) and development of malignancies (57, 58, 166).
Interestingly, DETC may mediate their anti-cancer effect by
direct cytolytic activity in a TCR- and NKG2D-dependent
manner in vitro (57). Additionally, IL-13 production by DETC
favors the production of IgE (158), that promotes protective
anti-cancer immunity through a yet undetermined mechanism
involving tumor infiltrating FcεRI+ cells (166).

Mucosal and epithelial sites are not only patrolled by natural
resident cells like DETC, they are also kept under the surveillance
of pathogen-induced CD8+ and CD4+ αβ TRM cells which
provide local long-lived protection against reinfection (7, 8).
Natural and induced resident T cells occupy a similar space.
Cutaneous infection by herpes simplex virus (HSV) generates
CD8+ TRM that remain in the basal epidermis around the lesion
site (167, 168). Surprisingly, the increased CD8+ TRM density
at the site of infection inversely correlated with DETC numbers
even several months after pathogen clearance. Conversely,
distant DETC-rich areas had a reduced CD8+ TRM population.
One potential explanation for the redistribution of resident
T cell subsets is that infection may lead to selective loss of
DETC, creating a niche for CD8+ TRM cell seeding. Indeed,
DETC are rapidly infected by HSV after cutaneous exposure
(169). HSV infection of non-neuronal cells is typically lytic
and may induce their death. However, alternative mechanisms
may also lead to loss of DETC as their redistribution was also
observed after intradermal injection of effector CD8+ T cells in
the absence of infection (168). DETC can also be temporarily
displaced by infiltrating NKT cells following acute stress (58),
demonstrating that conventional and unconventional αβ T cells
can colonize the skin and create a niche at the expense of
DETC. It has been proposed that these cells may compete for
maintenance signals like IL-15 or aryl hydrocarbon receptor
(AhR) ligands (170), which are necessary for mature DETC
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survival in the skin (171–174). Such competition should also
occur between αβ TRM generated by different, non-overlapping
infections as both populations would be expected to have similar
homeostatic requirements. However, it was recently reported
that the generation of new αβ TRM cells does not result in the
replacement of previously established TRM cells (175), suggesting
that limited resources like IL-15 may not be responsible for
redistribution of DETC and αβ TRM cells. Identifying the factors
involved in the maintenance of natural and induced T cell
populations is necessary to better understand their apparent
competition and would be beneficial for the design of targeted
local therapies.

Intestinal Intraepithelial Lymphocytes–γδ

IEL
The intestinal epithelium is actively patrolled by IEL, a large
fraction of which are unconventional γδ T cells expressing a
CD8αα homodimer in mice (19, 176). The intestine is colonized
by γδ IEL during the perinatal period. In contrast to the essential
role of the thymus in the generation other γδ T cell subsets, its
contribution to intestinal γδ IEL development is more limited.
Intestinal γδ IEL can develop extrathymically in athymic mice
but at lower numbers than in euthymic animals (177–180). IL-
7 production has been shown to be fundamental for γδ IEL
thymic and extrathymic intestinal development (181, 182). A
large fraction of γδ IEL express the Vγ5 TCR (79, 183). The
preferential expression of Vγ5 is controlled at the chromatin
level by IL-15-STAT5 signals, which regulate the accessibility
of the Vγ5 gene and favor its expression in thymocytes and
immature IEL (184). Despite the overrepresentation of the Vγ5
TCR among γδ IEL, the overall γδTCR repertoire in the intestinal
epithelium is diverse. Indeed, several mechanisms contribute to
the diversity of intestinal γδ IEL including various Vδ and Vγ

chain pairings, usage of the Jδ1 or Jδ2 segment and addition of
non-germline encoded nucleotides (79, 183). Because of their
TCR heterogeneity, γδ IEL have the potential to recognize a wide
array of potential antigens or ligands that include host-derived
molecules such as nonclassical and nonpolymorphic MHC class
Ib molecules T10 and T22 (185). Despite the similarity to MHC
class I molecules, T10 and T22 do not present peptide antigens.
T10/T22 reactivity is conferred by a specific W-(S)EGYEL
CDR3δ motif, which allows some Vγ5+, Vγ1.1+ and Vγ2+ γδ

IEL to bind T10/T22 (185). To date, the antigenic specificity of
the non-T10/T22 reactive γδ IEL remains obscure.

γδ IEL precursors do not require S1P1 for their emigration
from the thymus (186). However, γδ thymocytes and
unconventional (CD8αα+) recent thymic emigrants express
high levels of the gut homing receptors CCR9 (187, 188) and
α4β7 integrin (187–189). Interestingly, CCR9 is preferentially
expressed by antigen-inexperienced CD122lo or CD62Lhi

CD44int/lo thymocytes (189, 190), suggesting they have more
potential to home to the gut and that some γδ IEL did not
encounter their antigen prior to their migration into intestinal
tissues. This assumption was confirmed by the presence of
similar numbers of T10/T22 reactive γδ T cells in the intestinal
epithelium of B2m−/− mice, which lack surface expression of

T10/T22 (190). Intestinal γδ IEL might be selected based on
their TCR affinity more than their specificity, as suggested by the
inverse correlation between TCR affinity and CCR9 expression
(190). This unusual “non-selection” of a diversified γδ T cells
likely reflects the need to maintain a heterogeneous broadly
reactive population that can respond appropriately to the wide
variety of stresses and antigens encountered in the intestine.

Within the first few weeks of life, Vγ5+ T cells expand
in the intestinal epithelium and transition from an immature
to a mature phenotype (180). Despite the heavy microbial
colonization of the gut, γδ IEL expansion and maturation are
independent of the microbiota (66, 178). Instead, expansion
and maturation are regulated in a TCR-dependent manner
by the BTN-like (Btnl)1 and Btnl6 heterocomplex expressed
on the surface of enterocytes (180), reminiscent of Skint-1-
mediated selection of DETC in the thymus (144–146). Upon
selection by cells co-expressing Btnl1 and Btnl6, Vγ5+ T cells
upregulate CD25 and produce pro-inflammatory cytokines like
IFNγ, growth factors like GM-CSF and chemokines like CCL4
(180). The Btnl-mediated selection of intestinal γδ IELmay occur
in a similar fashion in humans, with Vγ4+ T cells being activated
by cells co-expressing BTNL3 and 8 (180). Once established in
the tissue, γδ IEL rely on the production of IL-15 by microbiota
stimulated intestinal epithelial cell (IEC) (191–193) and AhR
ligands (174) for their maintenance and survival. In return, γδ

T cells participate in the maintenance of tissue homeostasis
and barrier integrity. γδ IEL promote IEC proliferation and
maturation through multiple mechanisms that may include
production of KGF (83, 129, 141), regulating tight junctions (67),
producing anti-microbial peptides in response to pathobiont
invasion (68), limiting tissue damage, and promoting epithelial
repair after injury (141).

γδ IEL from specific pathogen-free (SPF) mice constitutively
express cytotoxic genes, including granzyme A and B (194), and
can lyse target cells directly ex vivo (195), consistent with an
anti-infectious role of intestinal γδ IEL. The absence of γδ T
cells in Tcrd−/− was associated with enhanced dissemination of
enteric bacteria (Salmonella enterica serovar Typhimurium) or
parasites (Toxoplasma gondii), rendering mice more susceptible
to systemic infection (67–69). Additionally, γδ IEL indirectly
protect from murine norovirus infection by secreting type I
and III interferons and increasing the resistance of IEC to
viral infection (196). They are also important in controlling
dissemination of commensals that may occur with loss of barrier
integrity after pathogen invasion or epithelial injury (197). Thus,
γδ IEL serve multiple functions in regulating immunity at the
mucosal interface with the environment.

Intestinal γδ IEL were initially thought to have limited
mobility within the epithelium (188). This view has recently
been challenged by two compelling studies that demonstrated
that intestinal γδ IEL are highly dynamic and constantly migrate
within the intestinal tissue. During tissue homeostasis, individual
γδ IEL survey a large surface area and contact numerous IEC
within a short period of time (66, 198). γδ IEL mainly remain
in the middle region of the intestinal villi, between the basement
membrane and the epithelial layer, but they also appear to
occasionally migrate to the intercellular space between IEC for
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a short period of time (66, 198). Although commensals do not
impact γδ IEL numbers, microbial colonization is required for
their normal distribution within the villi and their migratory
behavior in the tissue (66), and also promotes their cytotoxic
and anti-microbial functions (68, 195). These patterns drastically
change upon enteric infection with invasive bacteria or parasites.
Shortly after pathogenic exposure, γδ IEL preferentially localized
to pathogen-rich areas and decreased their normal surveillance
behavior. Reduced surveillance coverage was associated with
increased movement between IEC and the lateral intercellular
space in a behavior termed “flossing” (66, 69) that is regulated by
the tight junction protein occludin (198). These behavioral and
functional changes result from the MyD88-dependent sensing
of pathogenic microbes by IEC, and the specific abrogation
of MyD88 signaling in IEC severely blunted γδ IEL responses
(66, 68). γδ IEL at steady-state may also be activated through
their TCR as injection of a TCRδ-specific antibody diminished
intracellular calcium flux (199). It is therefore conceivable that
the IEC-γδ IEL dialogue could also involve TCR-mediated tissue
surveillance. Thus, γδ IEL continually survey epithelial integrity
via cross-talk with IEC which dictates γδ IEL behavior and leads
to their adaptation in the intestinal environment. While the exact
function of γδ IEL flossing remains unclear, its association with
pathogen hotspots and the importance of γδ T cell responses to
anti-infection immunity suggests an important role of flossing in
controlling intestinal infections or promoting epithelial repair.

Natural tissue-resident γδ T cells are remarkably adapted to
their tissue of residence, where they provide signals necessary
to maintain tissue homeostasis and barrier integrity while also
providing a rapid front-line defense against infectious assaults
continually encountered in epithelial tissues. Both DETC and
intestinal γδ IEL are adapted to efficiently survey their respective
tissues, through their placement/migration into the tissue
and communication with neighboring epithelial and immune
cells. Despite this, natural tissue-resident T cells may have to
compete for limited space or nutrients with de novo generated
conventional TRM cells after local infections. Whether direct
competition for resources and space or an undefined crosstalk
between these cells regulate tissue colonization is unclear and an
area of much interest.

MICROBIOTA-INDUCED γδ17T CELLS:
DIVERSIFIED EFFECTORS WITH
MULTIFACETED ROLES

Almost all tissues exposed to the environment are colonized by
established commensal communities, with the exception of the
eye for which the presence of a resident microbiome remains
a matter of debate (1). The presence of these microorganisms
shapes the local immune system and promotes protective
anti-infectious immunity, as exemplified by the anti-bacterial,
-fungal or -parasitic type-17 and type-1 responses triggered
by segmented filamentous bacteria in the intestines (2)
or Staphylococcus epidermidis (S. epidermidis) and other
commensals in the skin (3, 4), respectively. However,
commensal-specific T cells (especially intestinal TH17 cells)

can also have detrimental effects at remote sites under certain
circumstances, inducing pathological inflammatory responses
that lead to the development of diseases like arthritis and
autoimmune encephalomyelitis (5, 6).

As for conventional T cells, the microbiota also impacts γδ

T cell responses at many body sites. Interestingly, commensal-
induced γδ T cell responses appear to largely involve IL-17A-
producing cells regardless of their tissue distribution among
diverse sites such as the skin (4, 200), the liver (22), the oral
and peritoneal cavities (23, 201), the eye (24), the lungs (28)
and the intestines (29, 197). The generation and activation
requirements of microbiota-induced γδ T cells appear uniquely
adapted to the tissue location. First of all, the presence of
a microbiota is a prerequisite for the development of some,
but not all, tissue tropic γδ T cells. Indeed, antibiotic-treated
SPF or germ-free (GF) mice harbor fewer activated liver-
resident (22), pulmonary (28), peritoneal, and small intestinal
lamina propria (siLP) γδ17 T cells (23). In contrast, γδ IEL
numbers are independent of a microbiota (66, 178, 197).
Second, few identified microorganisms have been specifically
associated to particular γδ T cell populations: Corynebacterium
mastidis (C. mastidis) colonization with ocular Vγ2+ γδ17 T
cells (24), Corynebacterium accolens (C. accolens) and other
bacteria from the Corynebacterium genus producing mycolic
acid with skin Vγ2+ γδ17 T cells, and S. epidermidis with skin
Vγ2− γδ17 T cells (200). The expansion of Vγ2+ and Vγ2−

γδ T cell subsets by C. accolens and S. epidermidis association,
respectively, demonstrates that the γδ T cell responses can
adapt within the same niche. In contrast, other γδ T cell
subsets only require the presence of a microbiota without any
distinction between bacterial species (22, 28). Lastly, many
different signals control the activation and/or expansion of
commensal-induced γδ17 T cells, including lipid presentation by
the non-classical molecule CD1d (22), DC-mediated expansion
(24, 201) and activation/polarization (27, 29, 200) or MyD88
signaling pathways (23, 197). Cytokines like IL-1β (23, 24), IL-
23 (200) and IL-6 (28), either alone or in combination with
other activation signals, also participate in the induction or
propagation of IL-17A from microbiota-induced γδ T cells.

IL-17 family cytokines, including IL-17A, are key regulators
of mucosal and epithelial immunity. Over the past decade,
a multitude of roles, from the induction of protective
anti-infectious responses to the promotion of pathological
inflammatory processes, have been attributed to IL-17A (202).
Accordingly, the induction of γδ17 T cells by microbial
colonization has also been associated with seemingly contrasting
effects. Commensal-induced γδ T cells can mediate local
protection against penetrating commensals (197), pathogenic
bacteria or even yeast, as exemplified by the resistance displayed
by C. mastidis colonized animals to ocular Candida albicans
infection (24). In this model, induced γδ T cells were driving the
production of antimicrobial peptides such as S100A8 and S100A9
and the recruitment of neutrophils through the production of IL-
17A. As IL-17A can elicit these responses in virtually all mucosal
and epithelial surfaces, similar broad-spectrum anti-infectious
immunity might occur in other γδ T cell rich tissues. In contrast
to their protective effect against infection, microbiota-elicited
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γδ17 T cells may be beneficial (28) or harmful (29) in cancer.
Other local detrimental effects attributed to microbiota-induced
γδ17 T cells include the acceleration of nonalcoholic fatty liver
disease by liver-resident γδ17 T cells (22) and the exacerbation
of imiquimod-induced skin inflammation following C. accolens
association (200).

Microbiota-elicited γδ T cells can also impact distal immune
function. They express a plethora of homing receptors that allows
them to navigate to distant tissues and impact health or disease.
For example, γδ T cells are recruited to the ischemic penumbra
after ischemic stroke in a CCR6-dependent manner (203).
There, they contribute to exacerbate brain injury through the
production of IL-17A and subsequent recruitment of neutrophils
(203–205). In a recent study using a transient middle cerebral
artery occlusion mouse model, the γδ17 T cells recruited to the
ischemic brain originated from the small intestine and were
dependent on specific commensal species for their maintenance
(27). Alteration of the gut microbiota by antibiotic treatment
led to a reduction in intestinal γδ17 T cells and diminished
γδ T cell infiltration to the meninges, limiting injury. Thus,
commensal-induced γδ T cells may have local and distal effects
on pathological or physiological tissue processes.

It is now well established that the microbiota is a
critical component of human health and disease. In addition
to providing many enzymatic and metabolic pathways and
colonization resistance to invading pathogens, commensals also
participate in the development of and shaping of the immune
system (206). Dysbiosis can be sensed by the immune system
and has been associated with the development or exacerbation
of many diseases in many organ systems. Given their preferential
association with epithelial andmucosal tissues, it is not surprising
that some γδ T cell populations are also influenced by the
microbiota.

INFLAMMATORY DISEASE AND
MEMORY-LIKE γδ17T CELL RESPONSE

In addition to γδ T cell responses to the microbiota or after
infection, γδ T cells have also been implicated in innate responses
in inflammatory disease. Inflammatory diseases with γδ T cell
contributions include multiple sclerosis or EAE (72), psoriasis
(135), collagen induced arthritis (73), ankylosing spondylitis (74),
inflammatory bowel disease (63, 64), and uveitis (75). One factor
of inflammatory disease progression attributed to γδ T cells is IL-
17A production, a feature often associated with changes in the
microbiota (72, 73, 135). Inflammation-induced tissue damage
may allow bacteria to bypass the epithelium leading to a positive
feedback inflammatory loop. Interestingly, memory-like γδ T
cell formation has been seen in inflammation of the skin (25,
26, 51, 207). IL-17A-producing Vγ2Vδ4+ T cells initially derive
from the neonatal thymus where they are instructed with tissue
tropism. IMQ-induced psoriasis-like skin inflammation triggers
a potent long-lived Vγ2Vδ4+ T cell response (Figure 1) (25,
26). These Vγ2Vδ4+ T cells were phenotypically memory-like
with a CD44hi CD62Llo CD27− expression pattern. Vγ2Vδ4+

T cells expanded after primary challenge and migrated from the

draining lymph nodes to both the inflamed and uninflamed skin
in a S1P1-dependent manner where they persisted. Migration of
Vγ2Vδ4+ T cells from the circulation to the skin may also be
influenced by signals including cutaneous lymphocyte antigen
(CLA) binding to P- and E-selectins, CD103 interactions with
E-cadherin, and C-C chemokine receptor type 2 (CCR2), and
CCR6. CCR2 appeared essential for γδ17 T cell recruitment
to inflamed tissues in B16 melanomas and EAE while CCR6
appeared necessary for dermal γδ17 T cell residence (208).
Subsequent IMQ administration on previously untreated skin
induced an accelerated and robust re-expansion of skin resident
Vγ2Vδ4+ T cells that produced IL-17A/F and exacerbated
disease (25, 26). IL-17 production and subsequent neutrophil
recruitment for skin disease appeared be partially dependent on
an NFκB-inducing kinase (207). Enhanced inflammation with
subsequent exposure was also associated with the Vγ2Vδ4+

T cell recall response but independent of αβ T cells (26).
These findings were also noted in an acute contact dermatitis
model using dinitrofluorobenzene where a similarmemory Vγ2+

γδ17 T cell population appeared predominately tissue-resident
in classical parabiosis experiments (51). Together, these studies
suggest that γδ T cells can modulate inflammatory diseases of the
skin by forming long-lived tissue resident memory populations
that exacerbate disease through the production of IL-17 family
cytokines. While these studies suggest the establishment of long-
livedmemory T cells, whether this response is driven by a specific
antigenic responsiveness or is broadly reactive is unclear.

INFECTION-INDUCED ADAPTIVE γδ T
CELLS: LONG-TERM PLAYERS IN
MUCOSAL IMMUNITY

Anamnestic immunity was thought to be mediated solely by
conventional αβ T cells and B cells. The recent identification of
several innate and unconventional memory responses challenged
this belief and has reshaped our view of immunological memory.
γδ T cells bridge innate and adaptive immunity in many
contexts by rapidly responding to stresses such as infections and
promoting conventional adaptive immunity. For that reason,
most mouse studies focused on γδ T cell responses in the first
few hours to days after pathogen exposure or inflammatory
insult. However, mounting evidence in humans, non-human
primates and mice demonstrated that γδ T cells can mount
adaptive-like responses. One of the most studied pathogens in
that context is CMV. Indeed, the involvement of γδ T cells in
the protective response to CMV infection was first suggested
in kidney transplant patients whose γδ T cells underwent a
massive and long-lasting expansion in the blood (34, 209,
210). γδ T cell expansion to CMV was also observed in
the context of immunosuppression or immunodeficiency (35,
36, 126, 211–215), neonatal infection (216) and in otherwise
healthy individuals (35, 125). Analysis of the repertoire of
CMV-selected γδ T cells revealed an oligoclonal and in some
individuals even monoclonal population (34, 35, 125), which,
surprisingly, did not involve circulating Vγ9Vδ2+ T cells but
tissue tropic Vδ2− γδ T cells. Expanded cells displayed a TEMRA
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FIGURE 1 | Inflammation-induced dermal memory γδ T cells sensitize mice to imiquimod-induced psoriasis. Topical skin exposure of naïve mice to the TLR7/8 ligand

imiquimod (IMQ) activates regional dendritic cells (Langerhans cells or dermal DCs) which migrate to the draining lymph nodes and present antigens to Vγ2Vδ4+ T

cells. Activated γδ T cells proliferate, acquire an effector/memory CD44hi CD27− CD62L− phenotype and upregulate several migration molecules favoring their

egress from the lymph nodes (S1P1) and homing to the inflamed and resting skin dermis (CCR2 and cutaneous lymphocyte-associated antigen or CLA), where the

cells establish memory. Secondary IMQ skin application at the same or a distant site leads to the local proliferation and activation of dermal memory Vγ2Vδ4+ T cells,

which produce large amount of IL-17A/F and promote the recruitment of neutrophils and thereby exacerbate skin inflammation.

phenotype, similar to CMV-specific CD8+ T cells (127), and
only responded to CMV infection (34, 128). Importantly, the
expansion of Vδ2− γδ T cells correlated with the resolution
of the acute infection in humans (210) and adoptive transfer
of murine CMV-expanded γδ T cells conferred full protection
to susceptible immunodeficient mice (217, 218). Thus, CMV-
elicited γδ T cells display many features classically attributed
to conventional memory T cells. Another long-lived γδ T cell
response to virus has been reported in the context of vaccinia
virus immunization in humans (38) and rhesus macaques
(39). Interestingly, vaccinia virus immunized macaques were
protected against monkeypox virus challenge infection and this
was associated with the expansion of circulating and pulmonary
Vγ9Vδ2+ T cells. Long-lasting adaptive-like γδ T responses were
also reported in the circulation of individuals infected with the
protozoan Plasmodium falciparum (P. falciparum) (40–43) and
the circulation and peripheral tissues of animals infected with
Plasmodium chabaudi (44). Interestingly, γδ T cell distribution
to parasite-targeted tissues raises the possibility that these cells
might provide unique functions to control parasite replication
during the blood and liver stages. Collectively, these studies
provide compelling evidence of adaptive γδ T cell responses
triggered by unrelated pathogens in humans, non-human
primates and rodents. However, the chronic or latent nature of
the infections and their associated antigen and inflammation

in conjunction with some inherent challenges associated with
human studies has hindered conclusive demonstrations of the
memory potential and long-term tissue residency of these
populations.

Infection-Induced bona fide Memory γδ T
cell Responses
Adaptive γδ T cells survey exposed mucosal and epithelial
barriers where they may participate in pathogen clearance or
control and have tissue-adapted functions. γδ T cells are one
of the first immune responders in many bacterial infections,
where they act concurrently with cells of the innate immune
system. However, this innate γδ T cell response does not preclude
the establishment of a subsequent localized memory γδ T cell
response. A mouse model of peritonitis induced by repeated
intraperitoneal exposure to Staphylococcus aureus (S. aureus),
induced a rapid Vγ1.1+ and Vγ2+ γδ17 T cell response in
the peritoneum and the draining mediastinal lymph nodes
a few hours after exposure (49). After this early polyclonal
innate response, a long-lived predominantly IL-17A-producing
Vγ4+ T cell population emerged in both tissues. Surprisingly,
secondary challenge with S. aureus of previously exposed but
pathogen-free mice induced a conventional memory response
of Vγ4+ T cells. Recalled Vγ4+ T cells underwent secondary
expansion, displayed an activated CD44hi CD27− phenotype,
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and produced elevated levels of IL-17A. Adoptive transfer of
purified S. aureus-elicited Vγ4+ T cells was sufficient to protect
naïve recipients against peritonitis and bacterial dissemination
to the liver and kidneys (49). In contrast to the fundamental
role of IL-1β in the induction of IL-17A production by naive
γδ T cells during primary S. aureus exposure, memory Vγ4+

T cells were IL-1β-independent suggesting that memory γδ T
cells have an altered ability to respond to unique environmental
cues to provide effector functions. Localized S. aureus infection
of the skin in Il1b−/− mice resulted in poor bacterial control
during primary infection but protection against reinfection,
revealing the potential presence of an additional memory γδ T
cell subset. Indeed, intradermal infection induced the selective
expansion of skin resident Vγ4Vδ1+ and Vγ3Vδ1+ T cell
clones with conserved CDR3δ and CDR3γ motifs that were
maintained during the convalescent phase and present after
secondary infection of WT and Il1b−/− mice (50). Protection
during secondary infection was conferred by IFNγ- and TNFα-
producing γδ T cells. Adoptive transfer of purified S. aureus-
elicited γδ T cells, but not CD4+ T cells, neutrophils or serum
from convalescent mice, was associated with bacterial clearance.
Thus, different memory γδ T cell responses can be induced by the
same pathogen and local memory γδ T cell populations may be
tissue adapted to provide distinct protective mechanisms.

In addition to the memory responses involving Vγ4+ T cells,
a long-lasting protective response of Vγ2+ T cells was observed
after pulmonary Bordetella pertussis (B. pertussis) infection
(Figure 2) (48). After an early innate response dominated by IL-
17A-producingVγ1.1− Vγ2− γδT cells, effectormemory CD44+

CD27− Vγ2+ T cells started accumulating from day 14 and were

maintained long-term in the lungs. The later emergence of Vγ2+

T cells coincided with the expansion of TRM precursors and
TEM-like CD4+ T cells in the lungs (219). Expanded pulmonary
Vγ2+ T cells share several features with B. pertussis-specific
memory CD4T cells: (i) they reside in the lungs for a prolonged
period of time after bacterial clearance and rapidly and locally
proliferated in response to secondary pulmonary challenge, (ii) a
considerable fraction expresses the TRM marker CD69 and some
also co-express CD103, (iii) they have a strict reactivity to B.
pertussis, (iv) they are biased toward IL-17A production, and (v)
they contribute to enhanced bacterial clearance after challenge
(48, 219). Thus, B. pertussis-elicited memory γδ T cells closely
resemble conventional TRM cells. In contrast to the reported
displacement of skin DETC by virus-specific CD8+ TRM (168),
CD4+ TRM and memory γδ T cells were able to coexist in the
lungs of infected mice and both subsets expanded after infection
and participated in conferring protection, suggesting that they
may reside in distinct niches within the tissue or do not compete
for space or survival factors.

Microorganisms producing PAgs are potent activators of
human and non-human primate Vγ9Vδ2+ T cells. Mycobacteria,
including Mycobacterium bovis BCG strain and Mycobacterium
tuberculosis (M. tuberculosis), produce HMBPP (220–222),
the most potent Vγ9Vδ2+ T cell activator. Correspondingly,
intravenous (i.v.) BCG vaccination of macaques triggered a
drastic expansion of these circulating cells in the blood, but
also in the lungs and the intestines (45). Pulmonary M.
tuberculosis infection led to a similar expansion of mucosal
but not circulating Vγ9Vδ2+ T cells (47), demonstrating
tissue-adapted responses by adaptive γδ T cells that may be

FIGURE 2 | Memory γδ T cell response to pulmonary Bordetella pertussis infection. Upon primary intranasal infection with Bordetella pertussis (B. pertussis),

Vγ2Vδ4+ T cells are activated by B. pertussis antigen-presenting dendritic cells either in the draining lymph nodes or directly in the lung tissue. Activated γδ T cells

expand, display a CD44+ and CD103+CD69+/− activated resident memory phenotype and remain at an elevated number in the lungs after bacterial clearance.

Secondary exposure to B. pertussis induces a recall expansion of memory Vγ2Vδ4+ T cells in the lung tissue and a protective and robust IL-17A response leading to

an enhanced pathogen clearance.
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predicated on immunization route. BCG challenge of vaccinated
monkeys induced a more rapid and robust clonal expansion
of Vγ9Vδ2+ T cells but no other γδ T cell subsets. Thus,
Vγ9Vδ2+ T cells are capable of forming long-lived clonally-
expanded memory responses (45). Interestingly, direct contact
with antigen presenting cells was required for the recall-like
expansion of Vγ9Vδ2+ T cells (46). The recall response of
Vγ9Vδ2+ T cells in BCG immunized macaques was associated
with enhanced clearance of challenge infection and protection
against fatal tuberculosis (45). In line with these findings,
Vγ9Vδ2+ T cells induced in BCG vaccinated volunteers that were
previously unexposed to any mycobacteria showed an enhanced
responsiveness to M. tuberculosis ex vivo (223), suggesting
that BCG vaccination also primes γδ T cells to respond to
M. tuberculosis in humans. Although human and monkey
Vγ9Vδ2+ T cells share many features, including a memory-
like response to mycobacteria, it remains to be established
whether human γδ T cells, like their non-human primate
counterparts, are maintained in peripheral tissues following BCG
immunization to confer some protection against M. tuberculosis
infection.

Multifunctional Memory γδ T Cells to L.

monocytogenes
L. monocytogenes is known to be a potent inducer of γδ T
cell responses. In humans, expansion of Vγ9Vδ2+ T cells has
been detected in the blood of pregnant women, newborns,
infants and the elderly early after L. monocytogenes exposure
(224, 225). These γδ T cells displayed an activated (HLA-
DR+) and memory (CD45RO+) phenotype. Consistent with
a predetermined innate response, stimulation of PBMC from
healthy donors with heat-killed L. monocytogenes (225), listeria
lysate or culture supernatant (226) led to rapid proliferation of
Vγ9Vδ2+ T cells.

A similar mobilization of circulating γδ T cells during
L. monocytogenes infection has also been reported in rhesus
macaques. In a model of disseminated L. monocytogenes
infection, Vγ9Vδ2+ T cells increased in the blood of rhesus
macaques infected with an attenuated L. monocytogenes strain
through an intramuscular, and to a lesser extent i.v. route
(59). These cells were also elevated in bronchoalveolar lavages
and rectal biopsies suggesting that they actively traffic to and
seed mucosal tissues during infection. More interestingly, L.
monocytogenes challenge of immunized animals led to a rapid
and robust re-expansion of Vγ9Vδ2+ T cells that correlated
with the resolution of infection (59). One peculiar feature of L.
monocytogenes is its ability to use both the classical mevalonate
and the alternative MEP pathways for isoprenoid synthesis (227).
Both primary and recall-like responses of Vγ9Vδ2+ T cells
have been shown to rely on the bacteria’s ability to co-produce
mevalonate-derived isopentenyl pyrophosphate and MEP-
derived HMBPP, the latter being much more efficient at inducing
primary and secondary expansion of primate Vγ9Vδ2+ T cells
and promoting their differentiation into CD27+ CD45RA−

CD28− memory cells (60). L. monocytogenes-elicited γδ T
cells displayed various effector functions after secondary

challenge, including production of IFNγ, IL-4, IL-17A, and
TNFα (59). Surprisingly, a substantial portion of these cells were
multifunctional and simultaneously produced IFNγ and IL-17A,
IFNγ and IL-4, or TNFα and perforin in response to HMBPP
(59, 60). Expanded Vγ9Vδ2+ T cells were also potent bactericidal
effectors capable of efficiently lysing L. monocytogenes-infected
DC and restraining intracellular bacterial growth inmacrophages
ex vivo. Thus, L. monocytogenes infection elicits a multifunctional
circulating γδ T cell response in non-human primates.
Because this response is accompanied by the colonization
of epithelial tissues, infection-elicited mucosal γδ T cells may
also have distinct effector functions that provide tissue-adapted
responses.

A large body of evidence has convincingly demonstrated the
involvement of γδ T cells in the early phase of the primary
immune response to systemic L. monocytogenes infection of mice
(228–244) and rats (245, 246). More recently, our group reported
a bona fide memory γδ T cell response in mice after food-borne
infection with a mouse-adapted L. monocytogenes capable of
intestinal epithelial cell invasion (Figure 3) (62, 134, 247). Food-
borne infection induced a long-lived Vγ4Vδ1+ T cell population
in the gut draining mesenteric lymph node (MLN) with a CD44hi

CD27− phenotype (62). By 7 days after infection, these cells
were mobilized into the blood, up-regulated the gut-homing
integrin α4β7 and trafficked to the intestinal lamina propria
similarly to conventional L. monocytogenes-specific CD8+ (248)
and CD4+ (249) αβ T cells. Like L. monocytogenes-induced
CD4+ and CD8+ αβ TRM cells, L. monocytogenes-elicited γδ

T cells established residency in MLN and intestinal lamina
propria where they were maintained long term in the absence
of further antigenic stimulation (62, 134). The generation
of this γδ T cell subset was restricted to tissues associated
with the gastrointestinal system and was induced by food-
borne (62) but not i.v. infection (232, 233). L. monocytogenes-
elicited γδ T cells demonstrated enhanced anamnestic response
upon L. monocytogenes challenge infection and were fully
competent for immunologic boosting upon tertiary exposure
(62). Although L. monocytogenes-elicited γδ T cells appeared
to share a similar anatomical niche as L. monocytogenes-
specific CD4+ and CD8+ αβ T cells (248, 249), all populations
expanded robustly after infection and were maintained without
any apparent competition for limiting resources or anatomic
space.

Memory γδ T cells cooperated with αβ T cells to confer
optimal protection in the MLN and the small intestine during
food-borne L. monocytogenes challenge infection. Indeed, only
the concomitant antibody-mediated depletion of αβ T cells
(both CD8+ and CD4+) and forced internalization of the
γδ TCR resulted in the complete loss of protection afforded
to immunized mice, whereas the sole removal of αβ T cells
only partially impaired L. monocytogenes control (62). One
striking feature of L. monocytogenes-elicited γδ T cells was
their ability to produce IFNγ and IL-17A during each stage
of the immune response. Moreover, subsets within the CD44hi

CD27− γδ T cell population co-produced both cytokines during
the primary and secondary responses (62), reminiscent of the
multifunctional response described in rhesus macaques after
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FIGURE 3 | Listeria monocytogenes elicits a multifunctional protective memory response from fetal γδ T cells. Shortly after oral infection, the foodborne pathogen

Listeria monocytogenes (L. monocytogenes) crosses the intestinal barrier and migrates to the mesenteric lymph nodes (MLNs). Whether L. monocytogenes reaches

the MLNs extracellularly or is carried intracellularly by migratory intestinal dendritic cells is yet unclear. Colonization of the MLNs leads to the expansion of a population

of semi-invariant Vγ4Vδ1+ T cells characterized by a CD44hi CD27− phenotype and the rare ability to co-produce both IL-17A and IFNγ, in a process that would likely

involve MHC-II+ cells. Activated cells upregulate the gut-homing integrin α4β7 and migrate through the blood circulation to the intestinal lamina propria (LP). After

pathogen clearance, L. monocytogenes-elicited γδ T cells become resident memory cells and persist long term in both tissues. Memory γδ T cells undergo a rapid

and dramatic re-expansion upon re-exposure to L. monocytogenes and cooperate with conventional T cells to confer heightened protection against the bacterium.

secondary challenge (59). During the recall response, themajority
of IL-17A was derived from reactivated memory γδ T cells in
the MLN. This production of IL-17A was a critical component
of anti-listerial immunity as it mediated the formation of L.
monocytogenes-containing immune cell clusters composed of
memory γδ T cells and IL-17RA+ inflammatory monocytes and
neutrophils (134).

Collectively, these studies demonstrate that systemic and
food-borne L. monocytogenes infection generates long-lived
multifunctional memory γδ T cells in rhesus macaques and mice,
respectively. Thus, a population of pathogen-elicited γδ T cells
appears to behave very similarly between mice and primates,
and this may suggest a conserved biology among mucosal γδ

T cells. These studies also highlight the important influence
of infection route and models that mimic natural infection on
understanding the γδ T cell response. Interestingly, amongst
the memory and memory-like responses described to date, L.
monocytogenes is the only agent known to induce multifunctional
γδ T cells in two distinct species. Although γδ17 T cells are
known to have a permissive chromatin state for IFNγ expression
(102), other memory γδ T cell populations reported in mice
only produce IL-17A (25, 26, 48, 49). Conversely, only IFNγ was
shown to be produced by virus-activated memory-like Vγ9Vδ2+

T cells (39). miR-146a has recently been shown to negatively
regulate IFNγ production by murine γδ17 T cells, including
during oral L. monocytogenes infection (61). Elucidating the
mechanisms by which L. monocytogenes partially breaks miR-
146a-mediated inhibition of IFNγ production by γδ17 T cells

and understanding why other pathogens do not would provide
important clues about the fine regulation of γδ17 T cell functions
and might open new avenues for the manipulation of these
cells.

ANTI-TUMOR MEMORY γδ T CELLS IN
CANCER

A substantial body of research has focused on the beneficial
nature of γδ T cells in anti-cancer immunity and their potential
as a targetable therapeutic since a landmark study demonstrated
that γδ T cells in the epithelial compartment play a substantial
role in prevention of cutaneous carcinogenesis (57). Indeed,
the presence of an intra-tumoral γδ T cell gene signature was
associated with the single most favorable prognostic indicator
of patient outcome for a wide range of cancers (250). γδ T cells
can have a wide range of effects ranging from reshaping the
tumormicroenvironment (251, 252), being integral in promoting
a diverse cancer protective IgE repertoire through NKG2D stress
surveillance (166), or IFNγ production (52). Substantial effort
has focused on resolving the anti-tumor activity of Vγ9Vδ2+ T
cells, the predominant γδ T cell population in human PBMC, in
multiple cancers (253–257). Tissue resident Vδ2− γδ T cells may
also substantially contribute to anti-tumor immunity. Vδ2− γδ

T cells typically predominate over Vδ2+ T cells within tumors
(52, 65) as well as in tissues from healthy individuals (120). This
Vδ2− γδ T cell population is principally composed of Vδ1+ T
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cells but also contain a significant population of Vδ3+ T cells.
Due to Vδ2− γδ T cell prevalence in tumor microenvironment,
it is likely that this subset also substantially contributes to anti-
tumor activity.

Vγ9Vδ2+ T cells were previously delineated based on
expression of CD45RA and CD27 as naive (CD45RA+ CD27+)
cells or effector and memory TCM (CD45RA− CD27+), TEM

(CD45RA− CD27−), and TEMRA (CD45RA+ CD27−) cells (117).
While naive T cells and TCM cells primarily reside in secondary
lymphoid tissues, TEM and TEMRA migrate to inflammatory
sites to perform effector functions. These latter populations
have been investigated in multiple cancers including squamous
cell carcinoma (SCC) (52), CRC (65), neuroblastoma (71), and
melanoma (53) due to their proliferative capacity and tendency
to migrate toward inflammatory sites. Substantial effort has also
sought to leverage the anti-tumor properties of Vγ9Vδ2+ T
cells using approaches like in vitro expansion of patient-derived
γδ T cells and chimeric antigen receptor T cells for potential
adoptive immunotherapies (258, 259). Vγ9Vδ2+ T cells can be
selectively activated through PAgs or amino bisphosphonates
such as zoledronic acid (zoledronate) in combination with
various growth factors, cytokines, or costimulatory molecules
(260). While various adoptive transfer methods have been
primarily explored in a number of pre-clinical studies (261–267),
to date, clinically favorable outcomes appear limited to prostate
cancer (137). However, challenges remain in the rapid and robust
generation of the large numbers of cells that would be necessary
for successful adoptive immunotherapies (268). Zoledronate also

has various indirect effects on γδ T cells by independently
impacting the tumor microenvironment (251, 269, 270), which
can provide a pro-tumor or anti-tumor outcome (271, 272). As
such, it will be important to assess the contribution of γδ T cells
and the impact of any therapies in individual tumor types.

A protective role of tissue resident γδ17 T cells has been
readily described in the context of infectious disease, but they
have also been implicated in exacerbating chronic inflammatory
diseases like psoriasis. Chronic inflammatory disease is a risk
factor and clinical precursor to a number of cancers including
pancreatic cancer (273), skin cancer (274) and CRC (275). A
growing body of literature has also demonstrated a γδ T cell
response that promotes tumor growth. This pro-tumor outcome
of some γδT cell responses appears predominately a consequence
of IL-17A production that is often associated with the up-
regulation of proliferation pathways in cancerous lesions (276)
(Figure 4). These apparent anti- and pro-tumor discrepancies are
likely due to the dichotomous functional outcomes associated
with type-1 or type-17 γδ T cell responses. A pro-tumor role of
IL-17A-producing γδ T cells is evident in a number of cancers
such as SCC (52), CRC (29), and metastatic breast cancer (70).
In human SCC, tumor infiltration of IL-17A-producing Vδ1+

and Vδ2+ T cells was associated with a negative prognosis, in
contrast to a more favorable outcome associated with tumor-
infiltrating IFNγ-producing γδ T cells (52). Similar results were
seen in human CRC where a predominately Vδ1+ IL-17A-
producing γδ T cell population positively correlated with a
more advanced tumor stage. This correlation was attributed

FIGURE 4 | The multifaceted role of resident memory-like γδ T cells in tumorigenesis. Depicted are Vδ2− γδ T cells establishing tissue residency upon being primed

by various means (e.g., CMV, bacterial infection, and tumor associated antigens) through localization from the draining lymph nodes to the tissue’s epithelial layer.

Vδ2+ T cells also localize to the tissue but do not establish permanent residence. Both Vδ2+ and Vδ2− γδ T cell subsets can be polarized from IFNγ anti-tumor

subsets toward pro-tumor IL-17A-producing subsets through inflammatory dendritic cell cytokine signaling (e.g., IL-23). One possibility is that pro-inflammatory tissue

damage causes a leaky barrier to commensals and other bacteria and a positive feedback loop of inflammation resulting in expansion of IL-17A-producing γδ T cell

subsets. Chronic inflammatory exacerbation opens the window for cancer upon mutagenesis due to constant tissue regeneration. IL-17A signaling also causes

myeloid-derived suppressor cells (MDSC) to have an immunosuppressive effect on effector T cells. On the other hand, IFNγ-producing tissue resident Vδ2− subsets

clonally expand upon recognition of antigen (in part through stress recognition but it has yet to be thoroughly elucidated) causing tumor cell death.
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to an inflammatory DC - γδ17 T cell - MDSC regulatory axis
(29). Interestingly, tissue resident memory Vγ2+ T cells were
also seen in a metastatic mouse model of breast cancer. These
Vγ2+ T cells produced IL-17A and G-CSF, which promoted
the establishment of immunosuppressive intratumoral MDSC
(70). Collectively, these studies implicate tissue resident Vδ1+

and Vγ2+ T cells as tumor growth promoting through IL-
17A-mediated MDSC recruitment and immunosuppression in
cancer. More importantly, these findings segregate deleterious
γδ T cell responses from those which may have a beneficial
outcome.

On the other hand, Vδ2− γδ T cells are not limited to pro-
tumor effects and effort has been invested into their therapeutic
benefits. Intrahepatic Vδ1+ andVδ3+ T cells express a CD45RA+

CD27− and CD45RA− CD27− phenotype that is nearly absent
from the blood. Intrahepatic CD45RA− CD27− Vδ1+ and Vδ3+

T cells were competent producers of IFNγ and TNFα and also
expressed receptors for early activation and tissue retention, such
as CD69, that have also been noted in both liver resident NK
and CD8+ αβ T cell populations (120, 277). CMV infection
has notably been one of the drivers of hepatic Vδ2− γδ T cell
expansion and memory formation, and these factors appear
to have a protective effect against tumor formation. CMV-
seropositive patients (infected pre- or post-transplantation) have
a reduced risk of skin cancer development and leukemia relapse
after kidney or bone marrow transplant, respectively (36, 37).
Vδ2− γδ T cells from CMV-infected kidney transplant patients
were capable of killing HT29 colon cancer cells in vitro (128)
and CMV-induced Vδ2− γδ T cells had anti-tumor activity
against primary and metastatic tumors in a HT29 xenograft
mouse model (278, 279). The characterization of the antigenic
specificity of one highly expanded γδ T cell clone from a CMV-
seropositive transplant patient revealed that its recognition of
stressed (infected or transformed) cells was mediated by the
direct binding of the TCR to EPCR, independently of its cargo
(33). Similarly, Annexin A2 is upregulated at the surface of
stressed cells and can activate another Vδ2− γδ T cell clone
(123). However, regardless of which epitope is being recognized,
TCR sequencing of intrahepatic Vδ2− γδ T cell populations has
revealed that CMV infection can induce expansion, memory
phenotypes, and tumor reactivity in a clonally expansive
manner (120). Overall, these studies suggest that Vδ2− γδ

T cells form TRM cell populations that can clonally expand
and cross-react with tumor epitopes to provide anti-tumor
immunity.

Knowledge of resident γδ T cell biology is integral for
future cancer therapies. Despite intra-tumoral γδ T cell gene
signatures being regarded as a favorable prognostic, there is a
delicate balance between becoming pro-tumor and anti-tumor
γδ T cells (Figure 4). Pro-tumor populations are characterized
by γδ17 T cells and their indirect immunosuppressive activity
through MDSC (29). On the other hand, anti-tumor populations
are characterized by IFNγ producing γδ T cells (52). Notably,
IgE response mediated by DETC stress surveillance can have

anti-tumor effects (166) as well as potential autoimmune
effects (280). A better understanding of how signals in tumor
microenvironment shape and potentially polarize γδ T cell
cytokine production and signal to other cells would be of great
benefit.

CONCLUDING REMARKS

The roles of γδ T cells in response to pathogens and commensals
and in inflammatory disease and cancer have been an area of
expanding interest over the last decade generating significant
advances in knowledge. However, our basic understanding
of γδ T cell biology is still largely incomplete and lags far
behind our understanding of their αβ T cell counterparts,
particularly in the area of anamnestic responses. γδ T cells
are adapted to their tissue environment which in turn shapes
the immune landscape of that environment. Like most cells of
the immune system, γδ T cells can appear duplicitous under
certain circumstances. On one hand, they can provide beneficial
outcomes to the host by conferring anti-pathogen and anti-
tumor immunity. On the other hand, they can lead to negative
outcomes or exacerbated disease in some inflammatory disorders
and cancers. Regardless of their impact, it is now clear that γδ

T cell responses encompass both innate inflammatory responses
and more traditional adaptive memory responses that provide
substantial opportunities for therapeutic targeting. Memory γδ

T cell responses may advance a new arm of rationale vaccine
design that has broad implications for boosting anti-pathogen
or anti-tumor immunity. Vaccines that elicit broadly reactive
long-lived circulating or tissue-resident memory γδ T cells may
provide protection against a wide range of cancers and infections.
Similarly, innate inflammatory or adaptive effector responses
may be targeted to enhanced therapeutic modalities with far
ranging implications. In the context of a detrimental impact
on human health, γδ T cell responses may be blunted or,
in the context of cancer, diverted to a lineage that promotes
tumor eradication. Thus, memory and tissue-resident γδ T
cells represent a lineage of the adaptive immune system that
necessitate greater understanding to facilitate the generation
of novel therapeutics to promote human health and reduce
disease.
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