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Background
Coding sequences in eukaryotic mRNAs are generally flanked by transcribed but 
untranslated regions (UTRs) which can impact RNA stability, translation, and localiza-
tion [1]. In particular, the length of 3′ UTRs often varies even within a given gene due to 
the use of different poly-adenylation (polyA) sites [2], leading especially to the inclusion 
or not of regulatory elements such as binding sites for micro-RNAs or RNA-binding 
proteins [3]. Alternative poly-adenylation (APA) is highly prevalent in mammals [4] and 
has been shown to be important to a variety of biological phenomena [5–8].

A number of methods for 3′ end sequencing have been developed with the goal to 
map APA sites [4, 9–14], leading to the development of atlases such as PolyASite [15] 
or PolyA_DB [16]. As such methods are only marginally used, however, it would be ben-
eficial to leverage the widespread availability of traditional RNA-seq for the purpose 
of identifying changes in 3′ UTR usage. A chief difficulty here is that most UTR vari-
ants are not catalogued in standard transcript annotations, limiting the utility of stand-
ard transcript-level quantification based on reference transcripts, such as salmon [17]. 
Nevertheless, a number of methods have been developed to this purpose. Methods like 
DaPars [18] and APAtrap [19] try to infer new polyA sites from read coverage changes 
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from RNA-seq experiments, however the depletion of RNAseq coverage at the 3′ end 
of transcripts makes the precise inference of polyA sites challenging [20]. Other tools 
like CSI-UTR  [21], QAPA [8] and APAlyzer [22] use already available polyA site data-
bases but the latter two only compare the usage of the most proximal polyA sites to dis-
tal ones in a pairwise fashion and fail to grasp the full complexity of dynamic APA when 
there are three or more polyA sites, which is the case for approximately half of mam-
malian transcripts [4]. Furthermore, with the exception of CSI-UTR  [21] which lever-
ages DEXSeq [23], most approaches do not make use of the already proven statistical 
frameworks to analyse different exon usage (DEU) from count data [23–26]. These tools 
take into account the inherent properties of read count distributions and are arguably 
more appropriate to analyse differences in relative polyA site usage, which is concep-
tually highly similar to DEU. We therefore developed diffUTR , which streamlines and 
improves upon well established DEU tools, and leverages them, along with polyA site 
databases, to infer alternative 3′ UTR usage across conditions.

Results
Streamlining differential bin/exon usage analysis

Popular bin-based DEU methods are provided by the limma [25, 26], edgeR [24] and 
DEXSeq [23] packages. However, their usage is not straightforward for non-experi-
enced users, and their results often difficult to interpret. We therefore developed a sim-
ple workflow (Fig. 1a), usable with any of the three methods but standardizing inputs 
and outputs. In particular, bin annotation and quantification, as well as different usage 
results, are all stored in a RangedSummarizedExperiment [27], which facilitates 
data storage and exploration, and enables advanced plotting functions irrespective of the 
underlying method. diffUTR  is flexible in its application, and supports the use of strand 
information if available.

Improvement to diffSplice

diffUTR  also implements an improved version of limma’s diffSplice method which 
does not assume constant residual variance across bins of the same gene (see diff-
Splice2). To test the effect of these modifications in a standard DEU setting, we ran both 
versions (as well as the other two DEU methods) on simulated data from a previous 
DEU benchmark [28]. The precision and recall results (Fig. 2a) confirmed the previously 
observed superiority of DEXSeq and, more generally, the imperfect false discovery rate 
(FDR) control. Importantly, it also confirmed that our improved diffSplice2 method 
outperforms the original, at no additional computing cost.

Application to differential UTR usage and benchmark on a simulation

We next sought to evaluate the methods when applied to differential UTR analysis. For 
this purpose, APA sites are used to further segment and extend UTR bins, as illustrated 
in Fig. 1b, and similarly [21] (see methods for the details). Given the absence of RNAseq 
data with a differential UTR usage ground truth, we simulated reads with known UTR 
differences from real data (see Simulated Data). We then ran the different diffUTR  meth-
ods (as well as the unmodified diffSplice variant), and compared them to alterna-
tive methods. While DaPars and APAlyzer provide gene-level significance testing, QAPA 
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does not, and our attempts to use its equivalence classes with standard transcript usage 
methods (see methods) gave very poor results. Therefore, for the purpose of comparison 
we tried two alternatives: simply ranked genes according to QAPA’s main output, i.e. the 
absolute difference in polyA site usage between conditions ( |�PAU | ), labeled in Fig. 2b 
as QAPA.dPau, or running t-tests on the log-transformed PAU values, labeled as QAPA.
qval. Since APAlyzer produces different analyses for genes’ 3′ end and intronic APA 
usage, we used both the 3′ end results and a combination of the two (the latter shown 
as APAlyzer2). As Fig. 2b shows, all diffUTR  methods outperformed alternatives by far, 
except for CSI-UTR  which showed a performance comparable to that of our edgeR-based 
implementation, but well below diffUTR ’s own DEXSeq-dependent implementation. In 
addition, our improved diffSplice2 had comparable performance to DEXSeq in this 
dataset, at a fraction of the computing costs.

Differential UTR usage in real data

We next sought to test diffUTR  in real data. First, since 3′ UTRs are known to generally 
lengthen during neuronal differentiation [8, 29], we expected to observe a skew towards 
positive fold changes of 3′ UTR bins when comparing RNAseq experiments from 
embryonic stem cells (ESC) and ESC-derived neurons. We therefore re-analyzed data 
from [30] and observed clearly the expected skew among statistically-significant genes, 
especially for bins with a higher expression (Fig. 3a).

We next found both 3′ sequencing and standard RNAseq data from samples of mouse 
hippocampal slices undergoing Forskolin-induced long-term potentiation [31], which 
enabled us to use the 3′ sequencing data as a truth for analysis performed on the stand-
ard RNAseq data (Fig. 3b and Additional file 1: Figure 1). In this case we represent the 
results through Receiver-operator characteristic (ROC) curves since the Precision-
recall curves make the differences less visible due to the lower general power. Although 
power to detect UTR changes is necessarily low with respect to 3′ sequencing, we again 
observed that diffUTR  methods clearly outperformed all alternative methods.

Exploring differential exon/UTR usage results

diffUTR  provides three main plot types to explore differential bin usage analyses, each 
with a number of variations. Figure  4 showcases them in the context of long-term 
potentiation of mouse hippocampal neurons [31]. plotTopGenes (Fig.  4a) provides 
gene-level statistic plots (similar to a ‘volcano’ plot), which come in two variations. For 
standard DEU analysis, absolute bin-level coefficients are weighted by significance and 
averaged to produce gene-level estimates of effect sizes. For differential 3′ UTR usage, 
where bins are expected to have consistent directions (i.e. lengthening or shortening of 
the UTR) and where their size is expected to have a strong impact on biological func-
tion, the signed bin-level coefficients are weighted both by size and significance to pro-
duce gene-level estimates of effect sizes. By default, the size of the points reflects the 
relative expression of the genes, and the color the relative expression of the significant 
bins with respect to the gene.
deuBinPlot (Fig. 4b) provides bin-level statistic plots for a given gene, similar to 

those produced by DEXSeq and limma, but offering more flexibility. They can be plot-
ted as overall bin statistics, per condition, or per sample, and can display various types 
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of values. Importantly, since all data and annotation are contained in the object, these 
can easily be included in the plots. Figure 4b shows a lengthening of the Jund 3′ UTR 
in the LTP group.

Finally, geneBinHeatmap (Fig. 4c) provides a compact, bin-per-sample heatmap 
representation of a gene, allowing the simultaneous visualization of various informa-
tion. We found these representations particularly useful to prioritize candidates from 
differential bin usage analyses. For example, many genes show differential usage of 
bins which are generally not included in most transcripts of that gene (low count den-
sity), and are therefore less likely to be relevant.
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Fig. 4 Plotting functions. a plotTopGenes provides significance and effect size statistics aggregated at 
the gene level. b deuBinPlot provides a more flexible version of the bin‑level gene plots generated by 
common DEU packages. Shown here is the upregulation of Jund 3′ UTR upon LTP. c geneBinHeatmap 
provides a compact, bin‑per‑sample heatmap representation of a gene
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Further variations tested

During implementation, we tested other changes to the method which were ultimately 
discarded as they did not improve performance, but which we here briefly report.

First, differential UTR analysis differs from typical differential exon usage analysis in 
that the vast majority of UTR bins are consecutively transcribed, meaning that changes 
in the usage of a bin should also be visible in downstream bins. We therefore reasoned 
that it would be beneficial to use this property to improve statistical analysis. We rea-
soned that connected bins with significant fold changes in the same direction could be 
unified and their p-values aggregated, and tested a rudimentary implementation using 
Fisher’s aggregation. However, this decreased accuracy and led to a worse FDR control 
(Additional file 1: Figure 2).

Second, most methods compare bin-level foldchanges to gene-level ones to identify 
bins behaving differently from the others, and we reasoned that, especially for genes 
with more UTR bins than coding sequence (CDS) bins, including counts of 3′ UTR 
when calculating overall gene expression could underestimate the gene expression and 
possibly mistake the UTR foldchange for the gene foldchange. We therefore tried a 
modification of diffSplice to only calculate the gene foldchange from CDS bins and then 
compare it to the individual bins. Again, this approach proved unsuccessful (Additional 
file 1: Figure 3).

Discussion
diffUTR  streamlines DEU analysis and outperforms alternative methods in inferring 
UTR changes, which demonstrates the utility of harnessing powerful, well-established 
frameworks for new ends. It must be noted that the way in which the simulation was 
performed, i.e. elongating transcripts to the next polyA site(s), is similar to the way dif-
fUTR  disjoins the annotation into bins, which could cause a bias towards against meth-
ods that do not rely on alternative polyA sites, such as DaPars. However, this is unlikely 
to be the reason for the observed superiority of diffUTR -based methods given the con-
siderable extent by which they outperformed alternatives, and the observation of similar 
results in real data.

Similar to DEU tools [28], diffUTR  fails to control the FDR correctly, and our attempts 
so far to improve this remained unsuccessful. We therefore recommend prudence with 
results close to the significance threshold. In addition, and in contrast to DEU where 
exons are subject to splicing in a potentially independent fashion, 3′ UTRs typically do 
not undergo splicing and therefore only differ in length between conditions. This means 
that the behavior of a UTR bin is dependent on that of upstream bins, a property which 
could be exploited to improve accuracy at the gene-level. However, our simple attempt 
to do so by combining p-values of consecutive bins did not have the desired outcome, 
pointing to the need of more research in this direction.

Further, the bin-based approach has the drawback of not pinpointing the exact 
UTR locations: it is limited to the bin resolution, and the bins themselves are limited 
by incomplete transcript and APA annotations. Additionally, because there is a sig-
nificant drop off in read coverage at the end of transcripts, we have observed that it 
is often bins upstream of the actual UTR lengthening/shortening event which give a 
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statistically-significant signal rather than the one truly affected. This is why we have pro-
vided tools to enable the further inspection of events in a given gene.

Finally, the results of bin-based analyses are limited by the overlaps of transcripts 
from different genes, an issue on which differential transcript usage analysis approaches 
appear superior (e.g. [32]). However, transcript usage analysis tools are dependent on the 
completeness of the transcript annotation, while bin-based approaches are more open 
to the discovery of unannotated transcript variants, which is especially relevant for dif-
ferential UTR usage. Here, we made the choice of including ambiguous bins, but flagging 
them as such, enabling users to interpret them with caution.

While DEXSeq remains the tool of predilection for relative bin usage analyses, it scales 
very badly to larger sample sizes, and alternatives might be needed in some contexts. Our 
changes to limma’s original diffSplice method consistently result in more accurate 
predictions, making this new method the best compromise for bin-based approaches 
when DEXSeq is not applicable. More generally, it also shows that even with well-estab-
lished approaches, there is still room for incremental, but non-negligible improvement.

Methods
Data and code availability

The data objects and code used to produce the figures are available through the https:// 
github. com/ plger/ diffU TR_ paper repository. The diffUTR  source code is available at 
https:// github. com/ ETHZ- INS/ diffU TR.

RNAseq data processing

For the evaluation of diffSplice2 in a standard DEU case, we used bin count data 
obtained from the authors of the original DEU benchmark [28]. For other datasets, reads 
were downloaded from the SRA repository, aligned to the GRCm38.p6 genome using 
STAR 2.7.3a with default parameters and the GENCODE M25 annotation as guide. The 
same gene annotation was used as input for bin creation.

diffUTR 

diffUTR  is implemented as a Bioconductor package making use of the extensive librar-
ies available, especially the GenomicRanges package [33] and the different DEU methods 
(see Differential analysis).

Preparing bins

Exons are extracted from the genome annotation and flattened into non-overlapping 
bins (Fig. 1b). In other words, the exon annotation is fragmented into the widest ranges 
where the set of overlapping features is the same. Bins that do not overlap with coding 
sequences (CDS) and belong to a protein coding transcript are labeled as UTR and the 
rest as CDS. When APA sites are also provided as input (for the purpose of this arti-
cle, polyAsite v2.0 sites were used), bins are further segmented and/or extended. For 
this the closest upstream CDS or UTR is found for every poly(A) site and the UTR is 
defined from this boundary to the polyA site and assigned to the corresponding gene 
and transcript (Fig. 1b). If the newly defined UTRs exceeds a predefined length specified 
by maxUTRbinSize (default is 15,000 bp), it is ignored as unlikely to be a real UTR. 

https://github.com/plger/diffUTR_paper
https://github.com/plger/diffUTR_paper
https://github.com/ETHZ-INS/diffUTR
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Moreover, if the start of a gene is the closest upstream sequence before any UTR or CDS 
the newly defined UTR is ignored to avoid assignment problems. In order to later differ-
entiate between regions that are 3′ or 5′ UTRs, regions that are downstream of the last 
CDS of a given transcript were labeled as 3′ UTR. The label ‘non-coding’ is assigned to 
all bins that have no protein coding transcript overlapping it.

If a bin originates from regions belonging to different genes, the bin is duplicated and 
assigned once to each gene, so that each gene contains the same fragment once. Alter-
natively, the genewise argument can be used so that only exons belonging to the same 
gene are considered when flattening.

Quantification

For quantification, countFeatures() uses the featureCounts() function from 
the Rsubread package [34] to count previously mapped reads overlapping each bin. By 
default every read is assigned once to every bin it overlaps with and can therefore be 
counted multiple times, which is needed because many bins are shorter than the read 
length. Alternative counting methods, such as summarizeOverlaps() from the 
GenomicAlignments package [33] performed considerably worse in the simulation. The 
function returns a RangedSummarizedExperiment object [27], containing the read 
counts as well as the bin annotation.

Differential analysis

Three wrappers implement corresponding DEU methods on the RangedSummarize-
dExperiment object previously generated, returning results as further standard-
ized annotation within the object. For differential UTR analysis, gene-level results are 
obtained by filtering the bin-level results for those assigned to the type UTR and/or 3′ 
UTR, and setting all other p-values to 1 before aggregation.

diffSpliceDGE.wrapper()

This is a wrapper around edgeR’s DEU method based on fitting a negative binomial gen-
eralized linear model [24]. In a first step the bins are filtered to decide which have a large 
enough read count to be kept for the statistical analysis (filterByExpr()), the library 
sizes are normalized (calcNormFactors()) and the dispersion is estimated (esti-
mateDisp()). After this the model is fitted (glmFit()). If the option QLF = TRUE 
(default), an extended model is fitted, using quasi-likelihood methods to account for 
gene specific variability (glmQLFit()). In the last step bin fold changes are tested to 
be different from overall gene fold changes, using a likelihood ratio test or a quasi-likeli-
hood F-Test depending on the QLF option chosen (diffSpliceDGE()). The gene level 
p-values are obtained by the Simes’ method [35].

DEXseq.wrapper()

In this method the standard DEXseq differential exon usage pipeline [23] is implemented. 
It is similarly to edgeR based on fitting a negative binomial model but instead of com-
paring fold change differences between bins and genes, DEXseq compares a full model 
containing a term corresponding to the change in exon usage between conditions to a 
reduced model without this term. The two fits are compared using a χ2 likelihood-ratio 
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test. The libraries are normalized (estimateSizeFactor()), the dispersion is esti-
mated (estimateDispersion() and the models are fitted (testForDEU()). In 
a last step the fold changes between the bins are estimated ( estimateExonFold-
Changes()). To obtain gene level results the function perGeneQValue() is used, 
which is based on the Šidák method [36].

diffSplice.wrapper() and diffSplice2

This method implements the differential exon usage pipeline of limma for RNA-seq data 
[26]. The pre-processing is identical to diffSpliceDGE.wrapper(), then the pre-
cision weights are estimated with (limma::voom()) and the linear models are fitted 
(limma::lmFit()). In the last step, bin fold changes are tested to be different from 
overall gene fold changes, using a moderated t-test (diffSplice() or, by default, diff-
Splice2()—see below). The gene level p-values are obtained by the Simes’ method 
[35].

The diffUTR::diffSplice2 function provides an improved version of limma’s orig-
inal diffSplice method. diffSplice works on the bin-wise coefficient of the linear 
model which corresponds to the log2 fold changes between conditions. It compares the 
log2(fold change) β̂k ,g of a bin k belonging to gene g, to a weighted average of log2(fold 
change) of all the other bins of the same gene combined B̂k ,g (the subscript g will be 
henceforth omitted for ease of reading). The weighted average of all the other bins in the 
same gene is calculated by

where wi =
1

u2i
 and ui refers to the diagonal elements of the unscaled covariance matrix 

(XTVX)−1 . X is the design matrix and V corresponds to the weight matrix estimated by 
voom. The difference of log2 fold changes, which is also the coefficient returned by 
diffSplice() is then calculated by Ĉk = β̂k − B̂k . Instead of calculating the t-statistic 
with Ĉk , this value is scaled again in the original code:

and the t-statistic is calculated as:

s2g refers to the posterior residual variance of gene g, which is calculated by averaging the 
sample values of the residual variances of all the bins in the gene, and then squeezing 
these residual variances of all genes using empirical Bayes method. This assumes that the 
residual variance is constant across all bins of the same gene.

In diffSplice2(), we applied three changes to the above method. First, the residual 
variances are not assumed to be constant across all bins of the same gene. This results in 
the sample values of the residual variances of every bin now being squeezed using 

(1)B̂k =

∑N
i,i �=k wiβ̂i

∑N
i,i �=k wi

(2)D̂k = Ĉk

√

1−
wk

∑N
i wi

(3)tk =
D̂k

uksg
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empirical Bayes method, resulting in posterior variances s2i  for every individual bin i. 
Second, the weights wi , used to calculate B̂k , now incorporate the individual variances by 
wi =

1

s2i u
2
i

 . Third, the Ĉk value is directly used to calculate the t-statistic, which after all 

these changes now corresponds to

Simulated data

The simulation was done using the Polyester R package [37] using parameters obtained 
from the control samples of mouse hippocampus RNAseq [31]. Using salmon [17] with 
a decoy-aware transcriptome index for the mm10 genome from [38], the abundances for 
each transcript were first estimated to learn parameters for the simulation. 1000 tran-
scripts from different genes were randomly chosen. The last exon of all these transcripts 
was lengthened to the next, second next or third next downstream APA site annotated 
in the polyAsite database [15]. Duplicates of these transcripts were generated, which had 
less or no lengthening of their last exon, generating pairs of transcripts with different 
UTR lengths. For each transcript pair, one transcript was up and the other one down 
regulated by the same sampled fold change between 1.3 and 5. To make it more realistic, 
fold changes were also assigned to 300 genes from the set with differential UTR, and 300 
genes that did not have differences in UTR usage. Reads were then generated for two 
conditions with three replicates each using the simulate_experiment() function 
with the options paired = FALSE, error_model = "illumina5", bias = 
"cdnaf" and strand_specific = TRUE. The simulated reads are available on fig-
share at https:// dx. doi. org/ 10. 6084/ m9. figsh are. 13726 143.

3′‑seq analysis

To establish a set of true relative differences in UTR usage from the 3′ sequencing data 
[31], we downloaded the authors’ counts per cluster from the Gene Expression Omni-
bus (file GSE84643_3READS_count_table.txt.gz). We used the 3h treatment 
because we observed it to have the strongest signal, and excluded one sample (A6) that 
appeared like a strong outlier based on PCA and MDS plots. We kept only clusters with 
at least 50 reads in at least 2 samples, and used DEXSeq to fit a negative binomial on 
each gene and estimate the significance of the cluster:condition term. We con-
sidered as true positives genes with a gene-level and bin-level q-value ≤ 0.1, and true 
negatives genes with a gene-level q-value ≥ 0.8. Genes for which all tested methods pro-
duced a p-value of 1 or NA (i.e. genes filtered out as too lowly expressed in the standard 
RNAseq) were excluded for the benchmark.

Comparisons with alternatives

For the comparison of methods, all functions were used with their default parameters 
and run according to their manual. As QAPA and DaPars do not provide means to 
aggregate the results to the gene level this was implemented separately. For DaPars 
the p-values were aggregated to the gene level by using Simes’ method [35] for 

(4)tk =
Ĉk

uksi
.

https://dx.doi.org/10.6084/m9.figshare.13726143


Page 13 of 15Gerber et al. BMC Bioinformatics          (2021) 22:189  

comparability with diffUTR . Aggregation by taking the minimum p-value of all the 
transcripts in a gene produced extremely similar results. For QAPA |�PAU | was cal-
culated and aggregated to a gene level by taking the maximum from all transcripts of 
a gene and the genes were ranked by this value. Alternatively, we also tested apply-
ing a t-test on the log-transformed PAU values (log-transforming had a negligible 
effect), followed by Simes’ gene-level aggregation. Attempts to complement QAPA 
with p-values estimated from established statistical tests working with its equivalence 
classes, such as BANDITS [32], did not improve the results and were therefore dis-
carded so as not to distort the original method. Finally, for APAlyzer2 we combined 
the 3′ UTR and intronic APA analyses by using the minimum of the two p-values. See 
the https:// github. com/ plger/ diffU TR_ paper repository for details.

We used the following software versions for comparisons: Polyester 1.24.0, DEXSeq 
1.34.0, edgeR 3.30.0, limma 3.44.0, DaPars 0.9.1, APAlyzer 1.5.5, CSI-UTR  1.1.0. For 
QAPA, we used salmon 1.3.0 with validateMappings.
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