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Abstract

Pathogen monitoring is becoming more precise as sequencing technologies become more affordable and accessible

worldwide. This transition is especially apparent in the field of food safety, which has demonstrated how whole-genome

sequencing (WGS) can be used on a global scale to protect public health. GenomeTrakr coordinates the WGS performed by

public-health agencies and other partners by providing a public database with real-time cluster analysis for foodborne

pathogen surveillance. Because WGS is being used to support enforcement decisions, it is essential to have confidence in the

quality of the data being used and the downstream data analyses that guide these decisions. Routine proficiency tests, such

as the one described here, have an important role in ensuring the validity of both data and procedures. In 2015, the

GenomeTrakr proficiency test distributed eight isolates of common foodborne pathogens to participating laboratories, who

were required to follow a specific protocol for performing WGS. Resulting sequence data were evaluated for several metrics,

including proper labelling, sequence quality and new single nucleotide polymorphisms (SNPs). Illumina MiSeq sequence data

collected for the same set of strains across 21 different laboratories exhibited high reproducibility, while revealing a narrow

range of technical and biological variance. The numbers of SNPs reported for sequencing runs of the same isolates across

multiple laboratories support the robustness of our cluster analysis pipeline in that each individual isolate cultured and

resequenced multiple times in multiple places are all easily identifiable as originating from the same source.

DATA SUMMARY

Raw data collected as part of the proficiency testing exercise
have been submitted to the National Center for Biotechnol-
ogy Information (NCBI) Sequence Read Archive (SRA)
under BioProject PRJNA386310 (https://www.ncbi.nlm.nih.
gov/bioproject/386310). BioSamples and SRA run accession
numbers for these data are listed in Table S1 (available in
the online version of this article). Complete, annotated ref-
erence genomes were submitted to NCBI’s GenBank with
the accession numbers listed in Table 2.

INTRODUCTION

Foodborne pathogen surveillance in the USA is transition-
ing from pulsed-field gel electrophoresis (PFGE) to whole-
genome sequencing (WGS) for subtyping and disease
surveillance. The United States Food and Drug

Administration (FDA), tasked with ensuring a safe food
supply, began piloting this technology in 2012 with the for-
mation of the GenomeTrakr network [1]. Microbial food
and environmental isolates collected by the GenomeTrakr
network laboratories (FDA field labs, state and local public-
health labs, academic labs and others) are submitted to the
public GenomeTrakr database hosted at the National Center
for Biotechnology Information (NCBI). WGS data collec-
tion for foodborne pathogens is now part of the standard
operating protocol (SOP) across the three federal agencies
working in food safety [the FDA, the Centers for Disease
Control and Prevention (CDC) and the United States
Department of Agriculture – Food Safety and Inspection
Service (USDA-FSIS)]. Unsurprisingly, single nucleotide
polymorphisms (SNPs) gathered across the entire bacterial
genome [2–4], as well as multi-locus sequence typing
(cgMLST or wgMLST) [5, 6], provide far greater resolution
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for microbial pathogen surveillance than the current gold

standard, PFGE. Genomic data collection and submissions

to the NCBI Sequence Read Archive (SRA) are harmonized

across all three federal agencies, ensuring data compatibility

for various public-health activities (e.g. outbreak detection,

outbreak monitoring, outbreak investigation, source track-

ing, drug resistance monitoring and evaluations of facility

inspection results). Bacterial isolates such as Salmonella

enterica, Listeria monocytogenes, Escherichia coli, Vibrio

parahaemolyticus and Campylobacter spp. obtained from

food and environmental sources are sequenced by Genome-

Trakr laboratories in real-time. Once these data are in the

SRA, genomes can be clustered into phylogenetic trees and

results made publicly available at the NCBI’s Pathogen

Detection website www.illumina.com/content/dam/illu-

mina-marketing/documents/products/other/miseq-over-

clustering-primer-770-2014-038.pdf(https://www.ncbi.nlm.

nih.gov/pathogens). As of April 13th 2018, approximately

210 000 genomes have been submitted from all over the

world to this public pathogen surveillance network, includ-

ing from the USA’s GenomeTrakr and PulseNet [6, 7]

networks.

For each new technology, it must be ensured that data
collection is accurate and reproducible � both within indi-
vidual laboratories and across networks of laboratories �

especially when those data are used in the service of public
health [8–12]. WGS tools are being widely used for clinical
testing purposes; applications of genome sequencing to
human health require rigorous proficiency testing (PT) to
ensure that the multiple laboratories performing diagnostic
analyses do so consistently, and adhere to patient privacy
requirements [13–15]. Multiple studies have also validated
the application of genome sequencing to pathogen surveil-
lance [2–4, 16–18] and further validation has been proposed
via a new Clinical Laboratory Improvement Amendments
(CLIA) protocol for performing Illumina WGS in public-
health laboratories [19]. There are also significant efforts
underway to establish and standardize global networks for
real-time WGS sequencing and analysis to rapidly deter-
mine the relatedness of microbial isolates using a global
database for these comparisons [20–22]. Real-time for this
application means data are deposited into a public database
immediately after sequencing, which contrasts with the tra-
ditional ‘hold until published’ model. As a first step, the
Global Microbial Identifier (GMI) initiative held a series of
PT exercises [20] comparing data collection and analysis in
the following countries: the USA, the UK, Denmark, Can-
ada, Germany, France, Malaysia, Italy, Sweden, Spain, Israel,
Poland, Finland and Australia. That GMI PT dataset has
recently been submitted to NCBI BioProject PRJEB21132.
Despite the wide use of next-generation sequencing (NGS)
in the public-health arena, the raw data collected as part of
PT is rarely released publicly; thus, there’s a need for pro-
viding in-depth public analysis of PT NGS data collected
across a distributed laboratory network.

The GenomeTrakr proficiency test (GTPT) was designed to
assess the performance of participating laboratories and to
help the FDA coordinating team identify areas for improve-
ment (e.g. sequence quality, data transfer, following an SOP
and communications). The third annual GTPT exercise was
held in 2015, which included 26 participating laboratories
(Table 1). Each laboratory received eight foodborne patho-
gen isolates (Table 2), selected to span both genomic diver-
sity (multiple species) and complexity (containing zero to
multiple plasmids). Each laboratory was responsible for per-
forming their own standard culture preparation and DNA
isolation, then for following the standard GenomeTrakr
SOP for library preparation and sequencing. The raw
sequence results from the PT exercise were submitted to the
GenomeTrakr coordinating team, which used their internal
PT analysis pipeline for a variety of quality control (QC)
metrics; these metrics provided QC and assessed whether
the WGS data returned by each laboratory were appropriate
for use in downstream analytics. The results of the QC met-
rics and individual WGS data from each laboratory were
compiled into reports that presented each laboratory’s result
metrics in relation to proficiency exhibited across the whole
set of participating GenomeTrakr laboratories.

METHODS

Participating laboratories and PT isolates

All GenomeTrakr laboratories and collaborators were
invited to participate in the 2015 GTPT, although participa-
tion was voluntary. Of the 26 laboratories that participated
in the 2015 GTPT, 21 correctly followed the GenomeTrakr
SOP and were included in our analysis (Table 1). This group
of 21 represented diverse laboratory types, including public-
health laboratories (state, local, federal), academic
laboratories, international laboratories and a few industry
laboratories. The GTPT coordinating team distributed eight
pure culture isolates as stabs in soft agar (trypticase soy
agar; Becton) in September 2015 (Table 2). The isolates rep-
resented a wide taxonomic diversity, encompassing the

IMPACT STATEMENT

Bacterial pathogen surveillance is now being supported

by whole-genome sequencing (WGS) technology and,

because WGS is being used to support enforcement deci-

sions by public-health agencies, it is essential to have

confidence in the quality of the data being used and the

downstream data analyses that guide these decisions.

Routine proficiency tests, such as the one described

here, have an important role in ensuring the validity of

both data and procedures. The exercise design and

resulting data generated will be especially relevant to

the global foodborne pathogen surveillance community,

especially for non-USA countries looking to establish

similar surveillance networks. It will also be relevant for

researchers.
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most common foodborne pathogens submitted to
GenomeTrakr: Salmonella enterica subsp. enterica
serovar Montevideo, Salmonella enterica serovar

Heidelberg, L. monocytogenes (two strains), E. coli, Shigella
sonnei, Campylobacter jejuni and Campylobacter coli. The
set of PT isolates provided opportunities for mislabelling,
demanded a breadth of proficiency in culturing and DNA
isolation, and allowed for a broad assessment of taxon-spe-
cific variability. Each laboratory was given 2 months to
complete the sequencing exercise and transfer its data back
to the GTPT coordinating team. These laboratories were
instructed to run the 8 PT isolates in a single run with a
total of 16 isolates. To achieve this, some laboratories ran
the PT set twice (submitting both sets) and others filled the
run with other non-PT microbial genomes. Laboratories
that were not equipped to handle Campylobacter only
sequenced the remaining six PT isolates.

DNA extraction, library preparation and sequencing
for PT data

Participating laboratories were instructed to use the stan-
dard GenomeTrakr SOP for library preparation and DNA
sequencing, allowing for laboratory-specific variations in
culturing and DNA isolation methods. The libraries were all
prepared using the Nextera XT DNA library prep kit
according to the manufacturer’s instructions and then
sequenced for 2�250 cycles using the MiSeq platform
(Illumina).

Data transfer to FDA

There were three possible routes for transferring data back
to the GTPT coordinating team. Laboratories with access to
Illumina’s cloud service, BaseSpace, streamed their sequenc-
ing run(s) to BaseSpace, then made use of that service to
share their data with the GTPT coordinating team, who
could then download those data into the FDA computing
environment. Non-FDA laboratories that did not have Base-
Space access transferred their raw data (FASTQ files) to the
FDA through a secure cloud storage site. Laboratories
within the FDA network transferred their run to a shared
drive. All FASTQ files were assigned to their respective

Table 2. Summary information for the eight PT strains distributed as part of the exercise

NCBI accession numbers are listed for both the reference genomes and the raw data collected from the PT exercise.

NCBI accession no. for annotated complete
reference genome

Raw data collected from PT
exercise

Organism CFSAN ID Genome
size (bp)

No. of
plasmids

G+C
content
(mol%)

BioSample BioProject Assembly NCBI
BioSample

NCBI
BioProject

Salmonella enterica
ser. Montevideo

CFSAN000255 4 694 375 0 53.4 SAMN00710608 PRJNA186035 ASM18895v5 SAMN07210937 PRJNA386310

Salmonella enterica
ser. Heidelberg

CFSAN000318 4 951 478 3 53.4 SAMN01088008 PRJNA186035 ASM43010v1 SAMN07210938 PRJNA386310

Listeria
monocytogenes

CFSAN001178 3 032 269 0 38.1 SAMN01816124 PRJNA215355 ASM19539v5 SAMN07210944 PRJNA386310

Escherichia coli CFSAN002236 5 045 919 1 52.3 SAMN02147037 PRJNA230969 ASM46495v2 SAMN07210945 PRJNA386310

Listeria
monocytogenes

CFSAN008100 3 108 121 1 38.1 SAMN02689388 PRJNA215355 ASM100592v1 SAMN07210931 PRJNA386310

Shigella sonnei CFSAN030807 5 062 953 8 52.3 SAMN03612247 PRJNA273284 ASM244253v1 SAMN07210932 PRJNA386310

Campylobacter coli CFSAN032805 1 750 173 2 31 SAMN03580886 PRJNA309864 ASM240714v1 SAMN07210933 PRJNA386310

Campylobacter
jejuni

CFSAN032806 1 782 911 1 31 SAMN03580887 PRJNA309864 ASM240712v1 SAMN07210930 PRJNA386310

Table 1. Participating laboratories in the 2015 GTPT exercise

Participating laboratories

Arizona State Public Health Laboratory, TGen, USA

California Department of Public Health, USA

Centers for Disease Control and Prevention, Enteric Diseases Laboratory

Branch, USA

FDA Arkansas Laboratory, USA

FDA Denver Laboratory, USA

FDA Northeast Food and Feed Laboratory, USA

FDA Pacific Northwest Laboratory, USA

FDA Pacific Southwest Laboratory, USA

FDA San Francisco Laboratory, USA

FDA Southeast Food and Feed Laboratory, USA

FDA Winchester Engineering Analytical Center, USA

FDA/CFSAN/Office of Applied Research and Safety Assessment, USA

FDA/CFSAN/Office of Regulatory Science, USA

Florida Department of Agriculture and Consumer Services, USA

Food Safety Laboratory, New Mexico State University, USA

Hawaii State Department of Public Health, USA

IEH Laboratories and Consulting Group, Lake Forest Park, WA, USA

Minnesota Department of Health, USA

Nestl�e Research Center - Institute of Food Safety and Analytical Science,

USA

New York State Department of Health – Wadsworth Center, USA

SENASICA – Servicio National De Sanidad, Inocuidad Y Calidad

Agroalimentaria, Mexico

State of Alaska Public Health Laboratory, USA

Texas Department of State Health Service, USA

United States Department of Agriculture – Food Safety Inspection Service,

USA

Virginia Division of Consolidated Laboratory Services, USA

Washington State Department of Health Public Health Laboratory, USA
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laboratory using automated workflows within a Laboratory
Information Management System (LIMS), which provided
data tracking and management.

Generation of PT reference genomes

The following work was performed at the FDA to produce a
complete, annotated, reference genome for each of the eight
PT isolates. We first isolated the genomic DNA of each
strain to be shared for the PT from overnight cultures using
a DNeasy blood and tissue kit (Qiagen). These PT isolate
genomes were closed using the Pacific Biosciences (PacBio)
RS II sequencing platform, as previously reported [23].
Genomic DNA was sheared into approximately 20 kb frag-
ments using g-TUBE (Covaris). The library was prepared
based on the 20 kb PacBio sample preparation protocol. Size
selection was performed using BluePippin (Sage Science),
according to the manufacturer’s protocol, and that library
was sequenced using the P6/C4 chemistry on four single-
molecule real-time (SMRT) cells (two with BluePippin and
two without) and a 240min collection time. These continu-
ous long read data were de novo assembled using the PacBio
hierarchical genome assembly process HGAP3.0 with
default parameters. Resulting assemblies were processed
using Gepard [24] to identify overlapping regions at the
ends, and then trimmed [25]; this was done for both chro-
mosomes and plasmids. Potential SNPs/indels were cor-
rected with Pilon v1.18 [26] using paired-end short-read
data (2�250 bp) obtained from the Illumina MiSeq plat-
form (averaging 232� coverage), then mapped to the refer-
ence sequences via Bowtie2 v2.2.9 [27].

PT analysis pipeline

Because the data collected through GenomeTrakr are pri-
marily used for phylogenetic clustering, our analysis of the
data submitted by the laboratories was designed accord-
ingly, resulting in an internal PT analysis pipeline that
assessed relevant data-quality metrics. For each PT isolate,
reference-based alignment and variant calling was per-
formed on the data submitted by the PT-participating labo-
ratories using the Center for Food Safety and Applied
Nutrition (CFSAN) SNP Pipeline v0.8.1 [3] and complete
reference genomes as described previously; the default
parameters were used, except for a minimum MAPQ of 20
(SamtoolsMpileup_ExtraParams=’-q 20 -Q 13’). Sequencing
metrics were retrieved from the metrics.tsv results file. The
SNPs reported by the FDA PT analysis pipeline are the
Phase2 filtered SNPs designated as Phase2_Preserved_SNPs.
Sequencing run quality was assessed using FastQC v0.11.4
[28]. Assembly quality was assessed using the SPAdes
Genome Assembler v3.8.0 [29] and QUAST v3.0 [30]. Corre-
lation analyses were performed by calculating Pearson’s r
and Spearman’s rho rank correlation coefficients with pair-
wise deletion using the rcorr function of the Hmisc R library
[31]. In order to correct for multiple comparisons with posi-
tive dependency, P values were adjusted using the Benja-
mini–Hochberg procedure [32].

Public data submission

Raw sequence data collected as part of the 2015 PT exercise
were deposited in the NCBI’s SRA (https://www.ncbi.nlm.
nih.gov/sra) within the BioProject PRJNA386310
(Table S1). Complete annotated assemblies for each of the
eight distributed PT strains were also deposited at GenBank;
corresponding accession numbers and Bioproject ID num-
bers are indicated in Table 2.

RESULTS

Twenty-one of the 26 GTPT participants followed the pro-
tocol AND submitted raw FASTQ files for at least six of the
eight PT strains, along with basic sequencing run metrics
such as ‘cluster density’ and ‘reads passing filter’. Genomic
data submitted by each of the 21 laboratories were analysed
using the FDA-CFSAN internal PT analysis pipeline, com-
paring each of the submissions against our reference
genomes, in order to evaluate each submitted sequence for
possible sample mix-ups, sequence quality, depth of cover-
age, assembly quality and presence of SNPs. Laboratory-
specific reports were generated to summarize the PT
analysis results for each laboratory, specifying where their
submission fell in relation to the other participants. For this
paper, we provide the analytical results of the entire exercise
in Table S1; from these results, we developed further corre-
lation studies and graphics.

Sequence analysis

The first evaluation was to check for sample mix-ups, which
was done by mapping the submitted reads against the corre-
sponding reference genome. Out of 203 submitted PT
strains, we found only one annotation error (a sample
swap) affecting two isolates. These were correctly re-labelled
by us for all subsequent analyses.

We then visualized sequence quality for each of the eight PT
isolates by plotting the mean Q score for each read, forward
(R1) and reverse (R2). R2 was consistently lower quality
than R1 for each of the isolates, by 3–4 Q scores (Fig. 1).
Although two samples had R2 Q scores below Q28,
GenomeTrakr’s minimum threshold for quality, the mean
Q scores from the remaining sequences submitted far
exceeded this threshold. However, while many of the met-
rics in this analysis were expected to reflect taxonomic dif-
ferences, due to physical characteristics such as differences
in genome sizes across the different bacteria, we observed
an unexpected statistically significant effect of taxonomy on
Q score (all adjusted P values <0.0015 with Tukey multiple
comparison of means), with the Campylobacter isolates pro-
ducing the highest quality reads and the four Enterobacter-
iaceae isolates, or enterics, producing the lowest quality.

Mean genome coverage or read depth (i.e. the depth of raw
reads mapped back to the reference genome) varied accord-
ing to genome size (Fig. 2a). The coverage for Salmonella
enterica, E. coli and Shigella sonnei averaged in the 60�
range, L. monocytogenes in the 90–100� range, and the
campylobacters in the 100–150� range. However, there was
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negligible taxonomic difference for the percentage of reads
that mapped back to the reference. All eight isolates ranged
in the upper 97–99% (Fig. 2b), with the enterics hovering at
the lower end of this range.

We counted the number of SNPs in each submitted PT iso-

late compared to each respective reference genome. In 73%

of the PT submissions, zero SNPs were detected (149/203)

(Table 3). When SNPS were identified these ranged from 1

to 4 per isolate, many of which, are shared by multiple

isolates (Table S3). Our analyses indicated that there was
one consistent SNP difference, or conserved mutation,
between the isolate distributed for C. jejuni CFSAN032806
and its reference genome.

Assembly quality is the last metric summarized in our PT
analysis. The number of contigs varied across the eight PT
isolates (Fig. 3a). For example, Shigella sonnei assemblies
averaged over 500 contigs, whereas the assemblies of other
seven isolates averaged in the 100 contig range. Along with
the number of contigs, we also calculated the NG50 for each
assembly, a measure of the length of the median-sized con-
tig (Fig. 3b). The summary values varied for this statistic,
some with narrow (Shigella sonnei) variation versus some
with wide variation (L. monocytogenes). The two Salmonella
enterica strains and two L. monocytogenes strains had the
highest NG50 scores, while Shigella sonnei had the lowest.
The Nextera XT library preparation kit resulted in a library
with insert sizes averaging in the 300–400 bp range across
all eight PT strains (Fig. S1).

Run metrics

Although not officially part of the 2015 PT analysis report,
we summarized metrics surrounding the corresponding
MiSeq run, which were provided by most of the laboratories
(Table S3). On average, cluster density was 955K mm�2

(Fig. 4a), 91% of clusters passed filter (Fig. 4b), 18million
reads were collected of which 16million (91%) passed filter
(Fig. 4c, d), 91% of reads passed filter, 8.4 Gbp of data were
collected for each run (Fig. 4e), and 81% of bases had a
quality (Q) score of Q30 or above (Fig. 4f).

Correlation statistics

One of the expected benefits of compiling and analysing the
GTPT dataset was the ability to examine relationships

Fig. 1. Box and whisker plots summarizing the mean read quality

across Read1 and Read2 for each of the eight PT strains. The box

defines the median value, as well as the lower and upper quartiles (25

and 75%). The whiskers extend to the most extreme data point that is

no more than 2.5 times the interquartile range from the median. Out-

liers are shown as black dots. The colours are genus specific.

Fig. 2. Box and whisker plots summarizing two different coverage statistics: (a) mean read depth and (b) percentage of reads mapped

to the reference. The box defines the median value, as well as the lower and upper quartiles (25 and 75%). The whiskers extend to the

most extreme data point that is no more than 2.5 times the interquartile range from the median. Outliers are shown as black dots. The

colours are genus specific.
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between run- and sequence-level metrics, specifically to test
assumptions regarding the possible benefits of optimizing
laboratory-based metrics, such as insert size and cluster
density. Given that linear correlations were deemed most
useful in predicting the outcome of purposeful modifica-
tions to one of the variables (monotonic to a lesser degree),
we calculated both Pearson’s r (a measure of linear correla-
tion) and Spearman’s rho (assumes a monotonic correla-
tion) for each run- and sequence-level metric One of the
expected benefits of compiling and analysing the GTPT
dataset was the ability to examine relationships between
run- and sequence-level metrics, specifically to test assump-
tions regarding the possible benefits of optimizing labora-
tory-based metrics such as insert size and cluster density
and reported all significant correlations (P�0.05) (Fig. 5)
and Table S4, respectively). As a default, we are presenting
the Pearson’s test (a more powerful statistical test and most
appropriate for interval-scale data) but recognize many of
these correlations might be non-linear and so included the
Spearman’s test in the supplemental files for consideration.

The Pearson’s test revealed that all of the run metrics were
correlated with each other (Fig. 5), as seen in the lower right
quadrant. Specifically, a strong positive correlation
(r �0.75) was found between Cluster Density and number
of Reads Collected, number of Reads Passing Filter and
Overall Yield (Gbp collected). Conversely, a strong negative
correlation was found between cluster density and clusters
passing filter, percentage of reads passing filter and Q score.
We saw medium strength correlations (0.5�r <0.75)
between run metrics and three read statistics: Reads per Iso-
late, Mean R1 Q Score and Mean R2 Q Score. R1 and R2 Q
scores were positively correlated with percent of Clusters
Passing Filter, percent of Reads Passing Filter and overall
Q30 for the run, but negatively correlated with Cluster Den-
sity, number of Reads Collected and Overall Yield.

Fig. 5 is useful for examining one parameter in relation to all
the others tested. For example, Mean Insert Length showed
weak (r<0.5), but significant negative correlation with R1 and
R2 Q Scores, Number of Reads, SNPs, Cluster Density, Overall

Table 3. Summary of SNPs detected in the raw PT data when compared to each respective reference genome

Five columns are included (0–4 SNPs) with counts of genomes submitted for that number of SNPs.

Organism ID 0 SNPs 1 SNP 2 SNPs 3 SNPs 4 SNPs

Salmonella enterica ser. Montevideo CFSAN000255 20 6 0 0 0

Salmonella enterica ser. Heidelberg CFSAN000318 22 4 2 0 0

Listeria monocytogenes CFSAN001178 16 9 1 2 1

Escherichia coli CFSAN002236 22 2 2 1 1

Listeria monocytogenes CFSAN008100 24 1 2 0 0

Shigella sonnei CFSAN030807 28 1 0 0 0

Campylobacter coli CFSAN032805 17 1 0 0 0

Campylobacter jejuni CFSAN032806 0 16 2 0 0

Fig. 3. Box and whisker plots summarizing two different assembly statistics: (a) number of contigs and (b) NG50, a measure of contig

length. The box defines the median value, as well as the lower and upper quartiles (25 and 75%). The whiskers extend to the most

extreme data point that is no more than 2.5 times the interquartile range from the median. Outliers are shown as black dots. The col-

ours are genus specific.
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Yield, and a weak positive correlation with the run quality
metric (%�Q30). Of our two metrics for assembly quality,
NG50 (larger is generally better) showed a positive correlation
with metrics involving the amount of data collected (number
of Reads per Isolate, Mean Depth, Cluster Density, number of
Reads per Run and Overall Run Yield), while the number of
contigs (smaller is better) did not correlate with the amount
of data collected, with the exception of Mean Depth. We
noticed that although Cluster Density was positively correlated
with metrics related to the overall yield and negatively corre-
lated with metrics related to base quality, there were no nega-
tive correlations with downstream analysis metrics including
percentage of Reads Mapped and number of contigs. Instead,
there was a weak positive correlation with the NG50 assembly
quality metric. Also of interest, the percentage of reads
mapped did not show correlation with any of the run metrics,
including the run quality metric (%�Q30).

DISCUSSION

As growing numbers of public-health laboratories use
WGS technology to support enforcement decisions, it is

essential to have confidence in the quality of the data
being used and the downstream data analyses that guide
these decisions. Routine proficiency tests, such as the one
described here and the one used by the GMI group have
an important role in ensuring the validity of both data
and procedures. Overall, this exercise revealed the degree
of variation which should be expected in sequence data
produced across a diverse network of laboratories. Our
interpretation is that Illumina MiSeq sequence data col-
lected for the same set of strains across 21 different labo-
ratories exhibited high reproducibility, while revealing a
narrow range of technical and biological variance within
the clones sent out for sequencing. The numbers of SNPs
reported for sequencing runs of the same isolates across
multiple laboratories support the robustness of our cluster
analysis pipeline [3] in that each individual isolate cul-
tured and resequenced multiple times in multiple places
are all easily identifiable as originating from the same
source. The quality and coverage metrics received from
the participating laboratories generally far exceeded the
existing GenomeTrakr QC thresholds that govern whether
WGS submissions are acceptable for entry into the

Fig. 4. Box and whisker plots summarizing six different MiSeq run metrics reported by the participating laboratories: (a) cluster den-

sity, (b) clusters passing filter, (c) number of reads collected, (d) per cent of reads passing filter, (e) total data yield in Gbp, and (f) per-

centage of Q scores greater or equal to Q30. The box defines the median value, as well as the lower and upper quartiles (25 and

75%). The whiskers extend to the most extreme data point that is no more than 2.5 times the interquartile range from the median.

Outliers are shown as black dots. Abbreviations for isolate metrics: Reads_M, number of sequencing reads passing filter for a given

isolate; SeqLength, range of sequencing read lengths; MeanR1, Q score representing the mean of the mean read quality of R1 (forward)

reads; MeanR2, Q score representing the mean of the mean read quality of R2 (reverse) reads; PercMapped, percentage of reads that

could be mapped to the reference genome; MeanDepth, meandepth (coverage) of reads mapped to the reference genome; SNPs, SNPs

reported by the CFSAN SNP Pipeline; MeanInsert, mean insert size, defined as the length of the sequence between the adapters;

GenomeFraction, total number of aligned bases in the reference, divided by the genome size (a base in the reference genome is

counted as aligned if at least one contig has an alignment to the base; contigs from repeat regions may map to multiple places and,

thus, may be counted multiple times); NG50, contig length such that using equal or longer length contigs produces x% of the length of

the reference genome, allowing for comparisons between different genomes (larger NG50 values generally correlate with a higher

quality assembly); Contigs, total number of contigs in the assembly (fewer contigs generally correlate with a higher quality assembly).

Abbreviations for run metrics: ClusterDensity, density of clusters (K mm�2); PercClustersPF, percentage of clusters which passed filter-

ing; Reads_M, number of reads (clusters) in millions; ReadsPF_M, number of reads (clusters) that passed filtering (millions); Yield,

number of gigabases that passed filtering; Q30, percentage of bases with a Q score �30.
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GenomeTrakr database (20� coverage and a mean quality
score of Q28 or above on both R1 and R2).

From the perspective of the participating laboratories, this

exercise provided valuable feedback, indicating the quality

of their sequencing data in relation to the other laboratories

that participated in the PT. For example, if one laboratory

learned from this PT that they were achieving lower than

average coverage, team members could go back through

their laboratory preparation steps to determine a possible

cause. It is also possible for results from this exercise to

reveal that a particular sequencing machine is underper-

forming (quality or yield) and which may require servicing
or optimization. Also, any facility that handles samples runs

the risk of sample handling errors, estimated by one study

to be an issue in almost 50% of publications on human

transcriptomics [33]. With this in mind, we designed our

PT to detect mislabelling and/or sample switches. Out of the

203 total submissions, we identified one sample swap, which

caused two PT samples to be identified incorrectly – a han-

dling-caused error rate of ~1%. By identifying sample

handling errors under these controlled conditions, laborato-
ries are able to strengthen their local SOPs by adding checks
that reduce or eliminate the likelihood of labelling errors
during sample processing.

Interesting findings

This project provided some interesting correlations that ran
counter to our expectations of how upstream decisions
affect downstream analytic outcomes. For example, cluster
density is expected to correlate positively with yield-based
metrics and negatively with quality-based metrics [34]. In
other words, as more DNA is loaded onto the chip, more
data are collected, but overclustering causes a decrease in
quality of those data. Although we observed this to be true,
we also found that our downstream analysis metrics, like
assembly, were not inversely correlated with cluster density
and that the NG50 metric shows positive correlation. While
we do not believe there to be zero correlation, the implica-
tion of this finding may be of great interest to laboratories
and networks attempting to reduce the cost of sequencing
by multiplexing larger quantities of isolates. Many of the

Fig. 5. Pearson correlation table of run metrics and summary statistics. Significant positive and negative correlations are represented

as + and �, respectively. The size of the symbols and font boldness represent the degree of correlation.

Timme et al., Microbial Genomics 2018;4

8



laboratories in this exercise reported overclustering
(Table S2), while maintaining acceptable mapping and
assembly metrics. Over the 414–1335 range of cluster densi-
ties observed in this exercise, we saw no decrease in usable
data when Q30 is above 75%. So, although overclustering
reduces the overall quality of the run, as long as the mini-
mum Q score is met for the run the increased yield may be
of greater benefit to the user. We have also held the assump-
tion that maximizing insert length for paired-end sequenc-
ing should help improve the assembly. However, we did not
see an effect within the 250 to 550 bp range of insert sizes in
our PT exercise. Even though it makes sense to want larger
insert sizes, this parameter does not appear to impact down-
stream analyses within our dataset (Fig. 5). There is a slight
inverse correlation between insert size and number of reads,
mean R1 and R2 Q scores, number of SNPs, cluster density
and overall yield for the run. In other words, as more library
is added to the run, the mean insert size gets smaller. Per-
haps smaller insert sizes are preferentially sequenced in
overloaded runs? However, if there is no impact on down-
stream coverage or assembly, then there is minimal advan-
tage in optimizing insert sizes for the Nextera XT prep
given our >50�/isolate. Percentage of mapped reads is a
metric thought to be influenced the quality of the run and,
thus, run metrics, but within the 95–99% range reported in
this exercise we didn’t see any linear correlation here. In
this exercise, we didn’t see any relationship by Pearson’s test
for linear correlation. Spearman correlation, a measure of
the monotonic relationship between variables, did report
positive and negative correlations here, so perhaps the qual-
ity of the run does influence the percentage of mapped
reads, but the relationship is non-linear (Table S4).

Another interesting pattern emerged from the sequence
quality assessment – a significant difference in read quality
depending on taxonomy. Fig. 1 shows three different cate-
gories of quality. The enterics, Salmonella enterica, E. coli
and Shigella sonnei (Gammaprotobacteria), all have a simi-
lar pattern, the two L. monocytogenes strains (Firmicutes)
have slightly higher quality and finally the two Campylobac-
ter strains (Epsilonprotobacteria) have the highest quality.
There are several differences between these three groups. (1)
The bacterial taxonomy: each respective taxonomic order
holds its own unique phylogenetic position. (2) They each
have different culturing steps: the enterics are grown in
trypticase soy broth (TSB), L. monocytogenes is grown in
TSB and the Campylobacter strains are grown on blood
agar plates, with cultures taken from the plate and resus-
pended in water. (3) While the DNA extraction is uniform
across these taxa, there is an extra enzymatic lysis step for
L. monocytogenes prior to the DNA isolation. (4) Genome
size and G+C content also differ across these three catego-
ries: enterics (Enterobacteriaceae) ~4.7MB, 50mol% G+C;
L. monocytogenes 2.9MB, 38mol% G+C; and Campylobacter
strains 1.8MB, 30mol% G+C. Even through these last dif-
ferences appear to track the improvement in sequence qual-
ity (smaller genomes and lower G+C content have higher
quality sequence), we cannot think of a causal reason for

this. There are reports of G+C bias affecting genome cover-
age due to amplification biases [35–37], but none that have
found a G+C bias affecting actual sequence quality or the
PHRED scores themselves. Our own correlation data reveals
a positive correlation between read quality and a few
upstream variables affecting the entire run: clusters passing
filter, reads passing filter and the run quality metric
(%�Q30) (Fig. 5), none of which would be taxon specific. It
is possible that sample preparation methods affect sequence
quality [37], for example the culturing/lysis methods differ
for these three species, which might influence DNA quality
and in turn influence sequence quality. Sequence quality has
an impact on downstream processes, such as read mapping,
depth of coverage, SNPs detected and mean insert size
(Fig. 5), so understanding the source of this variation would
be very valuable.

Dataset importance

In this work, we make available two important datasets: (1)
a table of metrics summarized in the PT test (Table S1), and
(2) the raw data gathered in this exercise. The table serves as
a valuable resource for laboratories that want to replicate
this PT test in their own environment and then analyse their
results in context of data collected during this exercise. The
figures and tables presented in this paper were all derived
from this summary table. If laboratories are interested in
setting pass/fail thresholds, we suggest identifying the most
important metrics for the laboratory, then setting thresholds
at the appropriate edge of the box plots (the lower and
upper quartiles) or the appropriate edge of the whiskers (the
most extreme data point that is no more than 2.5 times the
interquartile range from the median). The second type of
data, the actual raw sequence data collected in this exercise,
is a rare release of raw data from a WGS PT exercise. As
more laboratories adopt the rigorous WGS CLIA standard
[19], it will be ever more important to share the raw data
from large proficiency exercises such as this one to provide
an additional layer of validation. Combing through these
datasets enables us, as regulatory bodies, to understand lab-
oratory-to-laboratory variation, to build informed quality
assurance/QC thresholds around the collection of these
important data, and to ensure proper validation for each
NGS technology and accompanying analyses. It is obvious
to see how these quality assurance steps are important for
public health and proper disease surveillance, but they also
provide important transparency for the industries that are
most effected by regulatory action (recalls, seizures, injunc-
tions, etc.). For past technologies (i.e. PFGE), industry
would have to issue a Freedom of Information Act (FOIA)
request to access data collected from this type of exercise.
Making our WGS PT data public follows the ‘open data’
model of GenomeTrakr and overall movement that USA
public-health agencies are striving to meet. From this exer-
cise, we confirmed that WGS is reliable and consistent for
use in microbial surveillance in that identical samples can
be identified as such. This point is critical for our down-
stream clustering pipeline [3] that relies on data collection
consistency for drawing conclusions about which isolates
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are where at what time. We also hope that standardized
datasets like this will help provide baselines for academic
research questions.
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