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Proteins within a molecular network are expected to be subject to different selective pressures depending on their relative
hierarchical positions. However, it is not obvious what genes within a network should be more likely to evolve under positive
selection. On one hand, only mutations at genes with a relatively high degree of control over adaptive phenotypes (such as those
encoding highly connected proteins) are expected to be “seen” by natural selection. On the other hand, a high degree of pleiotropy
at these genes is expected to hinder adaptation. Previous analyses of the human protein-protein interaction network have shown
that genes under long-term, recurrent positive selection (as inferred from interspecific comparisons) tend to act at the periphery
of the network. It is unknown, however, whether these trends apply to other organisms. Here, we show that long-term positive
selection has preferentially targeted the periphery of the yeast interactome. Conversely, in flies, genes under positive selection
encode significantly more connected and central proteins. These observations are not due to covariation of genes’ adaptability and
centrality with confounding factors. Therefore, the distribution of proteins encoded by genes under recurrent positive selection
across protein-protein interaction networks varies from one species to another.

1. Introduction

Scientists have been fascinated for decades by the emergence
and fixation of advantageous alleles by positive selection
[1, 2]. Occasionally, a new mutation is beneficial or an
existing mutation becomes beneficial due to a change in
the environment. Under certain conditions, as individuals
carrying such mutations have an increased fitness, these
mutations can quickly spread through the population, leaving
a characteristic footprint in the patterns of DNA variability
[3, 4]. Certain genes are more likely than others to undergo
positive selection, and understanding the reasons is essen-
tial to understand adaptation. The propensity of genes to
undergo positive selection depends on the balance between
the potential beneficial and deleterious effects of mutations
at these genes [5]. On one hand, only genes whose variability
has a considerable impact on the organism’s fitness (i.e.,
genes with a high degree of control over advantageous traits)
will be able to respond to natural selection [6, 7]. On the
other hand, highly pleiotropic genes (at whichmutations have

a high likelihood of being deleterious) will less frequently
respond to positive selection [1, 8–10]. Genes do not act in
isolation; instead, they often function as parts of molecular
pathways and networks. Both the importance and the degree
of pleiotropy of genes are affected by their position within
such networks, and therefore, a network framework may
enable a better understanding of genes’ different propensities
to be targeted by positive selection.

Proteins within a molecular pathway or network have
different relative impacts on the final output of the system
(the phenotype, and ultimately fitness): alteration of certain
key proteins profoundly impacts the behavior of the system,
whereas alteration of other, less important proteins has only
marginal effects [11]. The relative importance of proteins
depends not only on their intrinsic properties (e.g., their
kinetic properties), but also on the position that they occupy
within the network. For instance, genes acting at the upstream
part, or at bifurcating points of metabolic pathways, tend to
have a great influence on metabolic flux [12–14], and proteins
involved in many protein-protein interactions are often
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essential [15–17]. Proteins’ degree of pleiotropy also depends
on network position, with highly connected proteins, and
those involved in a high number of pathways, being often
highly pleiotropic. Therefore, genes acting at different parts
of a network are expected to have different propensities to
undergo positive selection, but it is often not obvious what
parts of the network should be targetedmore often by positive
selection. Adaptive evolution is expected to target genes
acting at key network positions (as less important proteins
will rarely be seen by natural selection), particularly if the
network is far from its adaptive optimum, but adaptationmay
be hindered by pleiotropy at these positions. Indeed, even
though multiple studies have shown that genes’ propensity
to undergo adaptive evolution depends on their network
position, clear rules have not emerged.

Population genetics studies based on a handful of well-
defined metabolic and signaling pathways have so far sug-
gested that positive selection often targets genes with rel-
atively important pathway positions. For instance, positive
selection acted on (i) genes encoding enzymes that act at
bifurcating points of the Drosophila melanogaster pathways
involved in glucose metabolism [18] and the human N-
glycosylation pathway [19]; (ii) the gene encoding the first
enzyme of the Arabidopsis thaliana glucosinolate pathway
[13]; and (iii) genes encoding the most connected proteins in
the human insulin/TOR pathway [20]. Beneficial mutations
at genes acting at such key pathway positions may lead to
rapid evolutionary change. Simulation analyses of evolving
pathways suggest that, at the beginning of the adaptation
process, when pathways are far away from their optimum,
positive selection preferentially occurs at upstream genes,
and at those acting at branch points; however, once path-
ways approach their optimum, upstream genes are highly
constrained and downstream genes are the ones that undergo
positive selection [12, 14].

In the last years, a considerable amount of genomic
and functional data has accumulated, allowing evolutionary
biologists to study the distribution of genes under positive
selection in different kinds of large-scale networks. Genes
under positive selection in honey bees, as inferred from
the McDonald-Kreitman test [21], are lowly connected in
the gene coexpression network [22]. In the D. melanogaster
metabolic network, genes under positive selection, as inferred
from the comparison of six Drosophila genomes, do not
exhibit any particular network position; however, very few
genes under positive selectionwere found in this study, which
may have resulted in limited statistical power [23].

The relationship between genes’ propensity to exhibit
signatures of positive selection and the number of physical
protein-protein interactions in which the encoded product is
involved has only been addressed in humans, and contrasting
trends have been observed depending on the evolutionary
timescale considered. When recurring, long-term positive
selection was inferred from comparison of the human
and chimpanzee genomes [24], or from comparison of 10
mammalian genomes [16] (including 9 placentals and one
marsupial, which diverged 157–170 million years ago [25]),
using tests based on the nonsynonymous to synonymous
divergence ratio (𝜔 = 𝑑

𝑁
/𝑑
𝑆
), positive selection was found

to target preferentially genes acting at the periphery of
the human protein-protein interaction network (i.e., genes
encoding lowly connected proteins). Conversely, when recent
selective sweeps were inferred from comparison of hundreds
of human genomes, it was found that genes under positive
selection were significantly more connected than genes with
no signatures of positive selection [16, 26].

Are the trends observed thus far in the human protein-
protein interaction network common to all organisms? Here,
we characterize the distribution of genes under recurrent
positive selection in the interactomes of Saccharomyces cere-
visiae and D. melanogaster. For that purpose, we infer long-
term positive selection events by comparing the genomes of
five Saccharomyces and six Drosophila species. We find that,
similar to what was previously observed in humans [16, 24],
genes under positive selection act at the periphery of the S.
cerevisiae protein-protein interaction network. Conversely,
in D. melanogaster, genes under positive selection are sig-
nificantly more connected than genes with no signatures of
positive selection.

2. Materials and Methods

2.1. Tests of Positive Selection. For each S. cerevisiae gene,
the longest encoded protein was selected for analysis,
and orthologs were identified in another 4 Saccharomyces
genomes using a best reciprocal hit approach. Each S. cere-
visiae longest protein was used as a query in BLASTP search
(E-value cut-off: 10−10) against the proteomes of S. paradoxus,
S.mikatae, S. kudriavzevii, and S. bayanus.Thebest hit in each
proteome was used as a query in a second BLASTP search
(E-value < 10−10) against the S. cerevisiae proteome. If the
best hit identified in the second search was the original S.
cerevisiae protein, then the encoding genes were considered
to be orthologs. Only S. cerevisiae genes with identifiable
orthologs in all four Saccharomyces species were used in our
analyses.The same strategy was adopted to identify orthologs
of all D. melanogaster genes in the genomes of D. simulans,
D. sechellia, D. yakuba, D. erecta, and D. ananassae. We did
not include more distant species in our analyses in order
to (i) avoid saturation of synonymous sites; (ii) maintain a
high number of analyzable genes (genes with orthologs in
all considered species); and (iii) minimize problems resulting
from alignment of highly divergent sequences.

Groups of orthologous protein sequences were aligned
using ProbCons [27]. Given that gene annotations of non-
model organisms are performed using automatic methods,
which often produce imperfect genemodels [28, 29], and that
tests of positive selection are highly sensitive to such errors
[30–33], we stringently filtered our protein sequence align-
ments using a three-step procedure (as in [16]). First, Gblocks
version 0.91b [34] was used to eliminate nonalignable and
poorly alignable regions. Second, a sliding window approach
was used to identify alignment regions of 15 amino acids in
which one of the sequences presented 10 or more singleton
amino acids (amino acids that are unique to one sequence),
and regions of 5 amino acids in which all were singletons in
one of the species; such regions are unlikely to be correctly
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annotated. The original (unfiltered) sequence alignments
were combined with the coding sequences (CDSs) and the
results of the two first filtering steps to produce CDS align-
ments using an in-house pipeline. The resulting alignments
were used in a test of positive selection using the M8 versus
M7 test (see below). Third, for genes inferred to be under
positive selection, CDS sequence alignments were visualized
and erroneously annotated regions were manually removed
using BioEdit version 7.2.5 [35] before rerunning the test of
positive selection.

For each alignment, the presence of a set of codons with
𝜔 > 1 was inferred using the M8 versus M7 test [36]. The
likelihood of alignment under the M8 and M7 models was
estimated using the codeml program of the PAML package
version 4.4d [37]. In order to alleviate the problem of local
optima, all computations were repeated using three starting
𝜔 values (𝜔 = 0.04, 0.4, and 4). Both models assume
that codons’ 𝜔 values follow a beta distribution, with values
ranging from 0 to 1. The M8 model allows for an additional
class of codons with 𝜔

𝑠
> 1. The fit of both models was

compared using a likelihood ratio test: twice the difference
in the log-likelihood of both models [2Δℓ = 2 × (ℓM8 − ℓM7)]
was assumed to follow a 𝜒2 distribution with two degrees of
freedom [38]. Genes with a 𝑃 value lower than 0.05 and 𝜔

𝑠

higher than 1 were considered to be under positive selection.
Analyses were repeated using a more stringent 𝑃 value (𝑃 <
0.01 and 𝜔

𝑠
> 1), and controlling the false discovery rate

associated with multiple testing using the Benjamini and
Hochberg approach (𝑞 < 0.1 and 𝜔

𝑠
> 1) [39]. Unless stated

otherwise, genes considered to be under positive selection
throughout this study correspond to those with 𝑃 < 0.05 and
𝜔
𝑠
> 1.

2.2. Network Data and Analyses. Protein-protein interaction
data for S. cerevisiae andD. melanogaster were obtained from
the BioGRID database version 3.4.129 [40]. This database
contains only experimentally determined interactions. Only
physical nonredundant interactions between proteins from
the same organism were used in our analyses. Additional
analyses were conducted using interaction data from the
STRING database version 10 [41].This database contains data
from both experimentally determined and computationally
predicted (based on coexpression, phylogenetic profiles, etc.)
interactions. Only interactions with a confidence score ≥40%
were used in our analyses.

For each protein and network, degree was computed as
the number of other proteinswithwhich the protein interacts,
betweenness was computed as the number of shortest paths
among other proteins that pass through the protein [42],
and closeness was computed as one divided by the average
distance (number of steps) between the protein and all
other proteins. Betweenness and closeness computations
were conducted using Pajek version 4.05 [43].

2.3. Protein Abundance and Gene Expression Data. Protein
abundance data for S. cerevisiae and for the whole body
of D. melanogaster adults was obtained from the PaxDB
database version 4 [44]. Messenger RNA abundance data

for S. cerevisiae was obtained from [45]. Messenger RNA
abundance data for the whole D. melanogaster adult and
16 adult nonredundant tissues/organs were obtained from
the FlyAtlas database [46]. Probes were mapped to genes
using the Affymetrix annotation file “Drosophila 2” version
35. Probes matching multiple genes were not used in our
analyses. For genes matching multiple probes, the probe
with the highest mRNA abundance in the whole fly was
used. The expression breadth of each D. melanogaster gene
was computed as the number of tissues/organs in which
the gene is expressed. The considered tissues were brain,
head, eye, thoracicoabdominal ganglion, salivary gland, crop,
midgut, tubule, hindgut, heart, fat body, ovary, testis, male
accessory glands, virgin spermatheca, and carcass. A gene
was considered to be expressed in a tissue/organ if the
database reported presence in at least 3 out of the 4 biological
replicates.

2.4. Number of Publications. For each S. cerevisiae gene, the
number of publications in which it is referred was obtained
from the SaccharomycesGenome Database [47].The number
of publications related to each D. melanogaster gene was
obtained from FlyBase [48]. These data were obtained in
February 2016.

3. Results

3.1. Positive Selection Acted Preferentially at the Periphery of
the Yeast Protein-Protein Interaction Network. We identified
the orthologs of all S. cerevisiae genes in the genomes
of another four Saccharomyces genomes. A total of 2071
S. cerevisiae genes had identifiable orthologs in all four
genomes. Sequence alignments were filtered using highly
stringent criteria, and the filtered alignments were used in a
maximum likelihood test of positive selection [36]. A total of
91 genes exhibited signatures of positive selection according
to our initial criteria (𝑃 < 0.05 and 𝜔

𝑠
> 1). This number is

moderately higher than that resulting from a scan based on
three Saccharomyces genomes [49].

We reconstructed the yeast protein-protein interac-
tion network from the experimentally determined physi-
cal protein-protein interactions recorded in the BioGRID
database [40]. The network contained a total of 5864
nonredundant proteins and 81,040 nonredundant interac-
tions (Table S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/4658506). Out of the 5864
genes encoding the proteins represented in the network,
89 exhibited signatures of positive selection, 1956 did not
exhibit signatures of positive selection, and in the remaining
genes the test could not be performed, as orthologs were not
identified in all yeast species.

Genes with signatures of positive selection encode pro-
teins that exhibit a significantly lower number of interactions
(average for genes under positive selection: 18.01; average for
genes with no signatures of positive selection: 27.23; Mann-
Whitney𝑈 test,𝑃 = 0.016) and a significantly lower closeness
centrality (mean for genes under positive selection: 0.387;
mean for geneswithout signatures of positive selection: 0.400;
𝑃 = 0.008). Genes under positive selection also exhibit
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Figure 1: Distribution of proteins encoded by genes under positive selection in the S. cerevisiae protein-protein interaction network. (a)
BioGRID network. (b) Average network centrality metrics calculated from the BioGRID network. (c) STRING network. (d) Average network
centrality metrics calculated from the STRING network. In panels (a) and (c), proteins encoded by genes under positive selection are
represented in red, and the rest of the proteins are represented in gray. In panels (b) and (d), genes under positive selection are represented
in red, and genes with no signatures of positive selection are represented in gray. Error bars correspond to the standard error of the mean.
Genes were considered to be under positive selection if they exhibited 𝑃 < 0.05 and 𝜔

𝑠
> 1. For analyses based on more stringent criteria, see

Tables S3 and S4. 𝑃 values represented in the figure correspond to the Mann-Whitney 𝑈 test.

a substantially but not significantly lower betweenness cen-
trality (average for genes under positive selection: 6.73 × 10−5;
average for genes with no signatures of positive selection:
1.90 × 10−4;𝑃 = 0.636) (Figures 1(a) and 1(b); Table S2).When
a more stringent 𝑃 value cut-off was applied in our tests of
positive selection (𝑃 < 0.01), only 31 network genes were
considered to be under positive selection. When the results
of the tests of positive selection were corrected for multiple
testing (𝑞 < 0.1), only 5 of these genes remained significant.
Both gene sets encoded proteins with a substantially lower
degree and betweenness, but differences were not significant,
probably due to limited statistical power resulting from the
small sample sizes (Tables S3 and S4).

We repeated our network analyses using a denser network
obtained from the data recorded in the STRING database,

which contains not only experimentally determined but also
computationally predicted protein and gene interactions [41]
(Table S1). Similar results were obtained: proteins encoded
by genes under positive selection exhibit a significantly lower
degree and closeness and a substantially, but not significantly,
lower betweenness (Figures 1(c) and 1(d); Table S2). No
significant differences were observed when more stringent
criteria were used in the tests of positive selection (𝑃 < 0.01
or 𝑞 < 0.1; Tables S3 and S4).

We next considered whether our observations might be
due to covariation of both gene adaptability and network cen-
trality with different potentially confounding factors, rather
than to a direct link between adaptability and centrality.
Previous results in yeasts and other organisms have shown
that central genes tend to be highly expressed [50–58], and
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Figure 2: Differences inmRNA abundance, protein abundance, protein length, and number of publications between positively selected genes
(in red) and genes without signatures of positive selection (in gray) in S. cerevisiae. Genes were considered to be under positive selection if
they exhibited 𝑃 < 0.05 and 𝜔

𝑠
> 1. 𝑃 values represented in the figure correspond to the Mann-Whitney 𝑈 test.

previous works in humans have shown that highly expressed
genes are unlikely to undergo adaptive evolution [24, 59].
Combined, these observations raise the possibility that our
observations could merely be a byproduct of the distribution
of expression levels in the network. We found a positive
correlation between degree and both mRNA abundance
(BioGRID network: Spearman’s rank correlation coefficient,
𝜌 = 0.294, 𝑃 = 9.6 × 10−37; STRING network: 𝜌 = 0.320, 𝑃 =
7.1 × 10−44) and protein abundance (BioGRID network: 𝜌 =
0.452, 𝑃 = 2.1 × 10−103; STRING network: 𝜌 = 0.441, 𝑃 =
5.8 × 10−99). However, we found no differences between the
expression levels and protein abundances of genes under
positive selection and genes with no signatures of positive
selection in yeast (Figure 2), which allowed us to discard these
factors as the reason underlying our observations.

Also consistent with previous results in yeasts [60], we
observed a positive correlation between proteins’ length and
number of protein-protein interactions (BioGRIDnetwork: 𝜌
= 0.076, 𝑃 = 6.3 × 10−4; STRING network: 𝜌 = 0.078, 𝑃 = 4.1 ×
10−4). In line with previous results inmammals [16], we found
that yeast genes under positive selection encode significantly
longer proteins than those with no signatures of positive
selection (Figure 2), which is consistent with the power of
the test depending on the number of codons analyzed [61].
Combined, these observations indicate that our observation
that genes under positive selection tend to encode peripheral
genes cannot be due to covariation with protein length.

Interactomic datasets are known to be subjected to a
number of biases [62]. In particular, such datasets tend
to include a disproportionally high number of interactions
involving proteins that have been studied in great detail
(e.g., because of their particular importance or interest), as
more resources have been devoted to study them. Indeed, we
observed that protein degrees positively correlate with the
number of publications mentioning the proteins (BioGRID
network: 𝜌 = 0.651, 𝑃 < 10−6; STRING network: 𝜌 = 0.553,

𝑃 < 10−6) and that genes under positive selection tend to be
mentioned in a lower number of publications (𝑃 = 0.039;
Figure 2). Nonetheless, this bias is unlikely to explain our
observations: a partial correlation analysis shows that, in the
STRING network, 2Δℓ correlates with degree, even when
controlling for the number of publications (𝜌 = −0.066,
𝑃 = 0.003). In addition, when we used a subnetwork of
the BioGRID network containing only the interactions deter-
mined by high-throughput techniques (which are expected
to be less prone to this kind of bias) the difference between
the degree of proteins encoded by genes under positive
selection (mean = 15.31, median = 9) and the degree of the
proteins encoded by genes with no signatures of positive
selection (mean = 22.18, median = 11) remains substantially
and marginally significantly different (𝑃 = 0.058).

Another known problem of currently available inter-
actomes is their high rate of false positives [63–65]. To
alleviate this problem, we generated two highly stringent
subnetworks of our BioGRID and STRING networks. The
first subnetwork was generated by considering only those
protein-protein interactions determined by low-throughput
techniques (which are expected to produce more reliable
results than high-throughput techniques). In this case, the
difference between the degree of proteins encoded by genes
under positive selection (mean = 7.62, median = 5) and
the degree of proteins encoded by genes with no signatures
of positive selection (mean = 9.69, median = 5) remained
substantial; however, the differences were not statistically
significant (𝑃 = 0.808), probably owing to the reduced
statistical power resulting from filtering the network. The
second subnetwork was obtained by considering only the
interactions described in the STRING database with a confi-
dence score ≥50%.The degrees of proteins encoded by genes
under positive selectionwere significantly lower (genes under
positive selection: mean = 65.87, median = 43; genes with no
signatures of positive selection: mean = 80.93, median = 54;
𝑃 = 0.047). When an evenmore stringent cut-off was applied
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(score ≥90%), the differences were even more marked, but
nonsignificant (positively selected: mean = 22.05, median =
9.5; non-positively selected: mean = 27.92, median = 12; 𝑃 =
0.177), probably due to reduced statistical power.

3.2. Positive Selection Acted Preferentially at the Center of
the Fly Protein-Protein Interaction Network. We performed a
scan of positive selection using the genomes of sixDrosophila
species. Orthologs in all species were found for 10,340 D.
melanogaster genes, and signatures of positive selection were
detected in 533 of these genes using a 𝑃 value threshold
of 0.05. This number is smaller than those resulting from
previous scans of positive selection in Drosophila [31, 66],
as expected from the fact that we applied highly stringent
criteria, includingmanual inspection and editing of the align-
ments in which positive selection was detected (Section 2).
The protein-protein interaction network, constructed from
the data available at the BioGRID database [40], consisted
of 7968 nonredundant proteins and 36,589 nonredundant
interactions (Table S1). Out of the 7968 genes whose encoded
products are represented in the network, positive selection
was inferred in 350, no signatures of positive selection were
found in 6171, and the positive selection test could not be
performed on the rest because orthologs were not present in
some of the genomes.

Remarkably, we found that, contrary to what was found
in yeast (Figure 1; Table S2) and humans [16, 24], genes under
positive selection encoded proteinswith a significantly higher
degree (average for genes under positive selection: 10.49;
average for geneswith no signatures of positive selection: 9.19;
𝑃 = 0.049), betweenness (average for genes under positive
selection: 4.5 × 10−4; average for genes with no signatures
of positive selection: 3.8 × 10−4; 𝑃 = 0.008), and closeness
(average for genes under positive selection: 0.242; average for
genes with no signatures of positive selection: 0.239; 𝑃 =
0.045) (Figures 3(a) and 3(b), Table S5). Similar results were
obtained when a more stringent 𝑃 value cut-off was used
(𝑃 < 0.01), with the only exception that the differences are
not significant, albeit substantial, for betweenness (Table S6).
When the results of the positive selection test were corrected
formultiple testing by controlling the false discovery rate (𝑞 <
0.1), only 50 network genes retained signatures of positive
selection. These genes exhibit a higher degree, betweenness,
and closeness, even though the differences are not statistically
significant, probably due to a reduced statistical power due to
the small genes under positive selection (Table S7). Similar
results were also obtained when the network was assembled
from the contents of the STRING database [41]; in this case,
the differences are statistically significant for degree and
closeness when a 𝑃 value cut-off of 𝑃 < 0.05 was used to
detect positive selection (Figures 3(c) and 3(d), Table S5),
and for degree, betweenness, and closeness when the more
stringent cut-off of 𝑃 < 0.01 was used (Table S6) or when
correction for multiple testing was applied (𝑞 < 0.1; Table
S7).

Consistent with previous results in Drosophila and
other organisms [50–58], protein degree positively correlates
with mRNA abundance (BioGRID network: 𝜌 = 0.097,

𝑃 = 1.1 × 10−81; STRING network: 𝜌 = 0.338, 𝑃 = 8.2 × 10−114).
We also found degree to positively correlate with protein
abundance (BioGRID network: 𝜌 = 0.120, 𝑃 = 4.3 × 10−10;
STRING network: 𝜌 = 0.288, 𝑃 = 1.8 × 10−83) and with
expression breadth (BioGRID network: 𝜌 = 0.179, 𝑃 = 2.2 ×
10−47; STRING network: 𝜌 = 0.036, 𝑃 = 0.017). However,
none of these parameters significantly differs between genes
under positive selection and genes with no signatures of
positive selection (Figure 4). In addition, genes with different
expression breadths do not differ in their propensity to
exhibit signatures of positive selection (correlation between
expression breadth and the fraction of genes under positive
selection: 𝜌 = 0.018, 𝑃 = 0.948; Figure 5). These observations
allow us to discard the possibility that the observed higher
centrality of genes under positive selection (Figure 3; Tables
S5–S7) could be due to covariation of adaptability and
centrality with these expression parameters. Similar to what
is observed in yeast (Figure 2) and humans [16], genes under
positive selection tend to encode long proteins in Drosophila
(Figure 4). However, protein length does not correlate with
number of interactions (BioGRID network: 𝜌 = 0.028, 𝑃 =
0.133; STRING network: 𝜌 = 0.009, 𝑃 = 0.555), indicating
that our observations are not due to covariation with protein
length either.

Protein degreeswere found to positively correlatewith the
number of publications mentioning each protein (BioGRID
network: 𝜌 = 0.249, 𝑃 < 10−6; STRING network: 𝜌 = 0.251,
𝑃 < 10−6). However, three lines of evidence demonstrate that
this has not biased our results. First, the average number
of publications does not significantly differ between genes
under positive selection and genes with no signatures of
positive selection (𝑃 = 0.161; Figure 4). Second, we
repeated our analyses using the D. melanogaster protein-
protein interaction network generated by Giot et al. [67].This
network is the result of a large-scale experiment in which
virtually every possible interaction was tested, and therefore
it is expected to be unbiased. Similar to our analyses on the
entire BioGRID network, we observed that proteins encoded
by genes under positive selection exhibited a higher degree
(genes under positive selection: mean = 6.50, median = 3;
genes with no signatures of positive selection: mean = 5.81,
median = 3; 𝑃 = 0.224). Third, when we repeated our
analyses on a subnetwork containing only those interactions
determined by high-throughput techniques, we observed sig-
nificant differences between proteins encoded by genes under
positive selection and those encoded by proteins with no
signatures of positive selection (positively selected: mean =
10.42, median = 4; non-positively selected: mean = 8.97,
median = 4; 𝑃 = 0.046).

Finally, we repeated our analyses on two highly stringent
subnetworks of our BioGRID and STRING networks. When
we considered only those protein-protein interactions deter-
mined by low-throughput experiments, proteins encoded by
genes under positive selection remained substantially more
central; however, the differences were not statistically sig-
nificant, probably due to reduced statistical power resulting
from filtering our network (positively selected: mean = 2.91,
median = 1; non-positively selected: mean = 2.56, median = 1;
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Figure 3: Distribution of proteins encoded by genes under positive selection in the D. melanogaster protein-protein interaction network.
(a) BioGRID network. (b) Average network centrality metrics calculated from the BioGRID network. (c) STRING network. (d) Average
network centrality metrics calculated from the STRING network. In panels (a) and (c), proteins encoded by genes under positive selection
are represented in red, and the rest of the proteins are represented in gray. In panels (b) and (d), genes under positive selection are represented
in red, and genes with no signatures of positive selection are represented in gray. Error bars correspond to the standard error of the mean.
Genes were considered to be under positive selection if they exhibited 𝑃 < 0.05 and 𝜔

𝑠
> 1. For analyses based on more stringent criteria, see

Tables S6 and S7. 𝑃 values represented in the figure correspond to the Mann-Whitney 𝑈 test.

𝑃 = 0.708). When we considered only the interactions
described in the STRING database with a confidence score
≥50% or ≥60%, proteins encoded by genes under positive
selection remained significantly more central (𝑃 = 2.3 ×
10−3 and 8.1 × 10−3, resp.). When only interactions with a
score ≥90% were considered, the differences were even more
marked, but nonsignificant (genes under positive selection:
mean = 15.15, median = 4; genes with no signatures of positive
selection:mean = 12.89,median = 4;𝑃 = 0.756), probably due
to reduced statistical power.

4. Discussion

We have performed two scans of positive selection by com-
paring the genomes of five Saccharomyces and six Drosophila

species and investigated the position of the proteins encoded
by genes under positive selection in the protein-protein
interaction networks of S. cerevisiae and D. melanogaster.
Consistent with previous results in humans [16, 24], we
found that genes under positive selection encode significantly
less connected proteins in the interactome of S. cerevisiae.
However, the opposite was observed in Drosophila: proteins
encoded by genes under positive selection are significantly
more connected than those encoded by genes with no
signatures of positive selection. These observations were not
due to covariation of network centrality and positive selection
with protein abundance, expression level, protein length, or,
in the case of Drosophila, expression breadth. Equivalent
results were obtained when considering betweenness and
closeness (two descriptors of the global position of proteins
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Figure 5: Percent of genes under positive selection among genes
with different expression breadths in D. melanogaster. Genes were
considered to be under positive selection if they exhibited 𝑃 < 0.05
and 𝜔

𝑠
> 1.

within the network, which take into account not only their
direct interactors, but rather their potential role in connecting
different parts of the network [42, 68]). Equivalent results
were also obtained by analyzing the STRING database [41],
which contains both experimentally determined and compu-
tationally predicted gene interactions.

Our observations imply that interactome position has
an impact on the propensity of genes to undergo adaptive
evolution. In other words, genes under positive selection
do not distribute randomly in protein-protein interaction
networks. Previous studies in humans have suggested that the
relationship between network centrality and the propensity
of genes to undergo positive selection depends on the
timescale considered: genes that underwent positive selection
recurrently during long evolutionary times, as revealed from
comparison of the genomes of different species, act at the
periphery of the human interactome [16, 24], whereas genes
that underwent positive selection recently, as inferred from
comparison of human genomes, encode highly interactive
proteins [16, 26]. Our study shows that the distribution

of genes under positive selection in the protein-protein
interaction network also varies from one species to another.

The test of positive selection that we used [36] can detect
adaptation events that affected the protein sequence in a
recurring manner during long evolutionary periods (e.g., as
a result of an arms race dynamics [69]), and not adaptation
events in the regulatory region. Therefore, our study focused
on the adaptation at the protein sequence level (likely protein
function), rather than at the regulatory level. This was also
the case of the study by Kim et al. [24], and the interspecific
analysis conducted by Luisi et al. [16]. In contrast, studies in
which positive selectionwas inferred from the SNP frequency
spectrum, estimated from comparison of DNA sequences of
alleles of the same species (e.g., the population genomics
studies conducted by Luisi et al. [16] and by Qian et al.
[26]), may have captured recent adaptation events, at both the
regulatory and the protein sequence level.

Genes within a network have different hierarchical posi-
tions and, therefore, a different relative potential to affect
adaptive phenotypes. In the context of protein-protein inter-
action networks, centrality is a proxy for this relative impor-
tance.Mutations affecting proteins involved in a high number
of protein-protein interactions, or those with a high global
centrality, are expected to have a high influence on network
dynamics, and to have highly pleiotropic effects (indeed,
highly pleiotropic genes tend to encode highly interactive
proteins [70]). Consistently, genes encoding central proteins
are often essential [15–17] andhighly constrained by purifying
selection [15, 16, 50, 71, 72].

At least two opposing forces may determine the direction
of the relationship between genes’ adaptability and network
centrality. On one hand, beneficial mutations at genes encod-
ing the “key” proteins of the network (e.g., those involved
in a high number of protein-protein interactions) are likely
to have a great impact on phenotypes and fitness, whereas
beneficial mutations at genes encoding less important pro-
teins (those whose variability does not impact much the final
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output of the network) will rarely be seen by natural selection.
This is expected to result in positive selection targeting
preferentially genes acting at the center of the network.
On the other hand, pleiotropy is thought to constrain the
adaptation of protein sequences. Mutations at genes involved
in many biological processes, or in many interactions, are
expected to affect a high number of phenotypes, thus making
it unlikely that such genes can experience drastic changes at
the protein sequence level [1, 8–10]. In addition, purifying
selection may rapidly remove most nonsynonymous muta-
tions from these genes, further hindering adaptation at the
protein level. This is expected to result in positive selection
acting preferentially at the network periphery. Nonetheless,
compensatory mutations may promote recurring adaptation
events at highly pleiotropic proteins. Adaptation of one aspect
of the function of a protein may have negative side effects
on other aspects of its function, which can be ameliorated or
restored by subsequent adaptation events [73, 74].

It is possible that the balance between both forces is
different in yeasts and Drosophila and that it is also different
when considering the long-term evolutionary history of
mammals versus the recent evolutionary history of humans.
However, it is not obvious why the balance might be different
in different organisms and/or timescales. One factor affecting
the relative importance of both forces may be the point of
the adaptive landscape in which a population is. Adaptive
walks often proceed by an initial period of fixation of large-
effect adaptive mutations, followed by fixation of mutations
of smaller effects [1, 75, 76]. Populations that are poorly
adapted to the environment (e.g., due to an environmental
change) might undergo big adaptive leaps by fixing muta-
tions at highly central genes. Conversely, populations that
are near their adaptive optimum may undergo adaptation
preferentially at the network periphery. Consistent with this
model of diminishing returns, simulation of the adaptation
of hypothetical, randomly generated metabolic pathways has
shown that the first steps of adaptation (when pathways are
far away from their optimal function) take place through
positive selection acting at upstream genes, and those acting
at branch points (the ones with a higher degree of control
over the pathway flux), whereas at the end of the simulations
(when pathways are near the optimum) pathways are fine-
tuned by positive selection at downstream genes (which have
a smaller influence on flux) [12, 14]. It is unclear, however, why
the Drosophila network would be far away from its optimal
functioning compared to the yeast andmammalian networks.

Effective population size (𝑁
𝑒
) may be another key mod-

ulator of the centrality of genes under positive selection. In
organisms with large 𝑁

𝑒
, the efficacy of natural selection is

high, and evenmutationswith small selection coefficientswill
be fixed or removed by natural selection. This is expected
to result in genes under positive selection at both the center
and the periphery of the network. Conversely, in organisms
with small 𝑁

𝑒
, genetic drift can outpower natural selection,

and only mutations with large effects are expected to be
fixed/removed by natural selection [6], which is expected
to result in positive selection mostly at the center of the
network. Nonetheless, this is unlikely to explain the differ-
ent trends observed in yeasts, Drosophila, and humans, as

D. melanogaster is thought to have 𝑁
𝑒
higher than humans

and lower than yeast (e.g., see [77–80]).
Another potentially important consideration is the so-

called “cost of complexity.” Large-size mutations will more
often be disruptive in complex organisms (those with many
characters) than in simple ones [1, 81]. This may promote
adaptation at the periphery of the networks of complex
organisms. However, it is again unlikely that this factor
has caused the observed differences between Drosophila and
yeasts and mammals, as Drosophila exhibits an intermediate
complexity between yeasts and mammals [82, 83]. The cost
of complexity might be partially reduced by network mod-
ularity, as it may significantly reduce the pleiotropic effects
of adaptive mutations by containing genes in small areas of
influence [84, 85]. Nonetheless, there is no reason to think
that the Drosophila interactome is more modular than those
of yeast and human [86, 87], and Drosophila genes under
positive selection exhibit high betweenness and closeness
centralities, which is not compatiblewith their being confined
in modules.

The five Saccharomyces species used in our analysis
(all belonging to the Saccharomyces sensu stricto complex)
diverged 10–20 million years ago [88]. The six Drosophila
species analyzed in this study (all belonging to the melano-
gaster group) diverged ∼30 million years ago [89]. Kim et
al. [24] inferred positive selection from comparison of the
human and chimpanzee genomes, which diverged ∼6million
years ago [90, 91], and the 10 mammalian genomes studied
by Luisi et al. [16] diverged 157–170 million years ago [25].
Therefore, the divergence time considered in our scan of
positive selection in Drosophila falls within the range of the
divergence times for the species used in the scans for the other
taxa, indicating that the peculiar distribution of genes under
positive selection within theDrosophila network is not due to
divergence times.

Therefore, it is unclear why the distribution of genes
under recurrent positive selection is different in theDrosoph-
ila interactome and in the human and yeast interactomes. In
any case, our observations imply that even though network
position is a key factor determining genes’ propensity to
undergo positive selection, the relationship between both
factors is complex and lineage-specific.
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