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A highway to carcinogenesis: the role of IQGAP1, a signaling 
scaffolding protein, in head and neck cancer development
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ABSTRACT
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent 

cancer worldwide. One of the most critical signaling pathways in HNSCC is the 
Epidermal Growth Factor Receptor/ Phosphatidylinositol 3-Kinase (EGFR/PI3K) 
pathway. IQ motif-containing GTPase- activating protein 1 (IQGAP1), a protein 
upregulated in multiple types of cancer, acts as a scaffold for this pathway and others 
implicated in cancer. IQGAP1 is overexpressed in HNSCCs, and its overexpression 
correlates with poorer prognosis in HNSCC patients, indicating that IQGAP1 might be 
important in HNSCC development. Here, we summarized our recent demonstrating a 
role of IQGAP1 in promoting HNSCC, at least in part, by scaffolding the EGFR/PI3K 
signaling pathway.

INTRODUCTION

HNSCCs, which arise in the mouth and throat 
region, are the sixth most frequent cancer worldwide, 
with approximately 53,000 new cases and 11,000 
associated deaths in the United States in 2019 [1]. 
The 5-year survival rate for head and neck cancer 
patients is about 60% [1]. Activation of the EGFR/
PI3K pathway is observed in up to 74% of HNSCCs 
[2, 3]. PIK3CA, which encodes for the catalytic subunit 
of PI3K, is amplified in > 40% of HNSCCs, and 
contains gain-of function mutations in about 20% of 
HNSCCs [2, 4, 5]. These PIK3CA mutations correlate 
with advanced-stage HNSCCs, promoting HNSCC cell 
growth, tumor progression, invasion and metastasis 
[6–10]. Unfortunately, the efficacy of targeted therapies 
involving small molecule inhibitors of the EGFR/PI3K 
pathway has been limited due to the toxicity and possible 
drug resistance, raising the urgency of searching for 
other drug targets in the EGFR/PI3K signaling for more 
effective treatment of HNSCC patients [11, 12].

IQ motif-containing GTPase-activating protein 
1, (IQGAP1), is a scaffolding protein that speeds up 
the efficiency of intracellular signaling by assembling 
multiple factors that mediate these signaling pathways. 
IQGAP1 affects multiple cellular activities such 

as cytoskeletal dynamics, cell-cell adhesion, cell 
proliferation, cell motility and invasion [13–16]. 
IQGAP1 is overexpressed in many human cancers, 
including breast, lung, colorectal cancers and HNSCCs 
[13, 16–18]. In HNSCCs, high levels of IQGAP1 
expression correlates with poorer prognosis for the 
patients [18, 19]. IQGAP1 binds directly to EGFR and 
facilitates its ligand-dependent activation [20]. It also 
acts as a scaffold for the PI3K signaling pathway that is 
downstream of EGFR by assembling all of the kinases 
mediating production of phosphatidylinositol (3, 4, 
5)-trisphophate (PIP3) upon EGFR receptor activation, 
which in turn results in increased phosphorylation of 
AKT (the activated form of AKT), a downstream effector 
of EGFR/PI3K signaling [21]. In a previous study, IQ3 
peptide, a cell permeable peptide containing the PI3K 
binding motif on IQGAP1, was designed to specifically 
block the interaction between IQGAP1 and PI3K, and 
therefore inhibits IQGAP1-mediated PI3K signaling 
[21]. Treatment of HNSCC cell lines with IQ3 peptide, 
suppressed PI3K signaling, and inhibited cell survival, 
proliferation, migration and invasion, indicating that 
IQGAP1-mediated PI3K signaling is critical for human 
HNSCC cells [19, 22]. Reducing levels of IQGAP1 also 
resulted in decreased levels of phosphorylated-AKT 
(pAKT) in human HNSCC cell lines [19]. Likewise 
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we found that mice germ-line deficient for IQGAP1 
(Iqgap1-/-, [23]) showed reduced levels of both pAKT 
and phosphorylated-S6 (pS6, downstream of AKT), 
compared to wild type (Iqgap1+/+) mice, when stimulated 
with EGF [19], demonstrating that IQGAP1 contributes 
to the efficiency of the EGFR/PI3K signaling pathway 
in vivo.

Considering the importance of PI3K signaling 
in HNSCCs, we explored whether IQGAP1 plays a 
role in head and neck carcinogenesis using a well-
validated mouse model that drives HNSCC using a 
synthetic oral carcinogen, 4-nitroquinoline 1-oxide 
(4NQO, [24]). After 4NQO treatment, Iqgap1-/- mice 
developed significantly lower cancer incidences, lesser 
disease severity, and fewer cancer foci per mouse, when 
compared to the Iqgap1+/+ mice [19]. Tumors arising in 
Iqgap1-/- mice showed significantly lower levels of PI3K 
signaling than those in Iqgap1+/+ mice, indicating that 
IQGAP1 contributes to HNSCC, at least in part, through 
PI3K signaling [19]. In human HNSCCs samples, levels 
of PI3K signaling correlates positively with levels of 
IQGAP1, further supporting the link between IQGAP1 
and PI3K signaling in HNSCCs [19].

Other than increasing PI3K signaling, there are 
other possible mechanisms by which IQGAP1 may drive 
HNSCCs. In skin, IQGAP1 promotes tumorigenesis 
by scaffolding the Ras-MAPK signaling pathway 
[25]. However, in our study, we observed a reduction 
of the Ras-MAPK signaling in tumors compared to 
adjacent normal areas, regardless of IQGAP1 status 
[19] indicating that activation of this pathway might 
not be critical in HNSCC at least in this mouse model. 
IQGAP1 also mediates Wnt signaling by binding to 
multiple components along the Wnt pathway that 
mediate Wnt-dependent transcription [13, 26]. In a 
subset of HNSCC, increased β-catenin, a downstream 
effector and transcription factor for Wnt signaling, was 
observed in cancer cells compared to normal tissue [27]. 
This leaves open the possibility that IQGAP1 could also 
be contributing to HNSCC by mediating Wnt signaling 
pathway.

IQGAP1 binds to both wild type and mutated 
PI3K [21]. Both breast cancer and HNSCC cell lines 
carrying PIK3CA mutations or wild-type PIK3CA 
respond to IQ3 peptide treatment [19, 21]. This makes 
the IQGAP1-PI3K interaction a potential drug target 
for HNSCC patients with either wild type or mutant 
PI3K. PIK3CA mutation also correlates with shorter 
time to disease recurrence in a subset of HNSCC [28]. 
These HNSCC patients could potentially benefit from 
drugs targeting the IQGAP1-PI3K interaction, such as 
the IQ3 peptide or a peptidomimetic small molecule. 
More studies are needed to understand the underlying 
mechanism(s) by how IQGAP1 contributes to HNSCC, 
which will shed more lights on hunting for new HNSCC 
therapeutic targets.
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