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Genome-wide detection of cytosine methylations in
plant from Nanopore data using deep learning
Peng Ni1,2, Neng Huang1,2, Fan Nie1,2, Jun Zhang1,2, Zhi Zhang1,2, Bo Wu3, Lu Bai4, Wende Liu4,

Chuan-Le Xiao 5✉, Feng Luo 3✉ & Jianxin Wang 1,2✉

In plants, cytosine DNA methylations (5mCs) can happen in three sequence contexts as CpG,

CHG, and CHH (where H=A, C, or T), which play different roles in the regulation of

biological processes. Although long Nanopore reads are advantageous in the detection of

5mCs comparing to short-read bisulfite sequencing, existing methods can only detect 5mCs

in the CpG context, which limits their application in plants. Here, we develop DeepSignal-

plant, a deep learning tool to detect genome-wide 5mCs of all three contexts in plants from

Nanopore reads. We sequence Arabidopsis thaliana and Oryza sativa using both Nanopore and

bisulfite sequencing. We develop a denoising process for training models, which enables

DeepSignal-plant to achieve high correlations with bisulfite sequencing for 5mC detection in

all three contexts. Furthermore, DeepSignal-plant can profile more 5mC sites, which will help

to provide a more complete understanding of epigenetic mechanisms of different biological

processes.
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As one of the major DNA methylations, cytosine DNA
methylations (5mCs) play important roles in regulating
the biological processes of plants1,2, such as gene

expression regulation3, transposable elements silencing4, fruit
development5, and stress response6,7. In plants, 5mCs can happen
in three sequence contexts as CpG, CHG, and CHH (where
H=A, C, or T). The methylation levels of 5mCs vary widely
among plant species8. For example, there are 24% CpG, 6.7%
CHG, and 1.7% CHH methylated at read level in Arabidopsis
thaliana9,10, while Beta vulgaris has 92.5% CpG, 81.2% CHG, and
18.8% CHH being methylated at read level8. Three types of 5mCs
play different roles in the regulation of biological processes in
plants. For example, CpG methylation usually dominates in gene
bodies11. CHG methylation plays a greater role than CpG
methylation in silencing transposons, and CHH methylation is
crucial for silencing CpG and CHG-depleted transposons12.
Therefore, the detection of genome-wide 5mC methylation in all
three contexts is important in plants.

Bisulfite sequencing is the most widely used method for pro-
filing 5mC methylation13. All three contexts of 5mCs can be
detected by bisulfite sequencing. However, due to short-read
sequencing, bisulfite sequencing cannot profile 5mCs in the
repetitive genome regions. Furthermore, the incomplete conver-
sion and DNA degradation during bisulfite treatment can also
lead to the lack of specificity and the loss of sequencing
diversity14,15. Recently, third-generation sequencing technologies,
such as Pacbio single-molecule real-time (SMRT) sequencing and
Nanopore sequencing, which can directly sequence the DNA
without the conversion or PCR amplification, provide new
opportunities for detecting the base modifications in DNA16,17.
The DNA base modifications can affect the electrical current
signals near modified bases in Nanopore sequencing18 and alter
polymerase kinetics during Pacbio SMRT sequencing17. Thus, the
DNA methylations can be directly detected from native DNA
reads of Nanopore and Pacbio SMRT sequencing without extra
laboratory techniques, which can avoid DNA degradation and
amplification biases. Moreover, the long reads of Nanopore and
Pacbio sequencing make it possible to profile methylation in
repetitive or low complexity regions19.

Many methods have been developed to detect 5mCs using
either Pacbio or Nanopore reads. Due to the weak effect of 5mC
on synthesis kinetics in Pacbio SMRT sequencing, the statistic
method using the early version of Pacbio SMRT data to detect
5mCs exists low signal-to-noise ratio problem17. Recently, Tse
et al. developed a convolutional neural network-based method to
detect genome-wide CpG in humans using the new circular
consensus sequencing (CCS) reads from Pacbio and the results
show a high correlation with bisulfite sequencing20. Methods
using Nanopore reads for DNA 5mC detection can be classified
into three categories. The statistics-based methods, such as
Tombo21, infer DNA methylation by statistically testing current
signals between native DNA reads and methylation-free DNA
reads. Tombo can detect all types of DNA methylation without a
priori knowledge of current signal patterns on specific methyla-
tion types. However, Tombo is not reliable at the single nucleo-
tide level and usually has a high false-positive rate22. The model-
based methods, such as nanopolish23, signalAlign24, DeepMod25,
and DeepSignal26, utilize hidden Markov models or deep neural
networks to predict the status of the specific site as modified or
unmodified, which achieve high accuracies on 5mC detection in a
specific motif, such as CpG or CCWGG (where W= A or T)27.
The basecalling-based methods, such as Megalodon28, directly
call modified bases using an extended alphabet during
basecalling22. Megalodon can detect a variety of methylation
types, including 5mC in all contexts. However, the capability of
Megalodon for CHH and CHG methylation detection is lack of

evaluation. To the best of our knowledge, no current method can
profile genome-wide 5mCs in all three contexts with acceptable
accuracies using third-generation sequencing data.

Here, we develop DeepSignal-plant, a deep learning tool for
accurately detecting 5mCs in all three contexts in plants from
native Nanopore reads. We have performed Nanopore and
bisulfite sequencing of two model plants Arabidopsis thaliana (A.
thaliana) and Oryza sativa (O. sativa) in parallel. Because cyto-
sines with 100% methylation frequency (fully methylated) are
usually much less than cytosines with zero methylation frequency
(fully unmethylated) in plants, especially for CHH, it is difficult to
collect enough positive training samples from Nanopore reads,
which results in an unbalanced training dataset. Therefore, we
develop a sample selection strategy to balance and denoise training
samples, which can significantly improve the performances of the
trained models, especially for CHH and CHG methylation
detection. We train one deep learning model in DeepSignal-plant
to detect 5mC sites in all three CpG, CHG, and CHH sequence
contexts. Testing DeepSignal-plant in A. thaliana and O. sativa
shows a high agreement with bisulfite sequencing. We also test
DeepSignal-plant using Nanopore reads of Brassica nigra (B.
nigra), which also achieves high correlations with bisulfite
sequencing in 5mC detection of all three contexts. Furthermore,
since Nanopore sequencing does not have amplification biases and
has a much longer read length than bisulfite sequencing,
DeepSignal-plant can profile more 5mC sites in plants than
bisulfite sequencing, especially in highly repetitive regions.

Results
Profiling cytosine DNA methylations in A. thaliana and O.
sativa. We have sequenced two model plants A. thaliana and O.
sativa using both bisulfite sequencing and Nanopore sequencing
(Methods). For A. thaliana, we have sequenced three technical
replicates using bisulfite sequencing with ~116×, ~131×, and
~116× mean genome coverage of reads, respectively. For O.
sativa, we have sequenced two biological replicates using bisulfite
sequencing with ~78× and ~126× coverage of reads, respectively.
In the A. thaliana and O. sativa genome, there are 42,859,516 and
162,549,211 cytosines, respectively. For A. thaliana, 98.3% cyto-
sines have at least 5× coverage in bisulfite sequencing (Supple-
mentary Table 1). We have observed that about 24.3% CpG, 8.6%
CHG, and 3.3% CHH in reads are methylated in all three tech-
nical replicates of A. thaliana (Supplementary Fig. 1). For O.
sativa, there are 93.3% and 94.0% cytosines having at least 5×
coverage in bisulfite sequencing of two biological replicates
(Supplementary Table 1), respectively. In the first replicate
(sample1), 52.7% CpG, 27.7% CHG, and 4.5% CHH in reads are
methylated and 46.8% CpG, 20.3% CHG, and 2.9% CHH in reads
are methylated in the other replicate (sample2) (Supplementary
Fig. 2).

We further evaluate the numbers of high confidence fully
unmethylated and methylated cytosines in A. thaliana and O.
sativa, which are used for training our model. The number of
high confidence fully methylated cytosines is much less than
those of high confidence fully unmethylated cytosines in both A.
thaliana and O. sativa, especially in CHG and CHH contexts. The
ratios are <1:50, <1:1,000, <1:22,000 for CpG, CHG, and CHH
sites in A. thaliana, and ~1:2, ~1:15, and ~1:2,000 for CpG, CHG,
and CHH sites in O. sativa, respectively (Supplementary Fig. 3).
The unbalance of high confidence fully unmethylated and
methylated cytosines in quantities, especially in non-CpG
contexts, creates a challenge to select appropriate samples to
train the model for 5mC detection from Nanopore reads.

We generate ~600× Nanopore reads of the same A. thaliana
sample used in bisulfite sequencing. We also generated ~215×
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and ~100× Nanopore reads for the two biological O. sativa
samples which were used in bisulfite sequencing, respectively.

The DeepSignal-plant algorithm and training process.
DeepSignal-plant utilizes a bidirectional recurrent neural
network29 (BRNN) with long short-term memory30 (LSTM) units
to detect DNA 5mC methylation from both signal and sequence
features of Nanopore reads (Fig. 1a). First, the raw signals of the
Nanopore reads are mapped to the nucleotide sequences. Then,
for each targeted 5mC site, DeepSignal-plant constructs four k-
length features, namely the base and the mean, standard devia-
tion, and the number of signal values of each base, of the k-mer
(k= 13 by default) on which the targeted site centers as sequence
features. DeepSignal-plant also extracts m-length (m= 16 by
default) signals of each base in the k-mer as signal features
(Methods). By using BRNN to process both the signal features
and sequence features, the size of the DeepSignal-plant model is
only one-eighth of the size of DeepSignal26 (Supplementary
Table 2).

We select the high confidence methylated and unmethylated
cytosines as training samples based on the bisulfite sequencing
results. We select the cytosines with zero methylation frequencies
and at least five mapped reads as high confidence unmethylated
sites. To include more high-confidence methylated sites, we chose

the cytosines having at least 0.9 methylation frequency and at
least five mapped reads (Supplementary Fig. 3, Supplementary
Table 3). We preprocess the Nanopore raw reads first by
transforming them to a sequence of bases using Guppy and then
mapping raw electrical signal values to contiguous bases in
genome reference using Tombo21 (Methods, Supplementary
Fig. 4a). We randomly select Nanopore subreads that are aligned
to the high confidence 5mC sites for training.

Since the k-mers of the selected methylated and unmethylated
cytosines are different, especially for the CHH motif, we need to
balance k-mers in methylated and unmethylated cytosines to
avoid the model using the k-mer difference to distinguish the
5mC methylation status. Furthermore, for the same k-mers, the
number of reads for the methylated and unmethylated cytosines
are also different. We further balance the numbers of methylated
and unmethylated cytosines to train a model for higher
performance.

We have selected cytosines whose methylation frequencies are
only greater than 0.9, which may introduce false methylated
cytosines in the training reads. Therefore, we develop an iterative
denoising method to remove false methylated samples (Fig. 1b).
In each iteration, we perform a two-fold cross prediction of the
training dataset. We remove methylated samples that are
predicted as unmethylated by DeepSignal-plant. Then, we use
the remaining methylated samples and the unmethylated samples

Fig. 1 DeepSignal-plant for 5mC detection using Nanopore sequencing. a Architecture of DeepSignal-plant. BiLSTM: a sequence processing network that
uses long short-term memory layer to take the input from forward and backward direction to learn order dependence; Full Connection: a fully connected
layer that connects all the inputs from the former layer to every activation unit of the next layer; Softmax: an activation function which normalizes a vector
of real numbers into a vector of probabilities that sum to 1. b Schema of denoise training samples in DeepSignal-plant. c Signal comparison of different kinds
of samples of a k-mer after denoising training. positive_kept: positive samples kept by the denoising step; positive_removed: positive samples removed by
the denoising step; negative: negative samples; n= number of signal values for each base; Boxplots indicate 50th percentile (middle line), 25th and 75th
percentile (box), the smallest value within 1.5 times interquatile range below 25th percentile and largest value within 1.5 times interquatile range above
75th percentile (whiskers), and outliers (dots). d Effectiveness of training samples selection on 5mC detection. The training samples were extracted
from ~500× Nanopore reads of A. thaliana. Pearson correlations were calculated using the results from ~20× Nanopore reads and three bisulfite replicates
of A. thaliana.
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for the next iteration of training. The denoising method will stop
either after 10 iterations, or if there are less than 1% of methylated
samples predicted as unmethylated. Figure 1c shows that the
electrical signals of the bases in the removed samples of a CHH k-
mer by the denoising step are similar to those of the
unmethylated samples, which demonstrates that the denoising
is capable of removing false-positive samples. The denoising can
ensure the reliability of methylated samples.

Evaluation of balancing and denoising methods in DeepSignal-
plant. We first evaluate the denoising method with a simulation
experiment (Supplementary Note 1). We generate training data-
sets with different amounts of mislabeled ratios (i.e., the ratio of
false-positive samples to total positive samples, 0–20%) and then
process them using our denoising method. The results show that
>93% of mislabeled samples are denoised (Supplementary Fig. 5).

We then use bisulfite sequencing as the benchmark and
evaluate DeepSignal-plant by calculating the Pearson correlation
between the per-site methylation frequencies identified by
bisulfite sequencing and Nanopore sequencing. We test the
effectiveness of the balancing and denoising methods. We
randomly select ~500× Nanopore reads of A. thaliana for
training, and randomly select ~20× reads (i.e., ~10× reads for
forward and the complementary strand of the genome,
respectively) from the remaining ~100× coverage of reads for
testing. After the denoising, 19.1% of training samples of CHG
and 29.4% of training samples of CHH were removed. As shown
in Fig. 1d, compared with randomly selecting samples, balancing
and denoising training samples can significantly improve the
performance of 5mC detection, especially for the CHH. After
balancing and denoising training samples, the correlation with
bisulfite sequencing increases from 0.8464 to 0.9122 for the CHG,
from 0.3696 to 0.7840 for the CHH. The results demonstrate that
balancing and denoising can significantly improve CHH and
CHG detection. However, the performance for the CpG is not
improved after denoising training samples. This may be because,
for the CpG, we take the intersection of high confidence
methylated sites from all bisulfite replicates as the final high
confidence methylated sites. Thus, the training dataset of the CpG
is more reliable and can be used to train the model without
denoising.

Evaluation of DeepSignal-plant using Nanopore data of A.
thaliana and O. sativa. Besides training a model for each 5mC
context, we also combine the training samples of all three con-
texts to train one model for whole 5mC detection. The whole
5mC model outperforms the three individual models for CpG,
CHG, and CHH (Supplementary Fig. 6). This result indicates that
the information of the three motifs can improve each others’
methylation prediction. Therefore, we trained the whole 5mC
models in our downstream evaluation and analysis.

We first perform cross-chromosomal validation of DeepSignal-
plant using A. thaliana data. We use the reads from chr1-chr4 for
training and test on the reads from chr5 (Supplementary Fig. 7a).
DeepSignal-plant achieves high Pearson correlations with bisulfite
sequencing on the testing reads (Supplementary Fig. 7b). We then
perform a cross-species validation of DeepSignal-plant. Like the
above experiments, for A. thaliana, we select ~500× and ~20×
Nanopore reads for training and testing, respectively. For O.
sativa, we randomly select ~115× Nanopore reads of the first
biological replicate (sample1) for training, and ~20× reads from
the remaining ~100× reads for testing. We first train models of
DeepSignal-plant using training samples from A. thaliana and O.
sativa Nanopore reads independently and test the models on both
A. thaliana and O. sativa Nanopore reads. Then, we train models

of DeepSignal-plant by combining the training reads of A.
thaliana and O. sativa. As shown in Supplementary Fig. 8, the
models trained using the combined reads achieve the overall best
performances. For CpG and CHG, both the models trained using
reads of individual species and the models trained using the
combined reads achieve high correlations with bisulfite sequen-
cing on tested data of both species. For CHH, the model trained
by using reads of A. thaliana does not perform well on the tested
data of O. sativa. This may be due to the relatively less amount of
high-confidence methylated sites and k-mers of CHH in A.
thaliana than those in O. sativa (Supplementary Tables 3, 4).
Meanwhile, the model trained using reads of O. sativa only
achieves similar performance for CHH as the model trained using
the combined reads. We further randomly select ~20× reads of A.
thaliana and O. sativa five times and apply the models trained
with combined reads to call methylation. We achieve consistent
correlations with bisulfite sequencing (standard deviation <0.003)
for the five repeated tests. Furthermore, the results of the five tests
are also highly correlated with each other (Supplementary Fig. 9),
which shows that the predictions of our models are highly
reproducible.

Comparison of DeepSiganl-plant to other tools for 5mC
detection. We compare DeepSignal-plant with Megalodon28,
which can also detect 5mC in all contexts. For a fair comparison,
we re-train Megalodon using the same dataset for training
DeepSignal-plant. We use ~20× Nanopore reads of A. thaliana,
O. sativa (sample1), and B. nigra31 for the evaluation. As shown
in Fig. 2, DeepSignal-plant outperforms both original and re-
trained Megalodon in 5mC detection in A. thaliana and O. sativa,
especially for CHH. In B. nigra, DeepSignal-plant outperforms
both original and re-trained Megalodon in CpG and CHH
methylation detection. For CHG detection in B. nigra,
DeepSignal-plant has a similar result as the re-trained Megalodon
while both significantly outperform the original Megalodon.

We then evaluate DeepSignal-plant and the re-trained Mega-
lodon for 5mC detection under different coverage of reads of
those three species. DeepSignal-plant outperforms re-trained
Megalodon in CpG and CHH methylation detection at all
coverages while re-trained Megalodon gets comparable perfor-
mances with DeepSignal-plant in CHG methylation detection of
O. sativa and B. nigra (Supplementary Fig. 10). We plot the
frequency distribution predicted by DeepSignal-plant and re-
trained Megalodon using the ~100× Nanopore reads of A.
thaliana and two samples of O. sativa (Supplementary Figs. 11,
12). The plots show that DeepSignal gives a better prediction for
methylated CHH than re-trained Megalodon does. Furthermore,
DeepSignal-plant achieves lower root mean square errors (RMSE)
than re-trained Megalodon does for detecting 5mCs in those
three species, except in detecting CHG methylation of O. sativa
(sample1) (0.0938 vs 0.0934) and B. nigra (0.1355 vs. 0.1354)
(Supplementary Tables 5, 6). We also evaluate DeepSignal-plant
and re-trained Megalodon at read level (Methods, Supplementary
Table 7). The results show that DeepSignal-plant gets higher
sensitivities than those re-trained Megalodon gets for all motifs of
all species. DeepSignal-plant also gets higher accuracies than
those of re-trained Megalodon gets, except for the CpG of B.
nigra (0.9257 vs. 0.9394).

To further assess DeepSignal-plant, we categorize cytosines
into three bins based on their methylation frequencies calculated
from bisulfite sequencing: low frequency (0.0–0.3), intermediate
frequency (0.3–0.7), and high frequency (0.7–1.0) (Methods).
Then, we compare the spread of predictions from DeepSignal-
plant and re-trained Megalodon (Supplementary Figs. 13–15).
Both DeepSignal-plant and re-trained Megalodon have a high
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consistency with bisulfite sequencing for predicting cytosines with
low methylation frequencies in all three contexts. Re-trained
Megalodon tends to underpredict cytosines with high and
intermediate methylation frequencies in CHH contexts, while
the results of DeepSignal-plant are more consistent with those of
bisulfite sequencing.

Nanopore sequencing profiles methylation of more cytosines
than bisulfite sequencing. Previously, we showed that the long
reads of Nanopore sequencing can detect more CpG sites than
bisulfite sequencing does26. Here, we evaluate the 5mCs in all
three contexts. With more than 40× coverage of Nanopore reads,
DeepSignal-plant can detect more 5mCs than bisulfite sequencing
does (Supplementary Fig. 16), which can help profile previously
unmappable regions in the genome (Fig. 3a, b, Supplementary
Fig. 17) and then make more genome regions be fully profiled
(Supplementary Fig. 18). Compared to bisulfite sequencing,
DeepSignal-plant detects 1.1% more 5mCs in A. thaliana and
5.3% more 5mCs in O. sativa with 100× coverage (Supplementary
Table 1, Supplementary Figs. 19–20). Especially, DeepSignal-plant
detects 1.4% more CHGs and 1.5% more CHHs in A. thaliana
and at least 5.1% more CHGs and 5.8% more CHHs in O. sativa.
The k-mers around cytosines detected only by DeepSignal-plant
have a significant overlap with the k-mers used for training
DeepSignal-plant (Supplementary Table 8), which indicates k-
mers around cytosines in repeat regions are similar to those in
mappable regions. While the CpGs detected by DeepSignal-plant
only are either with low or with high methylation frequency, most
of CHHs detected by DeepSignal-plant only are with low
methylation frequency. CHGs detected by DeepSignal-plant only
in A. thaliana tend to have low methylation frequency, while
CHGs detected by DeepSignal-plant only in O. sativa have either
with low or with high methylation frequency (Supplementary
Fig. 21).

It is not surprising that a significant amount of cytosines
profiled by DeepSignal-plant only exists in centromeres, pericen-
tromeric and telomeres areas, which are composed of thousands
of repeats32 (Fig. 3c, d, Supplementary Figs. 22, 23). Furthermore,
many of those newly profiled cytosines are in protein-coding
genes and transposons of A. thaliana and protein-coding genes of
O. sativa. DeepSignal-plant has newly profiled the methylation
status of 341 genes in A. thaliana (Supplementary Data 1) and
227 genes in O. sativa (Supplementary Data 2–4). Moreover,

inside the gene body, those cytosines are dominated in the CDS
region for both A. thaliana and O. sativa (Supplementary Fig. 23).

Differentially methylated cytosines in repeat pairs. Identifica-
tion of the methylation status of cytosines in repetitive genome
regions is important for understanding gene-regulating and
repeat-associated disorders33. Here, we evaluate the methylation
status of cytosines located within segmental duplications in A.
thaliana and O. sativa. We first generate repeat pairs in the
genome of A. thaliana and O. sativa using MUMmer34 (Meth-
ods). We treat two regions that have length >=100 and the
alignment identity >=0.99 as a repeat pair. We count the number
of differentially methylated cytosines in each repeat pair (Meth-
ods). Then, we define a repeat pair as differentially methylated if
there are at least 10% cytosines (or CGs, CHGs, CHHs) that are
differentially methylated between them (Methods). We find that
over ~9 and ~6% repeat pairs in A. thaliana and O. sativa are
differentially methylated, respectively (Fig. 4a, b, Supplementary
Fig. 24a, Supplementary Table 7). Furthermore, we find that the
motifs of differentially methylated cytosines in repeat pairs are
species-specific (Fig. 4c, d, Supplementary Fig. 24b, 25): CpG sites
are more likely differentially methylated in repeat pairs of A.
thaliana, while CHG sites are more likely differentially methy-
lated in O. sativa. Compared to bisulfite sequencing, DeepSigna-
plant identifies more differentially methylated repeat pairs (Sup-
plementary Fig. 26). There are several >1000 long repeat pairs in
A. thaliana and >10,000 long repeat pairs in O. sativa, which are
differentially methylated (Fig. 4f, g, Supplementary Fig. 27, Sup-
plementary Table 9). The differentially methylated repeat pairs in
two replicates of O. sativa show a great consistency, which implies
that the differentially methylated repeat pairs are stable in species
(Fig. 4e, Supplementary Fig. 28). The methylation status of 5mC
in the repetitive genome region may provide insights into the
relationship between duplicate gene transcription and methyla-
tion signatures35. Furthermore, as paralogous sequence variants
can be used to resolve segmental duplications36, the differential
methylation between repeat pairs may be helpful to resolve col-
lapsed regions of segmental duplications in de novo assemblies of
plants.

Discussion
In this study, we propose a deep learning tool, DeepSignal-plant,
to detect DNA 5mCs in plants from native Nanopore reads. With

a b c

Fig. 2 Comparison between DeepSignal-plant and Megalodon against bisulfite sequencing on 5mC detection. a A. thaliana, b O. sativa (sample1), and c
B. nigra. Models of Megalodon (retrain) and DeepSignal-plant were trained using combined reads of A. thaliana and O. sativa. Pearson correlations were
calculated using the results from ~20× Nanopore reads of A. thaliana, O. sativa (sample1), and B. nigra with the corresponding bisulfite replicates,
respectively.
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a denoising training sample method, DeepSignal-plant models are
trained to accurately detect 5mCs in all three contexts. Experi-
ments on Nanopore data of three plants (A. thaliana, O. sativa,
and B. nigra) show that DeepSignal-plant has a high agreement
with bisulfite sequencing for the predictions of CpG, CHG, and
CHH methylation. DeepSignal-plant can detect 5mC sites with
acceptable accuracies even with low coverage of reads. Further-
more, DeepSignal-plant can profile methylation of more cytosines
in plants than bisulfite sequencing does, especially in highly

repetitive genome regions, which will have more advantages for
repetitive plant and polyploidy plant genomes. For example,
DeepSignal-plant can identify the 5mC methylation status of a
cluster of 61 tRNA genes that have not been detected by the
bisulfite sequencing in a previous study37. In another study about
the DNA methylation patterns of the NB-LRR-encoding gene
family in A. thaliana38, three NB-LRR-encoding genes, At1g58807,
At1g59124, At1g59218, whose 5mC methylation status can be
detected by DeepSignal-plant, was not included. We reanalyze the
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bisulfite sequencing data and find that there is no read covering
those three genes. DeepSignal-plant can become a well-applicable
method for 5mC detection in plants, which will provide novel and
deeper insights into the epigenetic mechanisms of plants.

Methods
Plant materials and DNA extraction. Wild type Arabidopsis thaliana (L.) Heynh.
Columbia-0 (Col-0) was used in this study. Seeds were surface sterilized in 4%
sodium hypochlorite, vernalized for 2 days at 4 °C, and grown on half Murashige &
Skoog (MS) plates for 7days at 22 °C, 70% relative humidity with a 16 h/8 h
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light/dark regime. Seven-day-old seedlings were then transplanted into individual
pots with soil and cultivated for one month in the same condition as seedlings on
half MS plates. For O. sativa, we used wild-type Oryza sativa L. ssp. Japonica cv.
Nipponbare. Seeds were soaked in distilled water for 48 h at 37 °C to accelerate
germination. Then, the germinated seeds were sown in soil and cultured for
1 month in a growth chamber at 28 °C, 70% relative humidity with a 14 h/10 h
light/dark regime. As for taking samples of O. sativa, each seedling was divided into
two halves in the vertical direction with scissors, marked with “left group” and
“right group.” For A. thaliana and O. sativa, the harvested material was from at
least 30 individual plants and quickly froze with liquid nitrogen, stored at −80 °C
until further use. Genomic DNA was extracted from samples by QIAGEN®
Genomic DNA extraction kit (Cat#13323) according to the manufacturer’s stan-
dard operating procedure. The extracted DNA was detected by NanoDrop™ One
UV-Vis spectrophotometer (Thermo Fisher Scientific) for DNA purity. Then
Qubit® 3.0 Fluorometer (Invitrogen) was used to quantify DNA accurately.

Bisulfite sequencing. The extracted genomic DNA was first sheared by Covaris
and purified to 200–350 bp in average size. Sheared DNA was then end-repaired
and ligated to methylated sequencing adapters. Finally, adapter-ligated DNA was
bisulfite-converted and PCR-amplified. The bisulfite conversion kit and library
preparation kit for sequencing three technical replicates of A. thaliana and O. sativa
(sample2) were TIANGEN DNA Bisulfite Conversion Kit (cat #: DP215, TIANGEN
BIOTECH) and TruSeq DNA Methylation Kit (cat #: EGMK91324, Illumina),
respectively. For O. sativa (sample1), the bisulfite conversion kit and library pre-
paration kit were EZ DNA Methylation-Gold Kit (Zymo Research) and MGIEasy
Whole Genome Bisulfite Sequencing Library Prep Kit (16 RXN) (BGI), respectively.
The libraries of three technical replicates of A. thaliana were sequenced on a
NovaSeq6000 sequencer (Illumina) to obtain pair-end 150 bp (base pair) reads.
~116×, ~131×, and ~116× mean genome coverage of reads for each replicate were
generated. For O. sativa, two biological replicates were sequenced: the library of one
biological replicate (sample1) was sequenced on an MGI2000 (BGI) sequencer to
obtain pair-end 100 bp reads (~78× coverage of reads); the library of the other
replicate (sample2) was sequenced on a NovaSeq6000 sequencer (~126×). The
sequencing reads were then processed by the standard pipeline of Bismark39

(v0.20.0). For each detected cytosine in CpG, CHG, and CHH motif, Bismark
outputs a methylation call for each of its mapped reads. Then, the methylation
frequency of the cytosine is calculated, which is the number of mapped reads
predicted as methylated divided by the number of total mapped reads.

Nanopore sequencing. The extracted genomic DNA was qualified, size-selected
using the BluePippin system (Sage Science). Then, the genomic DNA was end-
repaired and PCR adapters supplied in the Oxford Nanopore Technologies (ONT)
sequencing kit (SQK-LSK109) were ligated to the end-repaired DNA. Finally,
Qubit® 3.0 Fluorometer (Invitrogen) was used to quantify the size of library
fragments. To generate Nanopore reads, the prepared libraries are loaded into flow
cells (R9.4, FLO-PRO002) of a PromethION sequencer (ONT). Raw Nanopore
reads were then basecalled by Guppy (version 3.6.1+ 249406c), the official base-
caller of ONT, with dna_r9.4.1_450bps_hac_prom.cfg. In total, there were 3,124,608
reads with an average length of 23,751 bp (~600×) for A. thaliana. For O. sativa,
reads for each of the two biological replicates were generated: 3,274,036 reads with
an average length of 25,990 bp (~215×) for sample1 and 1,671,237 reads with an
average length of 23,790 bp (~100×) for sample2, respectively.

Data partition of Nanopore reads of A. thaliana and O. sativa. For A. thaliana,
we randomly selected ~500× Nanopore reads for training. The remaining ~100×
reads were used for evaluation. For O. sativa, ~115× reads of one replicate (sam-
ple1) were randomly selected for training. The remaining ~100× reads, together
with all ~100× Nanopore reads of the other replicate (sample2) were used for
evaluation (Supplementary Table 10).

Genome references and annotations. The genome reference of A. thaliana was
downloaded from NCBI with the version GCF_000001735.4_TAIR10.140. The gene
annotation and centromere location of A. thaliana were downloaded from
Araport1141. The genome reference and gene annotation of O. sativa were down-
loaded from EnsemblPlants with the version IRGSP-1.042 (Assembly
GCA_001433935.1). Locations of centromeres in O. sativa were downloaded from
Rice Annotation Project Database43. Repeat regions of A. thaliana and O. sativa were
downloaded from NCBI Genome Data Viewer with the ‘RepeatMasker’ track in the
corresponding genomes40,44. The tandem repeats and inverted repeats were generated
by Tandem Repeats Finder45 (version 4.09) and Inverted Repeats Finder46 (version
3.05) with corresponding genome references and suggested parameters, respectively.

Select high-confidence sites from bisulfite sequencing. We used bisulfite
sequencing as the gold standard to train DeepSignal-plant models for 5mC
detection from Nanopore reads. From the results of bisulfite sequencing, we took
cytosines covered with at least five reads and had at least 0.9 methylation frequency
as high-confidence methylated sites. Cytosines that had at least five mapped reads
and zero methylation frequency were selected as high-confidence unmethylated
sites. For the CpG motif of A. thaliana, we took the intersection of high-confidence

sites from all three technical replicates as the final high-confidence sites set to train
models. For CHG and CHH motif, we took the sites whose methylation frequencies
are zero in all bisulfite replicates as the final high-confidence unmethylated sites.
The methylation levels of CHG and CHH sites are relatively lower in A. thaliana.
Thus, we took the union of the high confidence methylated sites from three
replicates as the final high-confidence methylated sites of CHG and CHH motif
(Supplementary Table 3). For O. sativa, high-confidence sites from sample1 were
selected in a similar way (Supplementary Table 3).

The framework of DeepSignal-plant. DeepSignal-plant takes the raw reads of
Nanopore sequencing and a reference genome as input. Before using DeepSignal-
plant to call methylation, raw reads must be pre-processed (Fig. 1a) by the fol-
lowing two steps:

1. Basecall. We use Guppy (version 3.6.1+ 249406c) for the basecalling of all
the Nanopore reads.

2. Re-squiggle. We use Tombo21 (version 1.5.1) to map raw signals of reads to
contiguous bases in the genome reference. In Tombo, minimap247 (version
2.17-r941) is used for the alignment between reads and genome reference.
Tombo corrects the insertion and deletion errors in Nanopore reads and re-
annotates raw signals to match the genomic bases.

After pre-processing of raw reads, DeepSignal-plant trains models and calls
methylation (Supplementary Fig. 4a) as the following steps:

1. Extract features. After re-squiggle, raw signals of each read are normalized
by using median shift and median absolute deviation (MAD) scale first26.
Then, for each base in one read, we can get the set of normalized signals
mapped to the base. Therefore, for each targeted site, we can use the k-mer
where the targeted site centers on it and the corresponding normalized
signals to form two groups of feature vectors: (1) Sequence features. For each
base in the k-mer, we calculate the mean, standard deviation, and the
number of its mapped signal values. Thus, we construct a k × 4 matrix as
sequence features, where there are 4 features for each base of the k-mer: the
nucleotide base, the mean, standard deviation, and the number of signal
values of each base, respectively. (2) Signal features. We sample m signals
from all signals of each base to form a k ×m matrix as signal features. For
each base, if the number of signals is less than m, we paddle with zeros. We
set k= 13 and m= 16 as default to extract features of each targeted site.

2. Model architecture. BRNN29 with LSTM units30 is used in the model of
DeepSignal-plant (Fig. 1a, Supplementary Note 2). An BRNN is a neural
network model for sequential data. Each BRNN includes a forward RNN
and a backward RNN to catch both the forward and backward context. An
RNN scans the sequence of data and encodes the sequential information
into a latent representation. In detail, sequence features and signal features,
are each fed into a BRNN layer, followed by a fully connected layer. Then,
the output features are concatenated and fed into another three-layer BRNN
and two fully connected layers. Finally, a softmax activation function is used
to output two probabilities Pm and Pum (Pm+ Pum= 1), which represent the
probabilities of methylated and unmethylated, respectively.

3. Train models. To train a model of DeepSignal-plant, the selected training
samples (by the balancing and denoising method) from Nanopore reads are
split into two datasets for training and validation at a ratio of 99:1. We use
Adam optimizer48 to learn model parameters on the training dataset by
minimizing the loss calculated by cross-entropy (Supplementary Note 3).
The model parameters which get the best performance on the validation
dataset are saved. To prevent overfitting, we use two strategies. First, we use
dropout layers49 in LSTM layers and fully connected layers. Second, we use
early stopping50 during training. The model parameters with the current
best performance on the validation dataset are saved in every epoch. If the
best performance of the current epoch decreases, we stop the training
process. Hyperparameter tuning of DeepSignal-plant is also performed
(Supplementary Note 3). According to the experimental results, the k-mer
length in DeepSignal-plant is set to 13 (Supplementary Fig. 29). The number
of signals used to construct signal features is set to 16 (Supplementary
Fig. 30). The number of BiLSTM layers to process the concatenated
sequence and signal features, the number of hidden units in each BiLSTM
layer, and the initial learning rate for training are set to 3, 256, and 0.001,
respectively (Supplementary Fig. 31, Supplementary Table 11). And models
using both sequence and signal features to call methylation are shown to
have the best performances (Supplementary Fig. 32b).

4. Call methylation and calculate methylation frequency. For a targeted
cytosine site in a read, DeepSignal-plant outputs the methylated probability
Pm and unmethylated probability Pum. If Pm > Pum, the site is called
methylated, otherwise is called unmethylated. Then, by counting the
number of reads where the site is called methylated and the total number of
reads mapped to the site, DeepSignal-plant calculates a methylation
frequency of the site.

DeepSignal-plant is implemented in Python3 and PyTorch (version 1.2.0). The
evaluation of running time and peak memory usage of the DeepSiganl-plant
pipeline is shown in Supplementary Note 4 and Supplementary Table 12.
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Balance training samples of each k-mer. During the training of DeepSignal-plant,
we first extract training samples from all reads aligned to the high-confidence sites.
Then, we randomly subsample at most 20 million (half positive and half negative)
samples as the training dataset for each motif. However, there exist big differences
between the k-mers in the selected high-confidence methylated and unmethylated sites
(Supplementary Table 4), which leads to unbalanced positive and negative samples for
each k-mer in the training dataset. The unbalanced training data can significantly
affect model training, especially for the CHH motif. Therefore, we balance the types of
k-mer in positive and negative samples, as well as the number of reads covered for
each k-mer. The algorithm 1 for Balance_Negative_Samples (Spos, Sneg) is as follows:

Input: a set of positive samples Spos, set of negative samples Sneg
Output: a set of balanced negative samples S′neg

1. Kpos= set of k-mers in Spos, Kneg= set of k-mers in Sneg
2. Kcomm= Kneg.intersection(Kpos), Kdiff= Kneg.difference(Kpos)
3. KNUMpos= number of samples of each k-mer in Spos
4. S′neg=Ø
5. for each k-mer k in Kcomm do
6. k_count= KNUMpos (k)
7. S′neg_k= set of at most k_count samples of k extracted from Sneg randomly
8. S′neg+ = S′neg_k
9. if |Spos |− |S′neg | > 0 then
10. S′neg+ = set of |Spos |− |S′neg | samples of k-mers in Kdiff extracted from

Sneg randomly
11. return S′neg

Denoise training samples. There exist false-positive samples in the training
dataset. We design an algorithm that can iteratively remove false-positive samples
in the training dataset (Fig. 1b). In this denoising algorithm, we balance the
samples using Algorithm 1 after each iteration of the denoising procedure. The
algorithm 2 for Denoise_Samples (S, I, R, E) is as follows:

Input: training samples set S, number of iterations I, number of rounds R,
number of epochs E

Output: denoised training samples set S′

1. Sneg= set of negative samples in S
2. for i in 1: I do
3. initialize score, assign score(s) = [] for each sample s in S
4. for r in 1: R do
5. randomly split S into two equal sets S1 and S2; initialize score_r
6. train a DeepSignal-plant model model1 for E epochs using S1
7. score_r(s) = the methylation probability of s predicted by model1 for

each sample s in S2
8. train a DeepSignal-plant model model2 for E epochs using S2
9. score_r(s) = the methylation probability of s predicted by model2 for

each sample s in S1
10. score(s).append(score_r(s)) for each sample s in S
11. Spos= set of positive samples in S, P_total= |Spos |
12. for each sample s in Spos do
13. if mean(score(s)) < 0.5 then
14. Spos.remove(s)
15. S′neg= Balance_Negative_Samples (Spos, Sneg)
16. S= Spos+ S′neg
17. if |Spos |/P_total >= 0.99 then
18. break
19. S′= S
20. return S′

In the denoising algorithm, we set I= 10, R= 3, E= 3 as default. According to
our experiments, using only signal features in DeepSignal-plant to denoise training
samples got the best performance (Supplementary Fig. 32a).

Evaluation of the proposed pipeline on A. thaliana and O. sativa. We use
bisulfite sequencing as the benchmark to test the trained models of DeepSignal-
plant. To compare with bisulfite sequencing, we use cytosines from both forward
and complementary strands of genomes of A. thaliana and O. sativa. 5 chromo-
somes of A. thaliana and 12 chromosomes of O. sativa are used. (1) Comparison of
the number of cytosines detected by bisulfite and Nanopore sequencing. For com-
parison, we count sites that have at least five mapped reads in both Nanopore
sequencing and bisulfite sequencing, respectively. In bisulfite sequencing of A.
thaliana, we count sites that have at least 5 mapped reads in at least one technical
replicate. (2) Comparison of methylation frequencies. We use Pearson correlation
(r), together with the coefficient of determination (r2), Spearman correlation (ρ),
and root mean square error (RMSE), to compare per-site methylation frequencies
calculated by Nanopore sequencing and the corresponding replicates of bisulfite
sequencing. Cytosines with at least five mapped reads in both bisulfite and
Nanopore sequencing are selected for evaluation. For A. thaliana, we calculate the
average correlations between Nanopore sequencing and three bisulfite replicates.
To calculate methylation frequencies with different coverage of Nanopore reads, we
randomly select reads from all testing reads of A. thaliana and O. sativa. (3)

Comparison of lowly, intermediately, and highly methylated sites. A site is said to be
lowly methylated if it has at least five mapped reads and the methylation frequency
of the site is at most 0.3. A site is highly methylated if it has at least five mapped
reads and the methylation frequency of the site is at least 0.7. The cytosines with
methylation frequencies between 0.3 and 0.7 and at least five mapped reads are
categorized as intermediately methylated sites. For Nanopore sequencing, we
categorized the cytosines based on the methylation frequencies predicted from the
~100× reads selected. For bisulfite sequencing of A. thaliana, we count a site as
lowly, intermediately, or highly methylated if the site is lowly, intermediately, or
highly methylated in all three replicates. (4) Evaluation at read level. To evaluate at
read level, we first select cytosines with one and zero methylation frequency based
on bisulfite sequencing. Then we extract corresponding positive and negative
samples of the selected sites from Nanopore reads. We randomly select 100,000
positive samples and 100,000 negative samples for evaluation. After the sub-
sampling, accuracy, sensitivity, specificity, and area under the curve (AUC) are
calculated using Python3 and scikit-learn (version 0.20.1) package. The sub-
sampling evaluation is repeated five times.

Evaluation of the proposed pipeline on B. nigra. We got ~78× Nanopore reads
and the de novo assembly (Bnigra_NI100.v2.genome.fasta, 491M, 8 chromosomes)
of B. nigra Ni100 from Parkin et al.31. The cytosine methylation profile from
bisulfite sequencing was also provided by Parkin et al., which was generated by
BSMAP51 (v2.9) from ~20× bisulfite sequencing reads. Cytosines from both the
forward and complementary strands of eight chromosomes of B. nigra were
included for evaluation. According to bisulfite sequencing, there are 70.2% CpG,
27.9% CHG, and 8.3% CHH methylation at read level in B. nigra. To compare
methylation frequencies with bisulfite sequencing, cytosines that have at least 5
mapped reads in Nanopore sequencing were selected. Since the coverage of bisulfite
sequencing is insufficient, we selected cytosines with at least 10 mapped reads in
bisulfite sequencing for evaluation.

Retrain megalodon. Two model configuration files of Megalodon28,
res_dna_r941_prom_modbases_5mC_CpG_v001.cfg and
res_dna_r941_min_modbases-all-context_v001.cfg, (version 2.2.3), were used to detect
5mCs in CpG and non-CpG contexts, respectively. To train a new model of Mega-
lodon, an initial model is needed. Using the configuration file
res_dna_r941_min_modbases-all-context_v001.cfg as the initial model, we trained a
new 5mC model of Megalodon by training 2 rounds with the selected Nanopore reads
of A. thaliana and O. sativa, respectively. A detailed description of training models of
Megalodon is shown in Supplementary Note 5 and Supplementary Fig. 4b.

Identify repeat pairs. To identify repeat pairs (i.e., two same/similar sequences in
genome reference), we first used MUMmer34 (version 4.0.0beta2) to align the
genome reference to itself. Then, from the results of MUMmer, we used in-house
Python scripts to select two regions of which length >100 and identity score >0.99
as repeat pairs. Finally, we kept repeat pairs that contain at least one cytosine for
analysis. Suppose the methylation frequencies of a cytosine in the same relative
position of the repeat pair are rmet1 and rmet2, the cytosine is said to be differ-
entially methylated if |rmet1−rmet2 | >= 0.5. A repeat pair is said to be differen-
tially methylated if there are at least 10% cytosines (or CpG sites, CHG sites, CHH
sites independently) that are differentially methylated in the repeat pair.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and
its Supplementary Information files. A reporting summary for this article is available as
a Supplementary Information file. All sequencing data generated in this study (bisulfite
sequencing and Nanopore sequencing data of A. thaliana and O. sativa) have been
deposited in the National Center for Biotechnology Information (NCBI) under
BioProjectID PRJNA764549 and Sequence Read Archive (SRA) accession No.
SRP337810, as well as in the Genome Sequence Archive of BIG Data Center, Beijing
Institute of Genomics (BIG, http://gsa.big.ac.cn), Chinese Academy of Sciences, with
Project accession No. PRJCA004326 and GSA accession No. CRA003885. Nanopore and
bisulfite sequencing data of B. nigra31 are available at NCBI BioProject ID PRJNA516907.
The gene annotation of A. thaliana41 is available at TAIR [https://www.arabidopsis.org/
index.jsp]. The gene annotation of O. sativa42,43 is available at EnsemblPlants [https://
plants.ensembl.org/Oryza_sativa/Info/Index] and RAP-DB [https://rapdb.dna.affrc.go.jp/
index.html]. Genes that cannot be covered by bisulfite sequencing, but can be covered by
Nanopore sequencing in A. thaliana and O. sativa are provided in Supplementary
Data 1–4. Source data are provided with this paper.

Code availability
DeepSignal-plant and a detailed tutorial are publicly available at GitHub [https://
github.com/PengNi/deepsignal-plant] and Zenodo52. Code for reproducing results and
analysis was documented at GitHub [https://github.com/PengNi/plant_5mC_analysis].
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