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Abstract: Our previous work established a continuous-flow synthesis of pristane, which is a saturated
branched alkane obtained from a Basking Shark. The dehydration of an allylic alcohol that is the key
to a tetraene was carried out using a packed-bed reactor charged by an acid–silica catalyst (HO-SAS)
and flow hydrogenation using molecular hydrogen via a Pd/C catalyst followed. The present work
relies on the additional propensity of Pd/C to serve as an acid catalyst, which allows us to perform a
flow synthesis of pristane from the aforementioned key allylic alcohol in the presence of molecular
hydrogen using Pd/C as a single catalyst, which is applied to both dehydration and hydrogenation.
The present one-column-two-reaction-flow system could eliminate the use of an acid catalyst such as
HO-SAS and lead to a significant simplification of the production process.

Keywords: flow dehydration; flow hydrogenation; Pd on carbon; dual-function catalyst; pristane

1. Introduction

Pristane, 2,6,10,14-tetramethylpentadecane 3, is a saturated branched alkane obtained
from Basking Sharks [1,2], and is known to induce autoimmune diseases in rodents. Pris-
tane, however, is now being widely used as an adjuvant for monoclonal antibody pro-
duction [3–5]. In 2007, the Fukase group reported the flow/batch combined synthesis
of pristane 3 via a two-step procedure with allylic alcohol 1 as a key component. Flow
dehydration was performed by using a stoichiometric p-TsOH. The resultant tetraene 2
can be reduced to pristane 3 in a batch flask using molecular hydrogen with Pd on carbon
(Pd/C) as the catalyst [6]. To realize a greener process, the flow dehydration protocol
that employs a stoichiometric amount of p-TsOH must be avoided. Then, we focused on
silica-supported sulfonic acids (SAS) [7,8], for the flow dehydration step. Consequently,
we found that the use of hydroxy-functionalized sulfonic acid silica, HO-SAS [9–11], for
flow-dehydration worked well. Combined with the flow hydrogenation using Pd/C, we
completed an acid waste-free flow synthesis of pristane (Scheme 1) [10]. Since Pd/C often
causes dehydrative hydrogenation of allylic alcohols [12–17], we were curious as to whether
pristane 3 could be synthesized using only a Pd/C catalyst. In this communication, we
are pleased to report a simple protocol for the flow synthesis of pristane using Pd/C as a
single catalyst in a dual function, which avoids the need to use an acid catalyst. We believe
that the present flow protocol would be useful in designing a simplified flow-production
process of pristane. It should be stated that, although flow hydrogenations of a variety of
organic compounds have widely been developed [18–25], there were no reports on flow
dehydrative hydrogenation of allylic alcohols before this work.
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We started with a batch reaction of triene-type alcohol 1. As expected, when the re-

action of 1 (0.5 mmol) was carried out in the presence of 10% Pd/C (20 mg, 0.02 mmol of 
Pd) in ethyl acetate as a solvent under atmospheric pressure of H2 at room temperature 
for 16 h, the desired pristane 3 was obtained in a 30% yield, together with saturated alco-
hol 4 (48%) (Table 1, entry 1). When we used Pd/Al2O3 instead of Pd/C, the reaction gave 
alcohol 4 in a 92% yield along with a trace amount of pristane 3 (Table 1, entry 2). These 
results strongly suggest that the Pd/C catalyst has an exceptional ability to reduce an allyl 
alcohol moiety to pristane 3, which was consistent with results reported by other groups 
[10–15]. Under harsh conditions that included higher temperature (90°C) and higher pres-
sure (10 atm), the yield of 4 was increased, but that of 3 did not change (Table 1, entry 3). 
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under a H2 atmosphere. 
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Scheme 1. Concise flow synthesis of pristane using Pd/C as a single catalyst with a dual function.

2. Results and Discussion

We started with a batch reaction of triene-type alcohol 1. As expected, when the reaction
of 1 (0.5 mmol) was carried out in the presence of 10% Pd/C (20 mg, 0.02 mmol of Pd) in
ethyl acetate as a solvent under atmospheric pressure of H2 at room temperature for 16 h,
the desired pristane 3 was obtained in a 30% yield, together with saturated alcohol 4 (48%)
(Table 1, entry 1). When we used Pd/Al2O3 instead of Pd/C, the reaction gave alcohol 4 in a
92% yield along with a trace amount of pristane 3 (Table 1, entry 2). These results strongly
suggest that the Pd/C catalyst has an exceptional ability to reduce an allyl alcohol moiety to
pristane 3, which was consistent with results reported by other groups [10–15]. Under harsh
conditions that included higher temperature (90 ◦C) and higher pressure (10 atm), the yield of
4 was increased, but that of 3 did not change (Table 1, entry 3).

Table 1. Batch synthesis of pristane 3 by dehydrative hydrogenation of 1 using a Pd/C Catalyst
under a H2 atmosphere.
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4 Yield (%)

Yield (%) Purity (%)

1 10% Pd/C (20) rt 1 30 99 48

2 5% Pd/Al2O3 (40) rt 1 Trace - 92

3 10% Pd/C (20) 90 10 30 98 63
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Despite the low yield, the results of the batch reaction confirmed that pristane 3 was
formed from 1 via the use of a single catalyst, Pd/C. Nevertheless, the comparable selectiv-
ity of 3/4 obtained by a batch reaction was rather disappointing. Next, we examined the
flow dehydration/hydrogenation sequence, which improved the ratio of 3/4 dramatically
(Scheme 2). Thus, when an AcOEt solution of 1 was mixed with H2 (13 atm) using a
static mixer (500 µm i.d.) followed by passage through a column reactor (4 mm i.d., 15 cm
length) packed with Pd/C (575 mg, 0.54 mmol of Pd) at 90 ◦C, to our surprise, the reaction
gave pristane 3 as the major product in a 59% yield along with an 18% yield of alcohol
4 with only a 30 sec residence time. Heating was important, since the flow reaction at
room temperature gave low yields of 3 (15%) and 4 (3%). We speculated that the use of a
packed-column flow reactor ensured larger catalyst/substrate ratios which brought a high
contact frequency between the substrate and catalyst to cause the efficient dehydrative
hydrogenation of an allyl alcohol moiety to give pristane 3.
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Scheme 2. Flow synthesis of pristane 3 by dehydrative hydrogenation of 1 using a Pd/C catalyst
under a H2 atmosphere.

The flow procedure resulted in excellent selectivity over the batch reaction. Then,
we decided to use model compound 5 to see if the product selectivity could be further
improved (Scheme 3). When the reaction of 5 (0.5 mmol) was carried out in the presence
of 10% Pd/C (20 mg) in AcOEt under atmospheric H2 at room temperature for 24 h, the
desired alkane 6 was obtained as a major product, together with hydrogenated alcohol 7
and ketone 8 in a ratio of 6/7/8 = 64/16/20 (by a GC analysis). Interestingly, the addition
of a 10% volume of i-PrOH to AcOEt improved the formation ratio of alkane 6 (6/7/8 =
78/10/12). Since ketone 8 was also detected, we, then, carried out time course experiments.
Interestingly, the reaction in AcOEt as a sole solvent did not proceed for the first 30 min.
After 1 h, around 20% of alcohol 7 was formed, and, then, alkane 6 was rapidly formed
(Scheme 3a). On the other hand, the reaction with EtOAc/i-PrOH was started within 30 min
and ended in 1 h, which gave a higher yield of 6 (Scheme 3b). These results suggest that the
reaction had an induction period and the addition of i-PrOH and initially formed secondary
alcohol 7 contributed to generate H-Pd species prior to the reaction of molecular hydrogen
with Pd. Since ketone 8 was formed after alcohol 7 was formed, the transfer hydrogenation
from the secondary alcohol 7 to 8 [26–28] was more likely than olefin-isomerization of the
allylic alcohol 5 [29–32].
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Scheme 3. Batch hydrogenation reaction of a model compound 5 using Pd/C as a catalyst using
EtOAc and EtOAc/i-PrOH (9:1) as solvent and time course experiments. (a) Time course experiment
for the reaction in EtOAc. (b) Time course experiment for the reaction EtOAc/i-PrOH.

It seems quite difficult to speculate the mechanism of Pd-catalysis; however, one
possible mechanism is shown in Scheme 4. The transfer hydrogenation would produce
a Pd-H species. Allylic alcohol 5 coordinated to the Pd catalyst in both the C–C double
bond and hydroxy group. Then, the dehydration reaction proceeded to give a diene [33,34].
Finally, the diene was hydrogenated by Pd/C to give alkane 6. It should be noted that the
addition of Et3N inhibited the present dehydrated hydrogenation and only hydrogenated
alcohol 7 was formed in 96% yield. This suggests that a base such as Et3N deactivated the
acid functionality of Pd/C.
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Scheme 4. A possible mechanism.

Since the addition of i-PrOH improved the product selectivity, we, finally, examined
the flow synthesis of pristane 3 using a mixed solvent of AcOEt and i-PrOH (10 vol%)
under continuous flow conditions (Scheme 5). To our delight, the flow conditions worked
far better to give pristane 3 in an improved yield of 71% with a reduced yield of alcohol 4
(10%), whose result was in good agreement with the model reaction.
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Scheme 5. Flow synthesis of pristane 3 by dehydrative reduction in 1 using Pd/C catalyst and
AcOEt/i-PrOH as a solvent under a H2 atmosphere.

3. Materials and Methods
3.1. General

The 1H NMR spectra were recorded using JEOL ECS-400 (400 MHz) spectrometers in
CDCl3 and were referenced at 7.26 ppm for CHCl3. The 13C NMR spectra were recorded
using JEOL ECS-400 (100 MHz) spectrometers in CDCl3 referenced at 77.0 ppm. Chemical
shifts were reported in parts per million (δ). Splitting patterns were indicated as follows:
br, broad; s, singlet; d, doublet; t, triplet;, m, multiplet. GC analysis was performed on
a Shimadzu GC-2014 instrument equipped with an FID detector using a J&W Scientific
(Hongkong, China) DB-1 column under the following conditions: initial oven temperature
was held at 60 ◦C for 5 min, the first ramp was 20 ◦C/min to 250 ◦C, which was held for
5 min. The products were purified by flash column chromatography on silica gel (KANTO
CHEMICAL CO., INC., Tokyo, Japan, Silica Gel 60N (spherical, neutral, 40–50 µm)). HRMS
spectra were recorded on BRUKER micrOTOF-II. Allylic alcohol 1 was prepared according
to a previously established procedure found in the literature [6]. We purchased 10%
Pd/C from Sigma-Aldrich Co. LLC. (St. Louis, MO, USA). (10% Pd on carbon, average
particle size of 15 µm) and used it as received. Stainless steel columns (4.0 mm i.d. ×
50 mm or 150 mm) were purchased from GL Sciences Inc (Tokyo, Japan). The column
reactor and microtube were connected with PEEK fittings (GL Sciences Inc., 1/16′ ′). The
micromixer (500 µm i.d.) was purchased from GL Sciences. A back-pressure regulator was
purchased from DFC Inc. (Woodland, CA, USA). The solution was introduced into the flow
microreactor system using an HPLC pump, PU714 (GL Sciences Inc.).
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3.2. Typical Procedure for the Batch Synthesis of 2,6-Dimethylheptane 6

To a 10 mL glass flask, 2,6-dimethyl-2-hepten-4-ol 5 (0.5 mmol, 71 mg) and Pd/C
(20 mg) were added along with a solvent (AcOEt, 3 mL). The mixture was stirred at room
temperature under H2 (1 atm). After the reaction, the reaction mixture was filtered to
remove Pd/C and an aliquot of the solution was applied to GC analysis.

3.3. Typical Procedure for the Batch Synthesis of Pristane 3

Allylic alcohol 1 (0.5 mmol, 139 mg), Pd/C (20 mg) and EtOAc (3 mL) were placed
in a 10 mL glass flask. The mixture was stirred at room temperature for 16 h under H2
(1 atm). After the reaction, the solvent was evaporated and the residue was filtered through
a silica-gel pad and washed with n-hexane to give pristane (3) (39.7 mg, yield 30%, purity
100%). The silica-gel pad was washed with EtOAc to give 4 (68.8 mg, yield 48%).

3.4. Procedure for the Flow Synthesis of Pristane 3

Allylic alcohol 1 (477 mg) was dissolved in EtOAc (10 mL) and pumped using an
HPLC pump (flow rate = 0.5 mL/min). The H2 gas (flow rate = 2.6 mL/min) was supplied
through a mass flow controller. Both the solution of 1 and hydrogen gas were introduced
to a T-shaped mixer (i.d. 500 µm), and the resultant mixture was then introduced into a
stainless steel column (inner volume: 1.44 mL, 4.0 mm i.d. × 150 mm) filled with a Pd/C
catalyst (595 mg) with an outlet that was connected to a back-pressure regulator (1.3 MPa).
The solution eluted during the first 10 min was discarded. The remaining solution was
collected for 6 min in a glass flask, and the solvent was evaporated. The crude product was
applied to silica-gel column chromatography and the fractions eluted with n-hexane gave
pristane (3) with inseparable by-products (96 mg, yield 71%, purity 93% (determined by
GC)). The fraction eluted with ethyl acetate gave saturated alcohol 4 (14 mg, yield 10%).

2,6,10,14-Tetramethylpentadecane (pristane, 3) (see Supplementary Materials)

Colorless oil; 1H NMR (CDCl3, 400 MHz) δ 1.58–1.44 (m, 2H), 1.40–1.00 (m, 20H),
0.91–0.81 (m, 18H); 13C NMR (CDCl3, 100 MHz) δ 38.7, 37.7, 33.1, 28.2, 25.1, 24.8, 23.0, 20.0.

2,6,10,14-Tetramethylpentadecan-4-ol (4) (see Supplementary Materials)

Colorless oil; 1H NMR (CDCl3, 400 MHz) δ 3.83-3.70 (m, 1H), 1.83–1.70 (m, 1H), 1.70–
1.00 (m, 20H), 0.80–1.00 (m, 18H); 13C NMR (CDCl3, 100 MHz) δ 68.1, 67.7, 47.7, 47.2, 46.0,
45.9, 45.7, 45.6, 39.4, 38.3, 37.4, 37.3, 37.3, 37.1, 37.0, 32.9, 29.7, 29.6, 29.3, 28.1, 24.9, 24.7, 24.6,
24.3, 23.7, 23.5, 22.8, 22.7, 22.3, 20.5, 20.4, 19.8, 19.7, 19.4. HRMS: m/z calcd for C19H40NaO
(M++Na) 307.2977, found 307.2952.

4. Conclusions

We showed that, in the presence of dihydrogen and a catalytic amount of Pd/C, the
dehydrative hydrogenation of triene-alcohol 1 proceeded, in a batch flask, to give the
desired pristane 3 and saturated alcohol 4 in a nearly comparable ratio. Interestingly, when
continuous flow conditions were applied, a dramatic preference of 3 over 4 was observed
by as much as 7/1. Larger catalyst/substrate ratios, ensured by the use of a packed-column
reactor, were likely to cause the efficient dehydrative hydrogenation of an allyl alcohol
moiety by reacting with more abundant active Pd-H species. The flow reaction proceeded
quickly at 90 ◦C and needed only 30 s of residence time, which established the efficacy
of the consecutive flow reaction for production compared with a batch reaction. Such
a strong boost by a flow system is a novel result, which could, undoubtedly, lead to a
greener and inexpensive production of pristane and some other target compounds. This
one-column-two-reaction-flow system could eliminate the use of an acid catalyst such as
HO-SAS, which also leads to a significant simplification of the facile production process for
dehydrative hydrogenation of alkenyl alcohols.

Supplementary Materials: The following are available online.
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