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A B S T R A C T

The Zika virus is transmitted to humans primarily through Aedes mosquitoes and through sexual contact. It is
documented that the virus can be transmitted to newborn babies from their mothers. We consider a deterministic
model for the transmission dynamics of the Zika virus infectious disease that spreads in, both humans and
vectors, through horizontal and vertical transmission. The total populations of both humans and mosquitoes are
assumed to be constant. Our models consist of a system of eight differential equations describing the human and
vector populations during the different stages of the disease. We have included the hospitalization/isolation class
in our model to see the effect of the controlling strategy. We determine the expression for the basic reproductive
number R0 in terms of horizontal as well as vertical disease transmission rates.

An in-depth stability analysis of the model is performed, and it is consequently shown, that the model has a
globally asymptotically stable disease-free equilibrium when the basic reproduction number R0 < 1. It is also
shown that when R0 > 1, there exists a unique endemic equilibrium. We showed that the endemic equilibrium
point is globally asymptotically stable when it exists. We were able to prove this result in a reduced model.
Furthermore, we conducted an uncertainty and sensitivity analysis to recognize the impact of crucial model
parameters on R0. The uncertainty analysis yields an estimated value of the basic reproductive number
R0= 1.54. Assuming infection prevalence in the population under constant control, optimal control theory is
used to devise an optimal hospitalization/isolation control strategy for the model. The impact of isolation on the
number of infected individuals and the accumulated cost is assessed and compared with the constant control
case.

1. Introduction

The Zika virus spreads among humans primarily through an infected
mosquito bite, which has been increasing at an alarming incidence rate
worldwide over the past few years (Dick et al., 1952). It belongs to the
family of flaviviruses which includes more than fifty viruses, such as
dengue, yellow fever, and the West Nile virus.

This virus was first identified in the Zika forests of Uganda and East
Africa during the investigations on the ecology of the yellow fever
(Anderson et al., 2016). The first isolation was made in April of 1947
from the serum of pyrexia rhesus monkey caged. The second isolation
was made in 1947 in the same forest (Dick et al., 1952). Just a year
later, in 1948, the virus was recovered from mosquito Aedes Africanus
from the Zika forest. The first human case of Zika fever was reported in
Uganda in 1952. The first outbreak of Zika fever was reported in 2007

on the Pacific island of Yap, this outbreak caused 108 symptomatic
cases. Another epidemic outbreak occurred in French Polynesia be-
tween 2012 and 2014. During this time, it was estimated that about
28,000 people were reported to have Zika like symptoms (Anderson
et al., 2016).

Recently a large and sustained epidemic in Brazil was confirmed in
April 2015. Thousands of symptomatic cases have been reported.
Brazilian authorities have indeed confirmed that over 500 cases with
flu-like symptoms were due to the Zika virus. Thus, owing to its recent
spread outside Africa and Pacific Asia, the Zika virus can be considered
an emerging pathogen. The Pan American Health Organization
(PAHO), reported more than 100,000 cases of Zika virus by the end of
2016. Only 9 deaths were reported in that period (Pan American Health
Organization, 2018).

Brazil was by far the country that was most affected by this
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epidemic, reporting the most cases of people infected with the Zika
virus worldwide. In 2016, the state of Rio de Janeiro alone reported
over 71,000 probable Zika virus infections, however, this number
dropped to only 2210 cases in 2017.

Sexual transmission of the Zika virus has also been reported from
both males and females to their partners (CDC, 2018; ECDC, 20185;
Hastings and Fikrig, 2003; Summers and Acosta, 2015). Zika virus can
be sexually transmitted from a person who is infected by the virus, even
while they are not symptomatic. Furthermore, it has been suggested
that Zika virus can be transmitted from a pregnant woman to her fetus
during pregnancy. Zika virus can be transferred horizontally as well as
vertically. During the Zika epidemic, Brazilian health officials reported
an increase in the number of cases of microcephaly disease, a condition
in which a baby's head is smaller than normal in Zika affected areas.

The main symptoms of Zika fever include a fever, the
Maculopapular rash often spreading from the face to the body, joint and
muscle pain, vomiting, or bilateral non-purulent conjunctivitis (ECDC).
The first well-documented case of Zika fever was reported in 1964 and
started with a mild headache with later development of a maculo-
papular rash, fever, and back pain (Hayes, 2009). The symptoms of Zika
fever are thus quite similar to those of Dengue fever and there is a
strong possibility of misdiagnosis in regions where Dengue virus is
common.

The incubation period for the Zika virus is between 3 and 14 days
(Krow-Lucal et al., 2017). Disease-related symptoms are developed
within one week of infection for 50% of the infected individuals and
within 2 weeks among 99% (Krow-Lucal et al., 2017) of the infected
individuals. The vast majority of infections are not contagious from
person to person; however, it may be passed person to person during
sex. The virus infection is usually diagnosed by a blood test. The disease
symptoms are usually mild and short lasting (17 days), and infection
may go unrecognized or be misdiagnosed as Dengue fever (ECDC).

Unfortunately, there is no vaccine, antiviral drug, or other modality
available to prevent or treat the Zika virus infection. Zika fever is a
preventable but not a curable disease. Thus, the only means of con-
trolling the Zika virus is to control the mosquitoes that spread the
disease and protection during sex.

In the past several years, a number of deterministic models for the
transmission dynamics of the Dengue virus have been studied and
analyzed (Esteva and Vargas, 1998, 1999, 2003; Ferguson et al., 1999;
Garba et al., 2008, 2010; Kautner et al., 1997; Wearing and Rohani,
2006). After the Zika outbreak, models for Zika transmission have been
developed (Agustoa et al., 2017; Maxiana et al., 2017; Wiratsudakul
et al., 2018) and analyzed. In these models, the authors included the
effect of sexual transmission of the disease.

In this work, we formulate and study a deterministic model for Zika
virus transmission including vertical and horizontal transmission of the
disease. Although Esteva (Esteva and Vargas, 2000) discussed vertical
disease transmission it was among vectors in a Dengue transmission.

Our deterministic model for Zika virus transmission includes hor-
izontal and vertical transmission in both humans and vectors. As stated
previously, it has been suggested that Zika virus can spread to newborns
from their mothers, and we therefore feel that an accurate model must
include the vertical transmission. Our work is an extension of our
previous model (Imran et al., 2017) by including a population group
that is using controlling measures. In the previous work, we considered
death due to the infection and the total human and vector populations
were functions of time. The previous model did not possess global
stability for both disease-free and endemic equilibriums. We showed a
backward bifurcation phenomenon. The current model has constant
population size. Since death cases reported from Zika fever were neg-
ligible, we take disease-induced mortality to be zero. There is no

backward bifurcation and the steady states results are global. Since the
only way to control the disease is to isolate patients who have been
infected with the Zika virus, we included a new population compart-
ment consisting of hospitalized individuals. We have calculated the
basic reproductive number associated with our model that guarantees
the elimination of the disease. Finally, using optimal control techni-
ques, we also propose and analyze the control strategies for decrease
infected individuals while minimizing the costs and resources si-
multaneously.

The rest of this paper is organized as follows, the proposed model is
presented in Section 2. Basic properties and a detailed steady-state
analysis of the model are presented in Section 3. In Section 4, we per-
form a sensitivity and uncertainty analysis of the model parameters and
reproductive number associated with our model. Section 5 uses ideas
from optimal control theory to propose various controlling strategies to
overcome Zika are proposed. Finally, Section 6 presents our conclusions
and contains a brief discussion of our results.

2. Model formulation

We consider two types of populations in this model one for the
humans and for the mosquitoes. The total human and mosquitoes po-
pulations at time t, denoted by Nh and Nv, are constant. The human
population is divided into five mutually exclusive groups, susceptible
humans Sh(t), exposed humans Eh(t), infected humans Ih(t), isolated or
hospitalized individuals Hh(t) and recovered humans Rh(t). The total
vector population is divided into three mutually exclusive classes
comprising of susceptible vectors S t( )v , exposed vectors E t( )v and in-
fected vectors I t( )v . The model assumes that the susceptible human
population Sh(t) has a recruitment rate μhNh, where Nh is total human
population and μh is the natural birth rate of humans. We assume that
the birth rate of human population is same as the natural death rate.
Susceptible individuals get infected with Zika fever virus (due to con-
tact with infected vectors) at a rate λh and thus enter the exposed class
Eh. In order to consider vertical transmission in our model, we make the
assumption (see, e.g., Li et al., 2001) that a fraction of newborn in-
dividuals from parents in the Eh(t) and Ih(t) classes will be infected, and
thus remain in Eh class before becoming infectious. We have assumed
that the hospitalized individuals do not contribute to vertical trans-
mission. Population in each class is removed at the natural death rate
μh. We assumed a lifelong immunity for humans who recovered from
Zika virus. The exposed individuals who got an infection, move to in-
fectious class at a rate ξ. The infected population recovers from the Zika
fever at a rate θI and some infected individuals are transferred to hos-
pitalized class at a rate τ. The hospitalized population recovered at a
rate of θH.

The susceptible vector population S t( )v has a recruitment rate μ Nv v,
and μv is a natural death rate of vector population. A fraction of off-
springs in the E t( )v and I t( )v classes will be infected, and thus remain in
Eh class before becoming infectious. Because of this vertical transmis-
sion, a fraction of susceptible individuals will enter the exposed class.
Susceptible vectors are infected with Zika virus (due to effective contact
with infected humans) at a rate of λv and thus move to the exposed
vector class Ev. The susceptible, exposed and infected vectors have
natural death rate μ .v In addition, exposed vectors develop symptoms
and move to the infected vector class Iv at a rate of σv. It is assumed that
infected vectors do not recover, and die at the natural death rate of μv.

As mentioned earlier there is no vaccine available for Zika fever.
The only way to control this disease is to reduce the contact rate either
by killing the mosquitoes or using the protective measure like mosquito
repellents, nets etc. The effective contacts will be further reduced by
isolating the infected humans. Isolation of individuals with disease
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symptoms constitutes what is probably the first infection control mea-
sure since the beginning of recorded human history (Hethcote, 2000).
Over the decades, these control measures have been applied, with
varying degrees of success, to combat the spread of some emerging and
re-emerging diseases such as leprosy, plague, cholera, typhus, yellow
fever, smallpox, diphtheria, tuberculosis, measles, Ebola, pandemic
influenza and, more recently, severe acute respiratory syndrome
(Gumel et al., 2003; Imran et al., 2013; Lipsitch et al., 2003; Lloyd-
Smith et al., 2003). Chavez et al. analyzed a SAIQR model in detail, to
investigate the effect of isolation on influenza (Vivas-Barber et al.,
2015). They used the isolation (quarantine) I-Q model, where the in-
fected population is isolated. We have included epidemiological factors
like permanent or partial immunity after recovery as well as interven-
tion control measures through the inclusion of a hospitalized (or iso-
lated) class, Hh.
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In this case both the total host population and the vector population
are constant.

The forces of infection λh and λv are given as (Garba et al., 2008):

= = +λ I λ I ηHand ( ).h
C
N v v

C
N h hh h

hv hv

Here we assumed that an individual in H class still can transmit the
disease but with lower rate. The value of modification parameter
0≤ η < 1.

Fig. 1 presents schematic diagram of the model (1).

A description of the variables and parameters of the model (1) is
given in Tables 1 and 2 respectively.

The model (1) will be studied on the closed set:

� = ∈ + + + + =
+ + =

+S E I H R S E I S E I H R N
S E I N

{( , , , , , , , ) ℝ : ;
}.

h h h h h v v v h h h h h h

v v v v

8

� is positively invariant and attracting with respect to the model (1). It
can be seen that the solutions are always positive. The right sides of (1)
are smooth, so that initial value problems have unique solutions that
exist on maximal intervals. Since paths cannot leave � , solutions exist
for all positive time. Thus the model is mathematically and epidemio-
logically well posed.

3. Basic reproductive number and steady states analysis

In this section, we will perform a detailed steady state and stability
analysis of the Zika fever model presented in Section 2.

3.1. Basic reproductive number and local stability of disease free
equilibrium

The model (1) has a disease free equilibrium (DFE) given by

� = =S E I H R S E I N N( *, *, *, *, *, *, *, *) ( , 0, 0, 0, 0, , 0, 0)h h h h h v v v h v0

In order to investigate the local stability of the DFE �( )0 , the next
generation operator method (van den Driessche and Watmough, 2002)
will be used. Following the notation of van den Driessche and
Watmough (2002), the matrix F (for the new infection terms) and the
matrix V (of the transition terms) are given, respectively, byFig. 1. Schematic diagram of the model (1).

Table 1
Description of the variables of the model (1).

Variable Description

Nh Total human population
Nv Total vector population
Sh Population of susceptible humans
Eh Population of exposed humans
Ih Population of infected humans
Hh Population of hospitalized humans
Rh Population of recovered humans
Sv Population of susceptible vectors
Ev Population of exposed vectors
Iv Population of infected vectors

Table 2
Description of the parameters of the model (1).

Parameter Description

μh Natural death rate of humans
μv Natural death rate of vectors
p Fraction of new born from exposed humans
q Fraction of new born from infected humans
r Fraction of offsprings from exposed vectors
s Fraction of offsprings from infected vectors
θI Recovery rate of infected humans
θH Recovery rate of hospitalized humans
ξ Progression rate of humans from exposed to infected class
τ Hospitalization rate of infected individuals
σv Progression rate of vectors from exposed to infected class
Chv Effective contact rate
η Modification parameter for relative infectiousness of hospitalized

humans
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where K1= ξ+ μh, K2= θI+ τ+ μh, K3= θH+ μh, = +K σ μv v4 , and
=K μv5 .
The basic reproduction number R0 for our model is given by
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When p= q=0, vertical transmission is not present in the model;
the above R0 reduces to the basic reproduction number R0 of a SEIR
model for a vector disease (Garba et al., 2008).

To get a better understanding of the basic reproduction number R0

in (2), we rewrite it using Taylor expansion about p and q:
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Note that Rc is the basic reproductive number for horizontal trans-
mission (Khan et al., 2014). The square root means that the two gen-
erations required for an infected vector or host to reproduce itself (van
den Driessche and Watmough, 2002). Rp+ Rq is the sum of the number
of infected individuals during the mean latent period and the number of
infected individuals during the mean infectious period. Similarly,
Rr+ Rs is the sum of the number of infected vector offsprings during the
mean latent period and the number of infected vector offsprings during
the mean infectious period. The expression
R= RcRp+ RcRq+ RcRr+ RcRs) represents the total contribution to the
infective class made by the exposed and infective individuals of first
generation (Li et al., 2001). The local stability of the disease free
equilibrium follows directly from van den Driessche and Watmough
(2002). We have following result about local and global stability of
disease free state:

Lemma 3.1. The DFE �( )0 of the model (2.1), is locally-asymptotically
stable if R0 < 1, and unstable if R0 > 1.

Theorem 3.2. The DFE, � = N N( , 0, 0, 0, 0, , 0, 0)h v0 , of the model (1) is
globally-asymptotically stable in � whenever R0 < 1.

Proof. Let =x t S t E t I t H R t S t E t I t( ) ( ( ), ( ), ( ), , ( ), ( ), ( ), ( ))h h h h h v v v be a
solution of (1) with x0= x(0).

A comparison theorem will be used for the proof. The equations for
the infected components of (1) can be written as (where the prime
denotes the derivative with respect to time),
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Lemma 3.1 established the local asymptotic stability of the DFE when
R0 < 1, or equivalently, ρ(FV−1)< 1, which is equivalent to all
eigenvalues of F− V having negative real parts when R0 < 1 (van
den Driessche and Watmough, 2002). Also, F− V has all off-diagonal
entries non negative. Then →E t I t H t E t I t( ); ( ); ( ); ( ); ( ) 0h h h v v as t→∞
(see Corollary B.2. in [38]). Substituting = = = = =E I H E I 0h h h v v into
the model (1) gives Sh→Nh, Rh→ 0 and →S Nv v as t→∞. This means
that the Omega limit set of x0, ω(x0), is contained in the disease-free
space. But, on the other hand, it is straightforward to check that every
solution with the initial condition in the disease-free space converges to
�0. Hence � ∈ ω x( )0 0 . This implies that, in fact, �=ω x( )0 0 (because N0

is asymptotically stable). Thus, �→x t( ) 0 as t→ 0, which completes the
proof. □

The epidemiological implication of the above result is that the dis-
ease can be eliminated from the population if the basic reproduction
number R0 can be brought down to a value less than unity (that is, the
condition R0 < 1 is sufficient and necessary for disease elimination)
irrespective of the size of the initial populations in each class. The
stability of the DFE is demonstrated in Fig. 2a. If R0 > 1 the DFE is
unstable in this case and the solutions are attracted to an (apparently
unique and stable) endemic equilibrium, as depicted in Fig. 2b.

3.2. Existence of endemic state

In this section, the existence and stability of endemic equilibrium
(EE) of the model (1) will be discussed. We define endemic equilibrium
to be those fixed points of the system (1) in which at least one of the
infected compartments of the model are non-zero.

Theorem 3.3. The Endemic State, �1, of the model (1) exists whenever
R0 > 1.

Proof. Let � = S E I H R S E I( , , , , , , , )h h h h h v v v1
ø ø ø ø ø ø ø ø denote an arbitrary

endemic equilibrium of the model (1). Also, let
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Solving the equations of the model (1) for steady-state by setting right
hand asides of the model (1) equal to zero yields
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Where m1=K2(K1− pμh)− qμhξ, = − −m K K rμ sμ σ( )v v v2 5 4 and all
K′s are defined above. Substituting (4) in (3) and simplifying gives,

=
+ + +

λ
C σ λ N μ μ

N μ m λ μ rλ μ K sλ μ σ[ ( ) ]h
v v v v h

h h v v v v v v v

ø hv
ø

2
ø ø

4
ø (5)

Also,

=
+

+ + +
λ

C λ ξμ K ητ
K m λ μ pλ μ K qλ μ ξ

( )
[ ( ) ]v

h h

h h h h h h

ø hv
ø

3

3 1
ø

2 (6)

Substitute (6) into (5), we have the following equation in λh
ø

=
−

+ + +

+

λ
m m μ μ K R

N μ m K C ξμ m μ K A rμ K qμ σ K C ξμ

ητξμ N μ

( 1)

[ ( )(

)]

h
h v

h h h v v v v h

h h h

ø 1 2 3 0
2

2 3 hv 2 3 4 3 hv

(7)

where = + +A m pμ K qμ σh v v1 2 . Clearly the model (1) has no endemic
state if R0 < 1 and one unique endemic state when R0 > 1. □

Fig. 3 shows the variation in R0 with the relative fraction of new-
born exposed individuals (p) and newborn infected individuals (q). We
notice that no less than %5 of newborn exposed individuals (p) and no
more than 25% of the fraction of newborn infected individuals to bring
R0 less than 1:

Fig. 4 shows the effect of hospitalization rate τ of infected in-
dividuals on the basic reproductive number R0. From this figure, we can
see that effective isolation will help to reduce the basic reproductive
number. About 25% of infected individuals should be effectively iso-
lated to bring the basic reproductive number to less than 1. This plot
shows that the effective isolation is helpful in controlling the epidemic
of Zika virus.

Fig. 2. (a and b) Time series of the model (1) converging to possible steady
states.

Fig. 3. Simulation of the model (1) showing the contour plot of R0 as a function
of fraction of newborn exposed individuals (p) and newborn infected in-
dividuals (q).

Fig. 4. The effect of hospitalization rate τ of infected individuals versus basic
reproductive number R0 for the model (1).
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3.2.1. Uniform persistence
Let � = E I H E I( , , , , )h h h v v . Then � �′ =t A x t t( ) ( ) ( ( )) ( ), where

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

− +

−
−

− +

−

⎞

⎠

⎟
⎟
⎟
⎟
⎟

A x

K pμ qμ S

ξ K
K

S S K rμ sμ

σ K

( )

0 0

0 0 0
0 0 0 0

0

0 0 0

,

h h
C
N h

C
N v

ηC
N v v v

v

1

2

3

4

5

h

h h

hv

hv hv

(8)

denote by s(A) the spectral bound of matrix A. Let →+ +ρ: ℝ ℝ8 ,

�= =ρ x( ) min .i i1
4 (9)

Theorem 3.4. If R0 > 1 then the disease is strongly uniformly ρ-persistent:
∃ε > 0 such that

>
→∞

ρ x t εlim inf ( ( )) ,
t (10)

whenever ρ(x(0)) > 0. Where =x t S t E t I( ) ( ( ), ( ),h h h
t H t R t S t E t I t( ), ( ), ( ), ( ), ( ), ( )h h v v v be a solution of model (1). In this case
there exists an endemic steady state.

Proof. Let = ∈ = ∀ ≥+X x ρ x t t{ ℝ ( ( )) 0 0}8 . Then
= ∈ = = = = = =+X x E I H R E I{ ℝ 0}h h h h v v

8 (that is, X is the
disease-free subspace). Note that X, as well as + Xℝ \7 , are positively
invariant. Also, all solutions originating in X converge to N0 as t→∞.
N0 is asymptotically stable in X. Hence N0 is isolated in X. Corollary 4.7
in Salceanu (2011) (where M= B ∩ X, Ω(M)= {N0}, T=1, P(1, N0) is
eA(N0)), together with Proposition 4.1 and Lemma 3.1 in Salceanu
(2011), imply that {N0} is also uniformly weakly repelling. Then, from
Theorem 8.17 in Smith and Thieme (2011) we have that the semiflow
generated by (2.4) is uniformly weakly ρ-persistent. From the positive
invariance of � , we have that (2.4) is point dissipative. Then, according
to Theorem 2.28 in Smith and Thieme (2011), there exists a compact
attractor of points for (1). This, together with uniformly weakly ρ-
persistent imply (10) (see Smith and Thieme, 2011, Theorem 5.2). In
this case there exists an endemic steady state (Smith and Thieme,
2011). □

3.3. Stability of endemic state

The local stability of the endemic steady state �1 of the model (1) is
given in the lemma below.

Theorem 3.5. If R0 > 1, then the endemic state of the model (1) is locally
asymptotically stable in for model (1).

for the proof of this above local stability theorem see Imran et al.
(2017).

For the global stability of the endemic steady state �1, we consider
the (1) with no hospitalization and a small incubation period so that we
can assume that susceptible individuals after infection move to infected
class.

In this case, it is easily seen that both for the host population and for
the vector population the corresponding total population sizes are
asymptotically constant. We assumed that in our model the total po-
pulation is constant. Previous results (Thieme, 1992) imply that the
dynamics of systems (1) is qualitatively equivalent to the dynamics of
system given by:

= − − −

= + − +

= − −

q I λ S μ S

λ S q I θ μ I

λ I μ I

Π Π

Π ( )

( )

H H H H H H H

H H H H H

V μ V V V

dS
dt

dI
dt
dI
dt

Π

H

H

V V

V (11)

We study the following feasible region of the new system (11):

� = ∈ + ≤

≤

+

}
{ S I I S I

I

( , , ) ℝ : ;

.

H H V H H μ

V μ

3 Π

Π

H

H

V

V

Denote the interior of � by � o.

Theorem 3.6. If R0 > 1, then the endemic state of (11) is globally
asymptotically stable in � .o

Proof. We will use geometric approach to global-stability method given
in Li et al. (2001). Let x=(S, IH, IV) and f(x) denote the vector field of
(11). The Jacobian matrix

=
⎡

⎣

⎢
⎢
⎢

− − −
− −

− − −

⎤

⎦

⎥
⎥
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H V H H H

V μ V H V H
ΠV

V

and its second additive compound matrix J[2] is (see Li et al., 2001):

=

⎡
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Here = =C C C .H V
μ

HV Π
H
H

Take the function P(x) as:

=
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⎢
⎢
⎢
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⎧
⎨
⎩
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θ
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I H
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H
H V

H

= −B C I( ( ), 0)V
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Π
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and

=
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⎣
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Therefore,

= − − +q C I θ μ C S I
I

2H V H H
H V

H
1 (12)
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⎜ ⎟= ⎛
⎝

− ⎞
⎠

− − − +
′

−
′

g C I
I

Π
μ

I C I μ μ
I
I

I
I

.V
H

V

V

V
V V H H V

H

H

V

V
2

(13)

Now from the system (11), we can write second and third equation,

= + +

= + +

′

′

C θ μ

C Π μ I

( )

.

H
S I

I H
I
I

V V
I

μ I V H
I
I

H V
H

H
H

H

V V
V
V

≤
′

−q
I
I

μH

H
H1 (14)(15)

4. Sensitivity analysis

The variation in the values of the parameters of our model (1) is a
source of uncertainty and sensitivity. In this section, we carry out a
parameter base global uncertainty and sensitivity analyses on R0. There
are a lot of reasons for the sensitivity of the parameters, for example,
inadequate data, lack of information about the vertical transmission.
We use the Latin-hypercube sampling based method to quantify the

uncertainty and the sensitivity of R0 as a function of the model para-
meters.

We use the Latin-hypercube sampling based method to quantify the
uncertainty and the sensitivity of R0 as a function of 13 model para-
meters, namely μ μ θ θ ξ σ p q r s C τ η, , , , , , , , , , , , .h v I H v hv The Partial Rank
Correlation Coefficient (PRCC) measures the impact of the parameters
on the output variable using the rank transformation of the data to
reduce the effects of nonlinearity. The uncertainty analysis (Figs. 5 and
6) yields an estimated value of R0= 1.54 with 95% CI (1.3491, 1.7669)
for the Zika fever.

The sensitivity analysis suggests that R0 is highly sensitive to the
parameters C θ θ μ τ, , , , .I H vhv The accuracy and precision in the values of
these parameters is vital for the accurate predictions of the model.

The estimated parameters are presented in Table 3.

5. Optimal control for the isolation model (1)

One of the goals of this study is to come up with a time-dependent
hospitalization/isolation strategy that would minimize the infected
population while keeping the costs to a minimum at the same time.

Fig. 5. Uncertainty analysis.
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Optimal control is a very useful mathematical technique that can help
us to address these questions. Here our goal is to put down infection
from the population by increasing the recovered class and to minimize
the required resources to control Zika fever infection using isolation or
hospitalization.

The optimal control algorithm we use is based on Pontrygain's
Maximum Principle which appends the original model to an adjoint
system of differential equations with terminal conditions. The optimal
objective system, which characterizes the optimal controls, consists of
differential equations of the original model (state system) along with
the adjoint differential equations (the adjoint system). The number of
equations in the adjoint system is same as that of in the state system.
The detailed mechanism of forming the necessary conditions for the
adjoint and optimal controls are discussed in Fleming and Rishel (1975)
and Pontryagin and Boltyanskii (1980).

An important decision while formulating an optimal control pro-
blem is deciding how and where to introduce the control in the system
of differential equations. The form of the optimal control primarily
depends on the system being analyzed and the objective function to be
optimized. In this paper, we will propose various strategies to eradicate
Zika fever using optimal control techniques.

5.1. Hospitalization control

The first step is to find an optimal hospitalization schedule that
minimizes the number of infectious individuals and the overall cost of

hospitalization during a fixed time. We define the control set as
U={τ(t) : 0≤ τ(t)≤ ζ, 0≤ t≤ T, 0 < ζ≤ 1, τ(t) is Lebesgue measur-
able}. Here ζ is a positive number and is defined as the maximum value
attained during optimal control procedure. Our aim is to minimize the
associated cost function which is given as:

∫= ⎡
⎣

+ + ⎤
⎦

J τ A I A N Wτ t[ ] 1
2

( ) dt
T

I h N v0
2

(15)

Here AI and AN are positive constants used to balance in the size of I(t)
and N t( )v . Further, we used a nonlinear cost function in order to ac-
commodate the impact of variety of factors associated with hospitali-
zation, documented widely in literature, see for instance Kirschner et al.
(1997). W is weight associated with quadratic cost due to hospitaliza-
tion. Moreover a linear function has been chosen for cost incurred by
infected individuals and the mosquitoes population. Our objective is to
find an optimal control for hospitalization rate τ*(t) such that

=J τ J τ[ *] min [ ]
τ Uϵ

. The Lagrangian of the optimization problem is given

by = +L A I Wτ t( )I h
1
2

2 . The associated “Hamiltonian” is given by

∑= + +
=

H A I Wτ t ϕ k* 1
2

( )I h
i

i i
2

1

8

(16)

where ki represents the right hand side of the ith equation in our ori-
ginal model. W depends on the relative importance of the control
measures in mitigating the spread of the disease as well as the cost
incurred (such as material resources and human effort) during the im-
plementation of control measure per unit time. Pontrayagin's Maximum
Principal converts model (1) and objective function (16) into mini-
mizing the Hamiltonian (17) with respect to τ. Now we prove the fol-
lowing theorem to elicit the effect of optimal control of hospitalization.

Theorem 5.1. There exists a unique optimal control τ*(t) which minimizes J
over U. Also, there exists an adjoint system of ϕi's such that the optimal
treatment control is characterized as

⎜ ⎟= ⎡
⎣⎢

⎛
⎝

− ⎞
⎠

⎤
⎦⎥

τ t ζ
I ϕ ϕ

W
* ( ) min , max 0,

( )h 3 4

(17)

for some positive number ζ. The adjoint system is given as

= + −

= − + + −

= − + − + + + + − −

+ −

= + + − + −

=

( )μ ϕ ϕ

pμ ϕ pμ ϕ ξ μ ϕ ξϕ

A qμ ϕ qμ ϕ θ τ δ μ ϕ τϕ θ ϕ

ϕ ϕ

θ δ μ ϕ θ ϕ ϕ ϕ

μ ϕ

( )

( )

( )

dϕ C I
N h

C I
N

dϕ
h h h

dϕ
I h h I I h I

C S
N

C S
N

dϕ
H H h h

ηC S
N

ηC S
N

dϕ
h

dt 1 2

dt 1 2 2 3

dt 1 2 3 4 5

6 7

dt 4 5 6 7

dt 5

v
h

v
h

v
h

v
h

v
h

v
h

1 hv hv

2

3

hv hv

4 hv hv

5

(18)

The above adjoint system also satisfies the transversality condition,
{ϕi(T)= 0 : i=1, b, …, 8}.

Proof. We can easily verify that the integrand of J is convex with
respect to τ(t). Also, the solutions of our model are bounded above. In
addition, it is verifiable that the model has the Lipschitz property with
respect to the state variables. Using the properties mentioned above
along with corollary 4.1 of Fleming and Rishel (1975), the existence of
an optimal control is established.

Now using the Pontryagin's Maximum Principle, we obtain

= − =

= − =

⋮ ⋮ ⋮
= − =

∂
∂
∂
∂

∂
∂

ϕ T

ϕ T

ϕ T

, ( ) 0

, ( ) 0

, ( ) 0

dϕ H
S

dϕ H
E

dϕ H
I

dt
*

1

dt
*

2

dt
*

8

h

h

v

1

2

8

Table 3
Mean values of the model parameters with their assigned distributions. N and G
represents the normal and gamma distribution respectively.

Parameter Mean, Std.Dev Distribution

μh (0.000042, 9.91365e08) N
μv (0.100011, 0.00100085) N
Chv (0.200012, 0.0100131) G
ξ (0.329517, 0.049668) N
p (0.049971, 0.00997859) N
q (0.050071, 0.0100389) N
r (0.049987, 0.00100176) N
s (0.049992, 0.000993712) N
θI (0.500184, 0.0497701) N
θH (0.010047, 0.0497031) N
τ (0.499627, 0.0498795) N
η (0.249814, 0.0501395) N
σv (0.999899, 0.0100992) N

Fig. 6. Uncertainty analysis.
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evaluated at the optimal control which results in the above stated
adjoint system. The optimality condition is =∂

∂ 0H
τ . Therefore on the set

{T : 0 < τ*(T) < ζ} we obtain

=
−

τ t
I ϕ ϕ

W
* ( )

( )h 3 4

Now, we discuss the numerical solutions of the optimality system
and the corresponding optimal control obtained using ζ=0.5. The
optimal strategy is obtained by solving the optimal system consisting of
both the state system as well as the adjoint system. Since there are
initial conditions present for the state equations, we start solving them
with a guess for τ using the fourth-order forward Runge-Kutta method.
The adjoint equations are then solved using the fourth-order backward
Runge-Kutta method because of the presence of final conditions. Then,
the controls are updated by using a convex combination of the previous
control and the value from the characterization given above. This
process is repeated until we obtain a desired accuracy of convergence
(Fig. 7).

Fig. 8 represents the optimal isolation(hospitalization) strategy to
be employed to minimize the cost and the infected population. Con-
sidering the practical constraints, an upper bound of 0.5 was chosen for
the optimal hospitalization control. The figure shows that initially, the
optimal level remains at the upper bound of 0.5 after which it declines
steadily to 0. This implies that in the early phase of the endemic
breakout, keeping the control at the upper bound would help in

decreasing the number of infected individuals.
Fig. 9 captures the dynamics of the infected population (IH) by

virtue of a comparison between the infected host population under
optimal control and constant control. It can be seen that the decrease in
the number of infected individuals is greater with optimal control as
compared to that with constant control. Furthermore, in contrast with a
constant control, the infected population remains lower when an op-
timal control is applied.

Fig. 10 shows a comparison between the costs associated with op-
timal and different constant control strategies. It is clear that the cost
associated with different control strategies is higher as compared to that
of optimal control. It is important to note that high constant isolation
rate (τ=0.4) incurs almost the same cost as the of optimal control.
However, practically it is highly unlikely to implement these high
constant controls primarily due to the lack of required resources and
facilities. Fig. 11 captures the effect of the change in effective contact
rate over the optimal control strategy. It is clear from the simulation
that an increase in the contact rate may or may not lead to higher rates
of hospitalization.

6. Discussion

In this paper, we have presented a Zika fever epidemic model
comprising of eight compartments consists of vector and human po-
pulation. The dynamics of Zika fever epidemic model have been con-
sidered. Furthermore, using optimal control theory, we proposed con-
trol strategies to eliminate the infection from the population.

A vertical and horizontal transmission model for Zika fever is

Fig. 7. Sensitivity analysis.

Fig. 8. Optimal hospitalization control.

Fig. 9. Comparison of total infected host population under optimal and con-
stant control.

Fig. 10. Comparison of associated costs under optimal and constant control.

M. Imran et al. Virus Research 255 (2018) 95–104

103



constructed in the form of a system of ordinary differential equations.
This model features the study of Zika fever by considering vertical
transmission in both humans as well as vectors. The basic reproductive
number R0 is formulated by using a next-generation matrix. This re-
productive number is simplified in order to better understand the effect
of vertical transmission parameters. It is shown that the disease-free
steady state is globally asymptotically stable when the basic re-
productive number (R0) is less than 1. The model has a unique endemic
equilibrium when the reproduction number R0 exceeds unity. This
equilibrium is shown to be globally asymptotically stable when the
reproduction number R0 exceeds unity under the reduced model. It is
locally asymptotically stable when we consider a full model.

We performed a parameter based global uncertainty and sensitivity
analysis on R0. The uncertainty analysis yields an estimated value of the
basic reproductive number R0= 1.54 with 95% confidence interval
(1.3491, 1.7669). This estimated value of R0 is close to the calculated
value of basic reproductive using real data (Villela et al., 2017). Our
previous model had an estimated basic reproductive number R0= 1.31
with 95% confidence interval (1.23, 1.39) given in Imran et al. (2017).
Our sensitivity analysis on the Zika model parameters showed that the
most influential parameters are the effective contact rates, the recovery
rate of the infected individuals and the birth rate of mosquitoes.

We proposed an optimal controlling strategy to eliminate Zika fever
from the population. We observed that optimal control strategy is most
effective in terms of eliminating infection as it minimizes our cost and
resources at the same time. Moreover, the control measures themselves
may take time to implement, once the outbreak has been realized.
Despite these points, our analysis can help public health authorities to
determine quasi-optimal strategies they might want to adopt, especially
as our work highlights the relative effectiveness of different control
strategies.
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