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Protein embeddings and deep 
learning predict binding residues 
for various ligand classes
Maria Littmann1*, Michael Heinzinger1,2, Christian Dallago1,2, Konstantin Weissenow1,2 & 
Burkhard Rost1,3,4,5

One important aspect of protein function is the binding of proteins to ligands, including small 
molecules, metal ions, and macromolecules such as DNA or RNA. Despite decades of experimental 
progress many binding sites remain obscure. Here, we proposed bindEmbed21, a method predicting 
whether a protein residue binds to metal ions, nucleic acids, or small molecules. The Artificial 
Intelligence (AI)-based method exclusively uses embeddings from the Transformer-based protein 
Language Model (pLM) ProtT5 as input. Using only single sequences without creating multiple 
sequence alignments (MSAs), bindEmbed21DL outperformed MSA-based predictions. Combination 
with homology-based inference increased performance to F1 = 48 ± 3% (95% CI) and MCC = 0.46 ± 0.04 
when merging all three ligand classes into one. All results were confirmed by three independent data 
sets. Focusing on very reliably predicted residues could complement experimental evidence: For 
the 25% most strongly predicted binding residues, at least 73% were correctly predicted even when 
ignoring the problem of missing experimental annotations. The new method bindEmbed21 is fast, 
simple, and broadly applicable—neither using structure nor MSAs. Thereby, it found binding residues 
in over 42% of all human proteins not otherwise implied in binding and predicted about 6% of all 
residues as binding to metal ions, nucleic acids, or small molecules.

Abbreviations
AI  Artificial intelligence (expanding ML through deep learning, i.e., using more free parameters)
BFD  Big Fantastic Database (large database of protein sequences)
CI  Confidence interval
CNN  Convolutional Neural Network
HBI  Homology-based inference
(p)LM  (Protein) language model
MCC  Matthews Correlation Coefficient
ML  Machine learning
MSA  Multiple sequence alignment
PDB  Protein Data Bank
PIDE  Pairwise sequence identity
SOTA  State-of-the-art
SVM  Support vector machine

Experimental data for protein binding remains limited. Knowing protein function is crucial to 
understand the molecular mechanisms of  life1. For most proteins, function depends on binding to other mol-
ecules called ligands2; these include metal ions, inorganic molecules, small organic molecules, or large biomol-
ecules such as DNA, RNA, and other proteins. Although the variation in binding sites resembles the diversity of 
the ligands, binding sites are highly specific and often determined by a few key  residues2. Binding residues are 
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experimentally determined most reliably through high-resolution structures of the protein in complex with the 
ligand marking residues close to this ligand as binding residues (e.g., ≤ 5Å)3.

Prediction methods usually rely on MSAs. Despite immense progress in quantitative high-throughput 
proteomics, experimentally verified binding residues remain unknown for most  proteins4. In fact, reliable data 
remain so sparse to even challenge Machine Learning (ML) models with fewer parameters than tools from 
Artificial Intelligence (AI)5. Thus, reliable prediction methods importantly bridge, e.g., studying the effect of 
sequence variation in human  populations6,7. Homology-based inference (HBI) transfers e.g., binding residues 
from sequence-similar proteins with known annotations to uncharacterized  proteins5,8. Although accurate, HBI 
is only applicable to the few proteins for which a sequence-similar protein with binding annotations exists. If 
unavailable, de novo prediction methods based on ML try to fill the gap. HBI (or template-based methods) usu-
ally outperforms sequence-based (or de novo)  methods9,10, but they rely on the existence of structurally similar 
proteins with experimentally verified binding annotations (structural template)10–14. Notably, AlphaFold 2 that 
solved the protein structure prediction  problem15 might be the first AI-based prediction method consistently 
outperforming template-based solutions. AlphaFold 2 heavily relies on information from multiple sequence 
alignments (MSAs). Recent structure predictions without MSAs remain less  accurate16. It remains unclear to 
which extent structure predictions could improve binding prediction beyond stepping up from binding residues 
to binding sites.

Some template-based methods also require substantial computing resources, e.g.,  COACH10 is an ensemble 
classifier combining five individual approaches and has been considered the state-of-the-art (SOTA) for binding 
residue prediction for many  years17,18. One protein prediction took about 10 h on their webserver, while local 
installations require 60 GB free disk space. Although neither aspect renders the method unusable, both limit ease 
of access to predictions and comparisons. On the other hand, sequence-based methods usually depend on suf-
ficiently diverse and reliable experimental data and expert-crafted input features including evolutionary informa-
tion to represent protein  sequences5,15,17,19,20. Our previous method  bindPredictML175 predicted binding residues 
for enzymes and DNA-binding proteins relying mainly on information from sequence  variation21,22 and co-evolv-
ing  residues23, both requiring the time-consuming computation of MSAs. Another method,  ProNA202019, uses 
MSAs and various features from  PredictProtein24 to predict protein–protein, protein–DNA, and protein–RNA 
binding. In addition to the complexity of their input features, many methods specialize on specific ligands or 
sets  thereof5,14,18–20,25–27. For instance,  PredZinc20 only predicts zinc ions and  IonCom18 provides predictions for 
13 metals and for four radical ion ligands. Most existing sufficiently reliable sequence-based methods cannot 
be applied to generic proteome-wide binding predictions due to restrictions in computational resources or to 
limited sets of ligands.

Here, we propose a new method dubbed bindEmbed21 consisting of two components (bindEmbed21DL 
and bindEmbed21HBI) that predict binding residues for three ligand classes. We input protein representa-
tions (fixed-length per-protein embeddings) from pre-trained protein Language Models (pLMs), in particular 
from  ProtT528. Using only those embeddings, bindEmbed21DL predicts residues binding to metal ions, nucleic 
acids (DNA and RNA), and/or regular small molecules. Combining the de novo prediction method with HBI 
(bindEmbed21HBI) further improved performance. Since embeddings can be easily extracted for any protein 
sequence, bindEmbed21 enables fast and easy predictions for all available protein sequences.

Results and discussion
Embedding-based predictions from bindEmbed21DL achieved F1 = 43%. Inputting raw  ProtT528 
embeddings into a shallow two-layer CNN, our new method, bindEmbed21DL, predicted for each residue in a 
protein, whether or not it binds to a metal ion, a nucleic acid (DNA or RNA), or a small molecule. The predic-
tion performance differed substantially between the three classes [Fig. 1, Supplementary Table S1 in Supporting 
Online Material (SOM)]: binding residues were predicted best (e.g., highest F1 or MCC, Eqs. 3, 4) for small mol-
ecules and worst for nucleic acids (Table 1 DevSet1014; Fig. 1A–C). Those differences might point to differences 
in the abundance of experimental data for each ligand class: Small molecules were the most prominent ligand 
class, while nucleic binding was the lowest (Supplementary Table S12). This might suggest that any class could 
be predicted better given more data. In fact, using a smaller training set (515 proteins) with equal numbers of 
proteins with small molecule as with nucleic acid binding (108 proteins) dropped performance immensely for 
the small molecule class (Supplementary Table S3) suggesting that better prediction of small molecule binding 
resulted largely from access to more experimental data. Alternatively, performance differences could be due to 
properties of small molecule binding being more clearly encoded in the embeddings than those of nucleic acid 
binding. This might render these easier to predict. However, we could neither support this speculation by explicit 
evidence, nor refute it and proof that only the increase in data caused better predictions. Performance appeared 
highest when dropping the distinction between ligand classes, i.e., simplifying the task to the prediction of 
binding vs. non-binding (Table 1; Fig. 1D), indicating that many residues were correctly identified as binding 
residues despite confusing the ligand classes (Supplementary Table S5).

For all ligand classes, precision (Eq. 2) remained below recall (Eq. 1; Fig. 1) and the fraction of proteins for 
which not a single residue was predicted as binding (CovNoBind(l), Eq. 9), was low, especially for metal ions and 
small molecules (Supplementary Table S4). Therefore, performance for the individual ligand classes appeared 
limited by over-prediction (binding predictions not experimentally confirmed, yet) and cross-predictions (pre-
dicted to bind ligand C1, annotated for C2). As the binary prediction (binding/not) outperformed by far the 
3-class prediction (Table 1), cross-predictions (confusions between ligand classes, Supplementary Table S5) 
constituted one major limitation. The most common cause for prediction mistakes appeared to be over-prediction 
(Supplementary Table S4), but at least some of the alleged over-predictions might indicate missing observations 
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(analysis below). Remarkably, bindEmbed21DL performed similar to its binarized version solely trained on the 
distinction of binding vs. non-binding (Supplementary Table S6).

In a typical cross-validation split (training, validation, test), performance values are higher for the validation 
than for the test set, because hyper-parameters are optimized on the former. We observed the inverse except 
for binding to metal ions (Table 1, Fig. 1) although most differences were within the confidence intervals (CI; 
Fig. 1, Supplementary Table S1). The test set had more proteins binding to nucleic acids and small molecules than 
the development set, due to constraints imposed on the test set to facilitate comparisons with other methods. 
Those were the classes for which bindEmbed21DL reached higher values on the test than on the validation set 
(Fig. 1B,C). Thus, the higher numbers for the test set for nucleic acid and small molecule binding could indicate 
that binding residues are better defined and therefore easier to predict for enzymes than for other proteins in 
the development set.

To investigate, we created an independent test set from recent annotations (TestSetNew46, Methods: 46 
unique from a total of 1592 new proteins). For these, bindEmbed21DL reached values that, within the 95% CI, 
agreed with both the original test and validation sets, possibly due to large CIs for the tiny new data set. When 
merging all ligand classes, the new test set was large enough to establish with statistical significance (95% CI) 
that our performance estimates reflected what is to be expected for the next 1592 proteins submitted for predic-
tion (“Methods”).

Embeddings clearly outperformed MSA-based predictions. One recent binding method, bind-
PredictML175 predicts binding residues based on MSAs. A subset of the test set (225 of the 300 proteins in 

Figure 1.  Performance of new method bindEmbed21DL. Performance captured by four per-residue measures: 
precision (Eq. 2), recall (Eq. 1), F1 score (Eq. 3), and MCC (Eq. 4). Data sets: DevSet1014 (validation splits of 
cross-validation development, most light colors), TestSet300 (fixed test set used during development, darker 
colors), and TestSetNew46 (additional test set compiled after development, most dark colors). Predictions of 
residues binding to (A) metal ions, (B) nucleic acids (DNA or RNA), (C) small molecules, and (D) any ligand 
class grouping all three classes into one (considering each residue predicted/observed to bind to one of the 
three ligand classes as binding, all others as non-binding). On the validation set DevSet1014, bindEmbed21DL 
predicted any binding residue with F1 = 39 ± 2%. Surprisingly, the number was slightly higher for the test set 
TestSet300 (F1 = 43 ± 2%) while being similar on the additional test set TestSetNew46 (F1 = 37 ± 6%). Error bars 
indicate 95% CIs.
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TestSet300) enabled an unbiased comparison: bindEmbed21DL significantly (beyond 95% CI) outperformed 
the old MSA-based method bindPredictML17, e.g., raising the harmonic mean over precision and recall by 13 
percentage points (Fig. 2, Table 1, bindEmbed21DL vs. bindPredictML17 last column for TestSet225). However, 
bindEmbed21DL predicted binding for only 222 of the 225 test proteins (CovOneBind = 99%, Eq. 8), while its 
predecessor predicted for all 225. This could be attributed to bindEmbed21DL focusing more on precision than 
bindPredictML17: The gain in precision was larger than the gain in recall (Fig. 2). However, higher precision 
reduced recall, thereby missing binding in three of 225 proteins.

bindEmbed21DL and bindPredictML17 differed in two major aspects: (1) the annotations used for training, 
and (2) the usage of embeddings vs. MSA-derived input features. Both factors contributed to the improvement 
of bindEmbed21DL over bindPredictML17. For instance, the F1 score improved by 18 percentage points; 13 
of the 18 originated from using embeddings rather than MSA-based input (Supplementary Fig. S2, SOM 1.3), 

Table 1.  F1 score (harmonic mean of precision and recall). Measure: F1 (Eq. 3); ± : 95% confidence intervals 
(1.96 standard errors); Methods: bindEMbed21DL: method introduced here, bindPredictML175: MSA-based 
method predicting binding, ProNA202019: method specialized on predicting binding to DNA, RNA, and other 
proteins; PredZinc20 and ZincBindPredict29: methods specialized on predicting zinc-binding; Random: random 
prediction by randomly shuffling the original output probabilities of bindEmbed21DL; Data: DevSet1014: 
development set (validation) set with 1014 proteins, TestSet300: Test set created during method development 
with 300 proteins, TestSet225: subset of test set shared with bindPredictML17, TestSetNew46: 46 sequence-
unique proteins added since development of this work began—all sequence-unique with respect to each other 
and all other proteins used, TestSet300XNA66: subset with DNA or RNA (dubbed XNA) binding proteins from 
our test set. TestSet300Zinc51: subset with zinc-binding proteins from our test set.

Method Dataset F1-metal F1-XNA F1-small F1-all

bindEmbed21DL DevSet1014 24 ± 2% 18 ± 3% 26 ± 2% 39 ± 2%

bindEmbed21DL TestSet300 22 ± 4% 24 ± 6% 33 ± 3% 43 ± 2%

bindEmbed21DL TestSetNew46 26 ± 14% 19 ± 11% 29 ± 9% 37 ± 6%

Random TestSet300 1 ± 1% 6 ± 2% 6 ± 1% 9 ± 1%

bindEmbed21DL TestSet225 n/a n/a n/a 47 ± 2%

bindPredictML17 TestSet225 n/a n/a n/a 34 ± 2%

bindEmbed21DL TestSet300XNA66 n/a 31 ± 5% n/a n/a

ProNA2020 TestSet300XNA66 n/a 33 ± 7% n/a n/a

bindEmbed21DL TestSet300Zinc51 58 ± 8% n/a n/a n/a

PredZinc TestSet300Zinc51 58 ± 10% n/a n/a n/a

ZincBindPredict TestSet300Zinc51 17 ± 9% n/a n/a n/a

Figure 2.  Embeddings outperformed MSA-based predictions. Comparison of performance between 
bindPredictML175 using multiple sequence alignments (MSAs) and the method introduced here, 
bindEmbed21DL, using only embeddings from  ProtT528. We also compare using binding annotations 
from  BioLiP9 or the  PDB31. bindEmbed21DL (embeddings-only) clearly outperformed bindPredictML17 
(MSA + BioLiP) by 13 percentage points (F1 = 47 ± 2% vs. F1 = 34 ± 2%). We used annotations from  BioLiP9 to 
assess the performance for both methods. Although bindPredictML17 had been trained on annotations from 
 PDB31 for enzymes and  PDIdb57 for DNA-binding proteins, it reached higher performance (lighter shaded 
colors vs. lightest shaded colors) for BioLiP annotations. Error bars indicate 95% CIs.
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while five of 18 reflected the new annotations (Fig. 2, SOM 1.2). Thus, embeddings can significantly outperform 
methods explicitly using evolutionary information through MSAs.

bindEmbed21DL competitive to specialist methods. bindEmbed21DL predicted three ligand classes, 
while many state-of-the-art (SOTA) methods specialize on one ligand class or subsets thereof. For instance, 
ProNA202019 focuses on predicting protein-, DNA-, or RNA-binding, both on the per-protein (does protein 
bind DNA or not?) and the per-residue (which residue binds DNA?) level. The MSA-based method ProNA2020 
shines through unifying a hierarchy of prediction tasks and outperformed all other sequence-based methods in 
predicting binding to DNA or RNA (dubbed XNA)19. We compared the specialist ProNA2020 with the generalist 
bindEmbed21DL using 66 nucleic acid binding proteins in TestSet300 (dubbed  TestSet300XNA66 in Table 1). For 
those 66, ProNA2020 performed slightly worse in XNA-binding prediction than the embedding-based MSA-free 
bindEmbed21DL (Fig. 3A). However, when analyzing how many proteins had at least one residue predicted as 
XNA-binding (CovOneBind, Eq. 8), the situation reversed (Fig. 3A). When considering all residues predicted by 
bindEmbed21DL as binding (bind = nucleic acids + metal ions + small molecules), F1 rose almost ten percentage 
points to 43 ± 5% and CovOneBind to 97% (Fig. 3A). This again pointed to the problem of cross-predictions 
(Supplementary Table S5).

PredZinc20 and ZincBindPredict29 specialize on predicting residues binding to zinc ions. 51 proteins in Test-
Set300 were annotated as zinc-binding (dubbed  TestSet300Zinc51 in Table 1) and were used to compare PredZinc 
and ZincBindPredict to the generalist bindEmbed21DL. The newer method, ZincBindPredict, only predicted for 
12 proteins (CovOneBind = 24%, Fig. 3B). Therefore, we also compared to the older method PredZinc. Despite 
having only been trained on metal-binding in general and not zinc-binding specifically, bindEmbed21DL matched 
the F1 score of PredZinc (Fig. 3B) with a lower precision but higher recall (Fig. 3B); it also reached a higher Cov-
OneBind (Eq. 8) predicting for 94% instead of for 80% as PredZinc. Also, bindEmbed21DL clearly outperformed 
ZincBindPredict (Fig. 3B) through higher CovOneBind, i.e., ZincBindPredict is very accurate when applicable.

We evaluated specialized methods only on proteins binding to those ligand classes. In a more realistic appli-
cation not knowing the ligand, specialized methods likely perform worse. Also, we may have overestimated the 
performance of other methods because we could not exclude their development sets. Nevertheless, bindEm-
bed21DL remained competitive on the turf of the specialists and generic enough to be applicable to three dif-
ferent ligand classes.

More reliable predictions better. For the binary prediction of binding vs. non-binding residues, bindEm-
bed21DL reached 37 ± 2% precision at 52 ± 2% recall (Fig. 1D) while making predictions for 1,000 of 1,014 pro-
teins in the validation splits (DevSet1014; CovOneBind = 99%). These values resulted from the default threshold 

Figure 3.  BindEmbed21DL competitive with specialists. (A) XNA binding. Data: 66 DNA- or RNA-binding 
(dubbed XNA) proteins from the test set TestSet300.  ProNA202019 (lightest shaded bars) uses MSAs to 
predict DNA-, RNA-, and protein-binding, while the method introduced here uses embeddings only (no 
MSA); bindEmbed21DL-XNA (darkest shaded bars) marked predictions of either DNA or RNA (XNA); 
bindEmbed21DL-all (lighter shaded bars) marked using all binding predictions and assessing only XNA-
binding. While the difference in F1 scores between the three methods was within the error bars (95% CIs), 
bindEmbed21DL (-XNA and -all) achieved a statistically significant higher performance than ProNA2020 
while ProNA2020 achieved a higher recall. Also, the fraction of proteins with at least one XNA prediction 
(CovOneBind, Eq. 8) was higher for ProNA2020 than for bindEmbed21DL-XNA. However, when considering 
any residue predicted as binding (bindEmbed21DL-all: nucleic acid, or metal ion, or small molecule), our 
new method apparently reached the highest values due to confusions between XNA and other ligands 
(Supplementary Table S5). (B) Zinc-binding. Data: 51 zinc-binding proteins from TestSet300.  ZincBindPredict29 
(lightest shaded bars) and  PredZinc20 (darker shaded bars) predict zinc-binding; bindEmbed21DL-metal 
(darkest shaded bars) marked predictions for metal ions. bindEmbed21DL-metal achieved a similar 
performance as PredZinc, while providing predictions for more proteins (CovOneBind(bindEmbed21DL-
metal) = 94% vs. CovOneBind(PredZinc) = 80%). ZincBindPredict was not competitive due to only providing 
predictions for 12 proteins (CovOneBind(ZincBindPredict) = 24%).
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(p ≥ 0.5) optimized by the ML method. If only the 1000 proteins with a prediction were considered, both preci-
sion and recall rose by one percentage point (Fig. 4). We analyzed the trade-off between precision, recall, and 
CovOneBind in dependence of the output probability: Precision decreased for lower cutoffs but recall and Cov-
OneBind increased allowing more binding predictions for more proteins (Fig. 4, Supplementary Table S7). For 
instance, at a cutoff of 0.28, at least one binding residue was predicted for every protein (CovOneBind = 100%) 
at the expense of precision dropping by nine percentage points (Fig. 4, Supplementary Table S7). On the other 
hand, precision could be increased by applying higher cutoffs to predict binding. For instance, for a cutoff of 
0.95, precision almost doubled (Fig. 4, Supplementary Table S7). Although recall and CovOneBind decreased 
for higher cutoffs, bindEmbed21DL still predicted binding for over half of the proteins and for one fourth of all 
binding residues at 0.95 (Fig. 4, Supplementary Table S7). Residues falsely predicted as binding at such a high 
cutoff could point to yet unknown candidates for binding residues. In fact, comparing the internal representa-
tions from the first CNN layer of falsely predicted binding residues with those of correct predictions provided 
some evidence that highly reliable, not yet observed predictions clustered with those of experimental annota-
tions (Supplementary Fig. S5). This confirmed the hypothesis that highly reliable binding predictions might help 
to identify missing binding annotations.

Missing experimental annotations limit the top precision reachable (if we equate “not observed as binding” 
with “non-binding”). For probability > 0.95, precision reached 80% (Fig. 4). To some extent, this estimated the 
effect from missing annotations: At least for the 25% most reliably predicted binding residues, at most one fifth 
(100–80) could be attributed to missing annotations. This might not imply that, at p > 0.5, precision would maxi-
mally rise by 20 percentage points because the most reliably predicted binding residues might be more likely to 
coincide with easy to obtain experimental data. Clearly, the opposite holds: Regions with low information, such 
as intrinsically disordered regions, are more difficult to predict and to experimentally  resolve30.

Alternatively, predictions could be refined taking the number of predicted residues into consideration: A 
low number of binding predictions in a protein indicated that those predictions were incorrect (Supplementary 
Fig. S6). Removing such predictions led to an increase in CovNoBind(l) (Eq. 9) while decreasing CovOneBind 
(Eq. 8; Supplementary Fig. S6).

Since the probability score correlated with prediction reliability, we defined a single-digit integer reliability 
index (RI; Eq. 10) ranging from 0 (unreliable; probability = 0.5) to 9 (very reliable). This RI empowers users, 
depending on their interest, either to focus on the most precise/reliable predictions for binding (or non-binding), 
or to focus on the perspective most likely to identify any binding residue that might exist.

Reliable predictions could help refining experimental annotations. Using a cutoff of 0.95 to clas-
sify a residue as “binding”, bindEmbed21DL reached 73% precision with at least one residue predicted as binding 
for 519 proteins (CovOneBind = 51%; Fig. 4, Supplementary Table S7). For 84 of the 519 proteins (16%), none 
of the residues predicted that reliably (probability ≥ 0.95) had been experimentally annotated as binding. We 
analyzed two of those 84 in more detail.

Figure 4.  Residues predicted stronger more often correctly predicted. Data set: DevSet1014. Precision and 
recall are only shown for the proteins for which at least one residue was predicted as binding where the number 
of such proteins is indicated by CovOneBind. The x-axis gives the output probability of bindEmbed21DL for a 
prediction corresponding to the prediction strength. The y-axis gives the average performance or percentage 
of proteins with a prediction at the respective probability cutoff. All curves give the cumulative values, e.g., the 
precision of all residues predicted with probability ≥ 0.95 (marked as dashed line) was 73% corresponding to a 
recall of 25%; and at that value, at least one binding residue was predicted in 51% of the proteins. While higher 
probabilities correspond to more reliable binding predictions, lower probabilities correspond to highly reliable 
non-binding predictions (Supplementary Table S7; SOM 1.5 for more details). The violin plot in the top panel 
reflects the actual distribution of probabilities: 50% of the residues were predicted with probability ≤  10–3 and 
75% with probability ≤ 6 ×  10–3. While we expected binding to be the more evolutionary conserved feature, non-
binding residues were apparently easier to predict reliably.
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The DNA-binding protein HMf-2 (UniProt ID: P19267) is annotated to bind metal with residues 34 and 38 
by the experimental structure with PDB identifier (PDBid)  1A7W31,32 resolved at 1.55 Å. None of those two were 
predicted as binding (at p ≥ 0.5). Both the name and the available annotations suggested DNA-binding. If so, 
the observed metal-binding might point to allosteric binding. Four residues were predicted reliably (probabil-
ity ≥ 0.95) to bind nucleic acids (Fig. 5A, dark red residues). For another PDB structure of this protein (PDBid 
 5T5K31,33 at 4.0 Å resolution), BioLiP annotates DNA-binding for all four reliably predicted residues. Due to our 
threshold in minimal resolution, this structure had not been included in our data sets. Overall, BioLiP annotates 
13 residues in 5T5K as DNA-binding, 10 of those were correctly predicted (77% recall; Fig. 5A, lighter red). With 
respect to the three remaining: although our sequence-based method clearly did not reach remotely the power 
of X-ray crystallography, at least some of the parts of the proteins seemingly bridged over by the major grove 
(Fig. 5A: dark blue) might, indeed not bind DNA.

We observed similar results for the ribonuclease P protein component (UniProt ID: Q9X1H4): The PDB 
structure  6MAX31,34 (1.42 Å) annotated this protein with seven residues binding to a small molecule; none of 
the those were predicted at p ≥ 0.95. Indeed, the available functional annotations clearly suggest nucleic acid-
binding; the small molecule bound in 6MAX seems to mainly inhibit RNA-binding34. Four residues were pre-
dicted to bind nucleic acids reliably (p ≥ 0.95, Fig. 5B, dark red). The low-resolution structures 3Q1Q (3.8 Å)31,35 
and 3Q1R (4.21 Å)31,35 confirmed nucleic acid-binding for this protein. All four most reliable predictions were 
experimentally confirmed by those structures, and of the 21 residues annotated as binding, 16 were correctly 
predicted by default (p ≥ 0.5, 76% recall, Fig. 5B, lighter red).

These two of 84 examples pitched bindEmbed21DL as a candidate tool to help in experimentally character-
izing new binding residues completely different from the annotations it was trained on because all those cor-
rect binding predictions had been used as “non-binding” during training. On the one hand, this facilitates the 
identification of previously unknown binding sites; on the other hand, it might also help to verify and refine 
known, but potentially unreliable binding annotations, especially if multiple structures annotating different 
binding sites are available. In the two examples shown here, both proteins had already been annotated as binding 
to nucleic acids in less well-resolved structures, while the binding annotations from high-resolution structures 
rather pointed to binding of co-factors or inhibitors. Overall, the two examples suggested that the seemingly low 
performance values of bindEmbed21DL were, at least partially, rooted in the missing experimental annotations 
(residues not observed to bind treated as non-binding). We had selected the two of 84 by a simple algorithm: 
Pick those with an abundance of reliable binding predictions for which alternative experimental information was 

Figure 5.  Annotations from low-resolution structures supported through reliable predictions. (A) Our 
development set (DevSet1014) contained the PDB structure  1A7W31,32 for the DNA-binding protein HMf-2 
(UniProt ID: P19267). No DNA/nucleic acid binding was annotated in that structure, but our new method, 
bindEmbed21DL, reliably predicted (probability ≥ 0.95) four residues to bind nucleic acids. Shown is the 
PDB structure  5T5K31,33 for the same protein that has a resolution of 4.0 Å and annotations of DNA-binding, 
including the four most reliable predictions (dark red). Overall, 10 of 13 (77%) residues annotated as DNA-
binding in 5T5K were also predicted by bindEmbed21DL (shown in lighter red; blue residues indicate 
experimental annotations which were not predicted). (B) For the ribonuclease P protein component (UniProt 
ID: Q9X1H4), four residues were predicted with a probability ≥ 0.95 (indicated in dark red), none of these 
matched the annotations in the PDB structure  6MAX31,34. However, those four residues were considered as 
binding according to the two low-resolution structures 3Q1Q (3.8 Å)31,35 (visualized) and 3Q1R (4.21 Å)31,35. In 
total, those structures marked 21 binding residues; 15 of those 21 (71%) were correctly predicted (light red; blue 
residues observed to bind but not predicted). These two examples highlighted how combining low-resolution 
experimental data and very reliable predictions from bindEmbed21DL could refine those annotations and/or 
help designing new investigations.
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available. In doing this, we found that most seemingly incorrect binding predictions appeared correct. In fact, 
for those investigated in detail, precision was closer to 100% than to 80% (precision at p ≥ 0.95, Fig. 4). Of the 84 
proteins with seemingly incorrect, highly reliable binding predictions, 32 were predicted to bind nucleic acids. 
For 6 of those 32 proteins (19%), low resolution structures with binding annotations at least partially matching 
the predictions were available. On the other hand, only one of the 75 proteins with non-observed reliable (p ≥ 
0.95) metal predictions (1%) and one of the 80 proteins with non-observed reliable (p ≥ 0.95) small molecule 
predictions were confirmed by low resolution structures. While those examples demonstrated qualitatively that 
our assessment clearly under-estimated performance, they did not suffice to adjust performance measures.

Final method bindEmbed21 combined HBI and ML. Homology-based inference (HBI) assumes that 
two sequence-similar proteins are evolutionary related, and therefore, also share a common function. Using HBI 
to predict binding residues for three different ligand classes for our validation set yielded very good results for 
low E-value thresholds, but at those thresholds, hits were only found for few proteins (Supplementary Fig. S7). 
For instance, for E-values ≤ 10−50 , HBI achieved F1 = 56 ± 4% (Supplementary Fig. S7, leftmost dark red bar), 
but only 198 of the 1014 proteins found a hit, i.e., another protein with experimental annotations. When only 
using HBI to predict for all proteins, a random decision would have to be made for proteins without a hit. 
Thereby, performance dropped substantially (Supplementary Fig. S7, leftmost light red bar). Hence, HBI out-
performed our ML method bindEmbed21DL only for a small subset of proteins. We combined the best of both 
(bindEmbed21DL and HBI) applying a simple protocol: Predict binding residues through HBI if an experimen-
tally annotated sequence-similar protein is available, otherwise use ML. This combination was best (highest 
recall) at an E-value threshold of 10−3 (Supplementary Fig. S7A, blue bar). The optimum was not sharp; instead, 
numbers remained almost constant over at least six orders of magnitude in E-value. While this implied stability 
(other choices would have given similar results), one reason for the lack of a sharp optimum was the small data 
set combined with the fact that only about 5% of all residues bind. Therefore, increasing the E-value tenfold 
brought in much fewer binding residues than proteins (Supplementary Fig. S8).

Combining ML and HBI improved performance on TestSet300 by five percentage points for F1 (F1 = 48 ± 3%; 
Fig. 6D, Supplementary Table S8). HBI also improved performance for each ligand class (Fig. 6A–C, Supple-
mentary Table S8) except for the precision in predicting nucleic acid binding (Fig. 6B, Supplementary Table S8). 
ML performance was somehow limited by overprediction, especially for metal ions and small molecules (low 
CovNoBind; Supplementary Tables S4, S5), i.e., many proteins were predicted to bind to those ligand classes 
without matching annotations. Combining bindEmbed21DL with HBI slightly reduced overprediction (higher 
CovNoBind, lower CovOneBind, Supplementary Table S9) for all three ligand classes. Since the effect was largest 
for nucleic acids, this could explain the drop in precision of the final combined method bindEmbed21 compared 
to the ML-only component bindEmbed21DL, because precision was set to zero for proteins annotated but not 
predicted to bind to a ligand class.

Prediction for complete human proteome discovered unknown candidate binding resi-
dues. Of the 20,386 sequences with 11,362,967 residues currently constituting the human proteome in Swiss-
Prot36, only 3121 (15%) had any structure with binding annotations in BioLiP (Fig. 7, Supplementary Table S10). 
Using our protocol for HBI (transfer binding annotations of local alignment if E-value ≤ 10−3 ) transferred bind-
ing residues for another 7199 proteins pushing the annotations from BioLiP + HBI to 51% (Fig. 7, Supplementary 
Table S10; 53% for E-value cutoff of 1), i.e., for about half of all human proteins, no ligand is known. As most 
proteins likely bind some ligand to function correctly, many ligands remain obscure. In fact, this calculation 
substantially under-estimated the extent of missing annotations by considering a single binding annotation as 
“protein covered” although 80% of the proteins have several  domains37,38, i.e., there are not only missing anno-
tations in the 49% of the proteins without annotation but also in other domains (or even other regions) of the 
proteins covered by BioLiP + HBI. Due to speed, applicability to three main ligand classes, and performance, 
bindEmbed21DL bridged this sequence-annotation gap predicting binding for 92% of the human proteins; for 
42% of all human proteins (8510), no binding information had been available without our prediction (Fig. 7, 
Supplementary Table S10) and 21% of those 8510 (1751) were predicted reliably (probability ≥ 0.95 correspond-
ing to > 73% precision, Supplementary Table  S7). In addition, for 21% of the proteins with experimental or 
HBI-inferred annotations, bindEmbed21DL provided highly reliable binding predictions previously unknown.

Comparing the probability distributions of residues predicted to bind between proteins with and without 
annotations, we observed a clear difference between those (Supplementary Fig. S9). Neither abundance in dis-
ordered regions nor abundance in membrane proteins nor different length distributions explained any aspect of 
the difference (Supplementary Fig. S10). On the other hand, the large overlap between the distributions (Sup-
plementary Fig. S9) suggested that, while some of the newly predicted binding residues potentially stem from 
prediction mistakes, especially highly reliably predicted residues could point towards new binding residues.

One important result from the human proteome prediction was the relative contribution of the three ligand 
classes: Of all human residues, 1.2%, 2.0%, 3.1% were predicted to bind metal, nucleic acids, and small molecules, 
respectively (Supplementary Tables S10, S11). Thus, about 20% of the binding residues were predicted to bind 
metal, 30% nucleic acid, and about 50% small molecules. Overall we assume that the mistakes made in all binding 
predictions were unbiased, i.e., the 20:30:50 (metal:nucleic:small) are likely good estimates for what a complete 
experimental coverage of all human proteins would reveal. This finding suggested that our TestSet300 provided a 
much more representative mixture of these classes than TestSetNew46 and a slightly more representative mixture 
than DevSet1014 (Supplementary Table S11).

As seen for the example of the human proteome, binding annotations are far from complete and cannot be 
inferred using HBI for most proteins leading to two major observations: (1) fast and generally applicable de novo 
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prediction methods such as bindEmbed21DL are an important tool for the identification of new potential binding 
residues and ligands that could guide future experiments, and (2) our performance estimates are most likely too 
conservative due to missing annotations. In fact, while 48,700 residues were annotated as binding in structures 
with a resolution ≤ 2.5 Å, an additional 21,057 residues were predicted as binding with a probability ≥ 0.95. 
Assuming that 15,372 of those are correct (precision at 0.95 is 73%, Supplementary Table S7), our current set of 
annotations is likely missing 24% of binding residues.

Given its speed, bindEmbed21DL could also be easily applied to other complete proteomes. Predictions for 
all human proteins were completed within 80 min using one single Xeon machine with 400 GB RAM, 20 cores 
and a Quadro RTX 8000 GPU with 48 GB vRAM (40 min for the generation of the embeddings, 40 min for the 
predictions), i.e., generating binding residue predictions for one protein sequence took around 0.2 s allowing 
fast predictions for large sets of proteins.

Availability. All data, the source code, and the trained model are available via GitHub (https:// github. com/ 
Rostl ab/ bindP redict). Embeddings can be generated using the bio_embeddings  pipeline39. In addition, bindEm-
bed21 and its components bindEmbed21DL and bindEmbed21HBI are publicly available through bio_embed-
dings. Users can apply the combined method or run its components independently. Therefore, binding residue 
predictions can be generated fully without the need of any alignment method.

Figure 6.  Best performance by combining ML and HBI. We combined homology-based inference (HBI) and 
Machine Learning (ML) by transferring annotations between homologs (E-value <  10–3) if available and running 
de novo ML predictions using bindEmbed21DL, otherwise. This combination improved performance for the 
prediction of whether a residue binds to a certain ligand class for (A) metal ions, (B) nucleic acids, (C) small 
molecules, and (D) the combined, unspecific prediction of binding any of those three ligand classes vs. non-
binding any of the three. The final version of bindEmbed21 achieved F1 = 29 ± 6%, F1 = 24 ± 7%, and F1 = 41 ± % 
for metal ions, nucleic acids, and small molecules, respectively. Lighter colored bars indicate the performance for 
the ML method, darker colors indicate the performance for the combination of ML and HBI.

https://github.com/Rostlab/bindPredict
https://github.com/Rostlab/bindPredict
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Conclusion
We proposed a new method, bindEmbed21, predicting whether a residue in a protein sequence binds to a metal 
ion, a nucleic acid (DNA or RNA), or a small molecule. The method combines homology-based inference (HBI: 
bindEmbed21HBI) with Artificial Intelligence (AI), in particular using input from deep learning (DL: bindEm-
bed21DL). bindEmbed21DL neither relied on knowledge of protein structure nor on expert-crafted features, 
nor on evolutionary information derived from multiple sequence alignments (MSAs). Instead, we inputted 
embeddings from the pre-trained protein Language Model (pLM)  ProtT528 into a two-layer CNN. The major 
problem with experimental data is the lack thereof: high-resolution data was available for fewer than 1100 non-
redundant proteins from any organism. Given the data sparsity, it is likely that many binding residues remain 
unknown even in the subset of 1100 proteins with experimental data. Nevertheless, our evaluation equated 
“not observed” with “not binding”, treating predictions of non-observed binding as false positives. Although 
apparently blatantly underestimating precision, this crude simplification was needed to avoid over-prediction: 
methods only considering “what fraction of the experimental annotations is predicted?” (Recall, Eq. 1) tend to 
optimize recall. The simplest non-sense path toward that end of “always predict binding” was carefully steered 
clear off by bindEmbed21DL which outperformed its MSA-based predecessor,  bindPredictML175, by 13 per-
centage points (Fig. 2A) and appeared competitive with the MSA-based method  ProNA202019 specialized to 
predict DNA- and RNA-binding and the zinc-binding prediction methods  PredZinc20 and  ZincBindPredict29 
(Fig. 3). Prediction strength correlated with performance (Fig. 4): For the one fourth of all binding residues 
predicted with a probability ≥ 0.95, 73% corresponded to experimentally known binding annotations available 
today (Supplementary Table S7). Detailed analysis of very reliable predictions not matching known experimental 
annotations revealed that bindEmbed21DL correctly predicted binding residues missing in the structures used for 
development (Fig. 5). The analysis of predictions for the entire human proteome underlined that most binding 
annotations remain unknown today (51% with binding annotations through experiments or homology) and that 
bindEmbed21DL can help in identifying new potential binding sites (Fig. 7, Supplementary Table S10). Overall, 
about 6% of all residues in the human proteome were predicted to bind any of the three ligand classes covered 
(metals 1.2%, nucleotides 2.0%, small molecules 3.1%). The proteome analysis also suggested our performance 
estimates as too conservative: For the two carefully investigated case studies, many reliably predicted ligands not 
annotated tended to be correct. We combined the best from both worlds, namely AI/ML and HBI, to simplify 
predictions for users and to optimally decide when to use which (Fig. 6). The new method, bindEmbed21, is 
freely available, blazingly simple and fast, and apparently outperformed our estimates.

Materials and methods
Data sets. Protein sequences with binding annotations were extracted from  BioLiP9. BioLiP provides bind-
ing annotations for residues based on structural information from the Protein Data Bank (PDB)31, i.e., proteins 
for which several PDB structures with different identifiers exist may have multiple binding annotations. We 
extracted and combined (union) all binding information from BioLiP for all chains of PDB structures match-

Figure 7.  Binding predictions for complete human proteome. BioLiP: experimental annotations, HBI: 
homology-based inference, bindEmbed21DL: predictions. Data: human proteome from Swiss-Prot36 with 
20,386 proteins. For 3121 human proteins (15%), any binding annotation was experimentally known; 2211 of 
those were reliable (resolution ≤ 2.5 Å; darkblue bar for BioLiP). For 10,526 proteins (52%), binding annotations 
could be inferred using HBI at EVAL ≤ 1 (light blue). Of those, 7973 proteins were not previously annotated 
(blue bar); for 7199 proteins without binding annotations, binding annotations could be inferred at EVAL ≤  10–3 
following the protocol of bindEmbed21HBI (dark blue). Therefore, BioLiP + HBI allowed annotating some 
binding in 52% of the human proteome. bindEmbed21DL predicted binding residues for 18,663 proteins (92%) 
(light blue); no annotations were previously known (neither through BioLiP nor HBI) for 8510 (blue). Highly 
reliable predictions (probability ≥ 0.95) were possible for 1751 proteins without previous binding annotations 
(dark blue).
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ing a given sequence, which have been determined through X-ray  crystallography40 with a resolution of ≤ 2.5 Å 
(≤ 0.25 nm). All residues not annotated as binding were considered non-binding.

BioLiP distinguishes four different ligand classes: metal ions, nucleic acids (i.e., DNA and RNA), small ligands, 
and peptides. Here, we focused on the first three, i.e., on predicting the binding of metal ions, nucleic acids, or 
small ligands (excluding peptides). At point of accession (26-11-2019), BioLiP annotated 104,733 structures 
with high enough resolution and binding annotations which could be mapped to 14,894 sequences in  UniProt36. 
This set was clustered to remove redundancy using  UniqueProt41 with an HVAL < 0 (corresponding to no pair of 
proteins in the data set having over 20% pairwise sequence identity over 250 aligned  residues42,43). We provide 
more details on the data in Supplementary Table S12 and on the redundancy reduction in Supplementary Sect. 2.1 
of the Supporting Online Material (SOM). The final set of 1314 proteins was split into a development set with 
1014 proteins (called DevSet1014 with 13,999 binding residues, 156,684 non-binding residues; Supplementary 
Table S12) used for optimizing model weights and hyperparameters (after another random split into training and 
validation), and test set with 300 proteins (TestSet300 with 5869 binding residues, 56,820 non-binding residues; 
Supplementary Table S12). To allow maximum overlap to the development set of  bindPredictML175, we first 
extracted the 225 proteins from the 1314 proteins which were also part of the data set of bindPredictML17. Since 
bindPredictML17 was only trained on enzymes and DNA-binding proteins, this set was highly biased towards 
nucleic acid and small molecule binding (59 proteins binding to nucleic acids, 176 to small molecules, and 95 to 
metal ions). The additional 75 proteins were added to slightly adjust for this imbalance. However, a full adjust-
ment was not possible without decreasing the size of the training set too much.

In addition, we created a new and independent test set by extracting all sequences with binding annotations 
which were added to BioLiP after our first data set had been built (deposited between 26 November 2019 and 
03 August 2021). This yielded a promising 1592 proteins. However, upon redundancy reduction with HVAL < 0, 
this set melted down to 46 proteins with 575 binding and 5652 non-binding residues (TestSetNew46; Supple-
mentary Table S12). These numbers imply two interesting findings: Firstly, about 17 experiments with bind-
ing data have been published every week over the last 91 weeks. Secondly, less than one experiment per week 
provided completely new insights into binding of residues not previously characterized in similar proteins (3% 
of all experiments). These observations underscored the importance of complementing experimental with in 
silico predictions.

Protein representation and transfer learning. We used ProtT5-XL-UniRef5028 (in the follow-
ing ProtT5) to create fixed-length vector representations for each residue in a protein sequence. The protein 
Language Model (pLM) ProtT5 was trained solely on unlabeled protein sequences from BFD (Big Fantastic 
Database; 2.5 billion sequences including meta-genomic sequences)44 and  UniRef5036. ProtT5 has been built in 
analogy to the NLP (Natural Language Processing)  T545 ultimately learning some of the constraints of protein 
sequence. Features learned by the pLM can be transferred to any (prediction) task requiring numerical protein 
representations by extracting vector representations for single residues from the hidden states of the pLM (trans-
fer learning). As ProtT5 was only trained on unlabeled protein sequences, there is no risk of information leak-
age or overfitting to a certain label during pre-training. To predict whether a residue is binding a ligand or not, 
we extracted 1024-dimensional vectors for each residue from the last hidden layer of ProtT5 (Supplementary 
Fig. S13, Step 1) without fine-tuning it on the task of binding residue prediction (i.e., the gradient of the binding 
prediction was not backpropagated to ProtT5).

AI/Deep learning architecture. For bindEmbed21DL, we realized the supervised learning through a rela-
tively shallow (few free parameters) two-layer Convolutional Neural Network (CNN; Supplementary Fig. S13, 
Step 2). The CNN was implemented in  PyTorch46 and trained with the following settings: Adamax optimizer, 
learning rate = 0.01, early stopping, and a batch size of 406 (resulting in two batches). ProtT5 embeddings (from 
the last layer of ProtT5, 1024-dimensional vector per residue) were used as the only input. The first CNN layer 
consisted of 128 feature channels with a kernel (sliding window) size of k = 5 mapping the input of size L × 1024 
to an output of L × 128. The second layer created the final predictions by applying a CNN with k = 5 and three 
feature channels resulting in an output of size L × 3, one channel per ligand class. A residue was considered as 
non-binding if all output probabilities were < 0.5. The two CNN layers were connected through an exponential 
linear unit (ELU)47 and a dropout  layer48, with a dropout rate of 70%. The two-layer CNN proved to be the 
best-performing architecture among a variety of architectures including CNNs with more layers, feedforward 
neural networks, and combinations of both. Feature channels, learning rate, kernel size, and dropout rate were 
optimized using an exhaustive grid search.

To adjust for the substantial class imbalance between binding (8% of residues) and non-binding (92%), 
we weighted the cross-entropy loss function. Individual weights were assigned for each ligand class and were 
optimized to maximize performance in terms of F1 score (Eq. 3) and MCC (Eq. 4). Higher weights in the loss 
function increased recall (Eq. 1), lower weights increased precision (Eq. 2). The final weights were 8.9, 7.7, and 
4.4 for metal ions, nucleic acids, and small molecules, respectively.

Homology-based inference. Homology-based inference (HBI) generally proceeds as follows: Given 
a query protein Q of unknown binding and a protein E for which some binding residues are experimentally 
known, align Q and E; if the two have significant sequence similarity (SIM(Q,E) > T), transfer annotations from 
E to Q. The threshold T and the optimal way to measure the sequence similarity (SIM) are determined empiri-
cally. Most successful in silico predictions of function are predominantly based on  HBI4,8,49–54.

In our case, we aligned query proteins without binding annotations with  MMseqs255, creating evolution-
ary profiles from the resulting multiple sequence alignments (MSAs) for each protein (family) (two MMseqs2 
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iterations, at E-value ≤ 10−3 ) against a 80% non-redundant database combining  UniProt36 and  PDB31 adapting 
a standard protocol based on PSI-BLAST56 which was implemented for other methods  before19,24,50. The result-
ing profiles were then aligned at E-value ≤ 10−3 against a set of proteins with experimentally known binding 
annotations (see SOM 2.3 for explicit MMseqs2 commands). To save resources, we clustered the set of proteins 
with known annotations at 95% pairwise sequence identity (PIDE; PIDE(x,y) < 95% for all protein pairs x, y). 
For performance estimates, self-hits were excluded. From all hits, the local alignment with the lowest E-value 
and highest PIDE to the query was chosen. If this hit contained any binding annotations in the aligned region, 
annotations were transferred between aligned positions, and all non-aligned positions in the query were con-
sidered as non-binding. If no binding annotations were located in the aligned region, the hit was discarded and 
no inference of binding annotations through homology was performed. Combining bindEmbed21HBI with the 
ML method bindEmbed21DL led to our final method, bindEmbed21.

Performance evaluation. To assess whether a prediction was correct or not, we used the following stand-
ard annotations: True positives (TP) were residues correctly predicted as binding, false positives (FP) were 
incorrectly predicted as binding, true negatives (TN) were correctly predicted as non-binding, and false nega-
tives (FN) were incorrectly predicted as non-binding. Based on this classification for each residue, we evaluated 
performance using recall (or sensitivity, Eq. 1), precision (Eq. 2), F1 score (Eq. 3), and Matthews Correlation 
Coefficient (MCC, Eq. 4).

Negative recall (Eq. 5), negative precision (Eq. 6), and negative F1 score (Eq. 7) focusing on the negative class, 
i.e., non-binding residues, were defined analogously:

The measure CovOneBind (Eq. 8) indicated the fraction of proteins for which at least one residue was pre-
dicted as binding. Accordingly, the inverse of this, CovNoBind (Eq. 9), indicated the fraction of proteins for 
which predictions as well as experiments detected no binding. Since our data set only consisted of proteins with 
a binding site, CovNoBind had to be computed for different ligand classes, i.e., the fraction of proteins for which 
ligand l was neither observed nor predicted (Eq. 9).

CovOneBind is an interesting measure to consider for experimentalists who submit only one sequence to a 
server and want to gauge how likely absence of prediction for that protein implies absence of binding. It does 
not give a clear indication of the performance of the method for a specific protein but attempts to capture how 
broadly applicable a method is. If a method only predicts binding residues for a small subset of proteins with 
high precision, it could still be considered inferior to a method predicting binding residues less precisely but for 
more proteins because those predictions can still provide valuable information.

Each performance measure was calculated for each protein individually. Then the mean was calculated over 
the resulting distribution and symmetric 95% confidence intervals (CI) assuming a normal distribution of the 
performance values were calculated as error estimates. While the performance values are not following a normal 
distribution, the sample size was sufficiently large to assume that a normal distribution can be applied in this 
case. For security we also tested bootstrapped CIs yielding the same results (SOM 2.4).

(1)Recall =
TP

TP + FN
,

(2)Precision =
TP

TP + FP
,

(3)F1 = 2 •
Recall · Precision

Recall + Precision
,

(4)MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

(5)Negative Recall =
TN

TN + FP
,

(6)Negative Precision =
TN

TN + FF
,

(7)Negative F1 = 2 ·
Negative Recall · Negative Precision

Negative Recall + Negative Precision
.

(8)CovOneBind =
Number of proteins with one binding residue predicted

Number of proteins with binding annotations
,

(9)CovNoBind(l) =
Number of proteins without binding predictions for ligand l

Number of proteins without binding annotations for ligand l
.
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Reliability index. We transformed the probability p into a single-digit integer reliability index (RI) ranging 
from 0 (unreliable; probability = 0.5) to 9 (very reliable; probability = 1.0 for binding and probability = 0.0 for 
non-binding) (Eq. 10).

Comparison to other methods. We compared our new method to the following four. We could not com-
pare with other methods for different reasons (Supplementary Table S14).

bindPredictML175 predicts binding residues from enzymes (trained on the PDB) and DNA-binding residues 
from  PDIdb57. The method first builds MSAs and uses those to compute evolutionary  couplings23 and effect 
 predictions21,22. Those two main features are then used as input to the machine learning method.

ProNA202019 predicts binding to DNA, RNA, and other proteins using a two-step procedure: The first per-pro-
tein level predicts whether a protein binds DNA, RNA, or another protein. The second per-residue level predicts 
which residue binds to any (or all) of the three ligand classes. ProNA2020 combines HBI and machine learning 
using motif-based profile-kernel58,59 and word-based approaches (ProtVec)60 for the per-protein prediction and 
uses standard neural networks with different expert-crafted features taken from  PredictProtein24 as input.

PredZinc20 predicts binding to zinc ions using a combination of HBI inference and a Support Vector Machine 
(SVM). The SVM was trained on feature vectors representing the conservativity and physicochemical properties 
of single amino acids and pairs of amino acids.

ZincBindPredict29 is based on different Random Forest models to predict one particular zinc-binding site 
family. The models were trained on feature vectors encoding inter-residue distance, hydrophobicity, and number 
of charges around a residue.

Data availability
The source code, data sets, and the trained model are publicly available as a GitHub repository (https:// github. 
com/ Rostl ab/ bindP redict). ProtT5 embeddings can be generated using the bio_embeddings pipeline. Predictions 
using bindEmbed21 can be easily generated using its integration into bio_embeddings.
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