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Abstract

Mechanical transduction by ion channels occurs in all cells. The physiological functions of these 

channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these 

channels serve the common sensory services such as hearing and touch, provide the central 

nervous system with information on the force and position of muscles and joints, and they provide 

the autonomic system with information about the filling of hollow organs such as blood vessels. 

However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most 

of these channels are cation selective and are activated by bilayer tension. There are also K+ 

selective MSCs found commonly in neurons where they may be responsible for both general 

anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce 

excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open 

under pathologic stress. The channels are normally inactive because they are shielded from stress 

by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide 

GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many 

pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a 

long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce 

cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, 

etc. The channels seem to function primarily as “fire alarms”, providing feedback to the 

cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The 

eukaryotic forms of MSCs have only been cloned in recent years and few people have experience 

working with them. “Newbies” need to become aware of the technology, potential artifacts, and 

the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual 

stimulus, the force applied to the channel, is not known. We don’t have direct access to the 

channels themselves but only to larger regions of the membrane as seen in patches. Cortical forces 

are shared by the bilayer, the cytoskeleton and the extracellular matrix. How much of an applied 

stimulus reaches the channel is unknown. Furthermore, many of these channels exist in spatial 

domains where the forces within a domain are different from forces outside the domain, although 
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we often hope they are proportional. This review is intended to be a guide for new investigators 

who want to study mechanosensitive ion channels.
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A WIMPY BACKGROUND

We are all familiar with many forms of mechanical transduction[1] including hearing[2], 

touch[3] and mechanical pain[4–7] that feed the central nervous system. In addition, there are 

the unconscious motor pathways bearing information about muscle stress and joint 

position[8,9]. Afferents in the autonomic nervous system service blood pressure 

regulation[8,10–12] and the distension of hollow organs[13,14]. While these reminders may be 

familiar to the readers of this journal, what may be less familiar is that all cells in our body, 

including red cells[15,16], are mechanically sensitive[17]. This cell sensitivity probably 

reflects our evolutionary origins[18]. Single cell prokaryotes like Paramecia have 

differentiated touch senses; if they bump into walls they back up, and if you bite their tails 

they run away[19–24]. We have the same heritage, but what are these sensors?

Mechanical sensitivity requires that forces do work on the sensor. This means that the 

sensors must be deformable, but that only narrows the field to all molecules since they can 

bend and stretch; it’s a quantitative issue. Computational biology of molecular dynamics 

shows molecules moving under thermal and externally applied forces. How does one design 

a mechanical sensor? It’s a matter of numbers. Sensors have a big output energy compared 

to the input energy. I will define mechanical sensors as those molecules or organelles in 

which the output energy, whatever that may be, is significantly larger than the input energy. 

Ion channels can do this because they are enzymes that dissipate lots of stored energy by 

catalyzing ion transport and their output energy is a function of the turnover number which 

can be 107.

All sensors have a background noise due to the random shaking of molecules (thermal 

fluctuations). In this review I will focus on ion channels as sensors (since that is my 

background), but all structural molecules can be viewed as mechanical sensors since they are 

compliant to applied force. The channels serve to couple mechanical stress to 

electrophysiology and biochemistry, typically by changes in calcium levels. This coupling of 

biochemistry to mechanics is familiar in muscle contraction, mechanically induced changes 

in gene expression, stem cell differentiation and changes in cell shape. We conjecture that all 

pathologies involve mechanics since they all involve a change in cell shape and that requires 

changes in force.

I will define mechanosensitive channels (MSCs), mechanically sensitive ion channels, as 

those channels whose dynamic range is fully accessible with physiologically relevant 

forces[25–37]. Many other ion channels, such as the voltage gated ion channels[38,39], are 

modulated by mechanical stress, but cannot span their dynamic range with mechanics alone. 
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Many enzymes are also mechanically sensitive[40]. There are two basic types of MSCs: 

those gated by stress in attached structural proteins, and those gated by tension in the bilayer. 

MSCs in the differentiated sensory organs seem to be gated by forces in structural 

proteins[30,41–45] where the channel is in series with the extracellular matrix and the 

cytoskeleton (Figure 1). The other class of MSCs is gated by tension in the lipid bilayer 

(Figure 2)[24,42,46–50].

There is currently one drug known specific for MSCs of any kind, a peptide called GsMtx4 

that is active on cation selective, bilayer-activated, MSCs[15,25,51–58]. Recently there has 

been a report of an organic molecule that tends to activate some of these channels[16].

This review is not intended to serve as a guide to the literature of MSCs, but addresses core 

issues that are required to understand how they work. For access to the general literature, 

there may be more review articles than research papers[18,24,42,46,47,59–63]! My primary goal 

is to familiarize newcomers to the field about what we have learned and to warn readers 

about some misleading dogmas to sensitize readers to critical interpretations of research 

papers. Many of the references in this paper come from the work in my lab, but that is not to 

say that they are the most important available, merely that I remember them better.

DEFINITION OF THE STIMULUS IN SIMPLE SYSTEMS

Lipid patch

One of the critical limitations of work on MSCs is that the stimulus tends to be imprecise. 

We can pull, indent, swell or shrink a cell, but what does the channel feel? We don’t know, 

although but we can guess from the channel behavior. Even in plain lipid bilayer in a 

patch[46,47,61,64–66], we don’t know the stresses with precision. Let’s look at what might be 

considered the simplest of experimental systems: a patch of a liposome (Figure 3). Patches 

stick to the glass pipette. This adhesion produces a tension in the membrane that is a 

significant fraction of the lytic tension. This means that no one has ever recorded patch 

currents of any kind except under extreme, nonphysiological, tension (there is one exception 

to this statement; we were able to measure MSC kinetics under low stress for short periods 

of time[67]). Patch tension is far in excess of anything seen in resting cells[31,33,68–70]. We 

know that tension can modulate many ion channels[38,39,67,71], probably transporters[72] and 

other membrane bound enzymes. When you read a paper about patch clamp recording, 

remember that all data was obtained under extreme membrane tension[59] and the patch data 

may not apply to the same channels in situ.

Returning to our ideal lipid patch, without pressure applied to the pipette the patch is pulled 

flat by adhesion to the glass. When we apply pressure, the patch bends, and the average 

tension in the membrane can be calculated from Laplace’s law that states that the tension 

T=Pr/2 where P is the pressure across the membrane and r is the radius of curvature of the 

patch (not the radius of the pipette)[50,73–77]. From an image of a patch we should be able to 

calculate the membrane tension, and thus the stimulus that drives an embedded channel. Not 

so fast… notice that only the outer monolayer of the bilayer touches the glass. The inner 

monolayer is floating any on the outer one[78–81], and as a tension gradients at 

equilibrium[82,83].
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Thus, even our simplest system has a gradient of tension normal to the membrane. You will 

notice that the papers on molecular dynamics simulations of MSCs apply a uniform tension 

across the bilayer in incorrectly compare those results to patch clamp data. While the mean 

tension in a membrane is related to the pressure across it by Laplace’s law, models of 

membrane patches ignore the high membrane curvature where the patch contacts the glass 

(Figure 3) at the upper end of a seal[44,68,84,85].

Planar bilayer

We might imagine that an even simpler experiment that gets rid of the glass, a planar bilayer 

where the membrane is floating in space[66,86–90]. However, these bilayer lipids are attached 

to a support structure such as a hole in a Teflon partition. Lipids wet the support, and this 

adherence creates significant tension (approximately 5 mN/m) in the bilayer (the bulk lipid 

lining the hole in the support is known as the Plateau-Gibbs border[91,92], Figure 4). No one 

has made a measurement of channel activity in an unstressed planar bilayer[66,93], and for 

MSCs, this is a serious bias. The bilayer experiments of Coste et al[66] on the PIEZO 

channels suffer from this bias. If one is working with channels that inactivate, the resting 

tension in membranes, either in planar bilayers or patches, can put channels in an inactivated 

state making them invisible to a patch recording, and making a reconstitution experiment 

appear to have failed[18,43,48,94,95].

New method

There is one method, not currently in use, that might solve some of these problems. If the 

channels are reconstituted into large lipid vesicles (approximately 10 μm in diameter), and 

the vesicles are patched in “whole-cell-mode” then most of the membrane is not in contact 

with glass. By controlling the pressure in the vesicle which is large enough to measure 

accurately the radius of curvature, Laplace’s law will provide reliable estimates of the mean 

tension and there won’t be significant tension gradients.

STIMULATING CELLS

While lipid membranes are simple model systems, they are not cells. Cells are not 

homogenous solutions of macro molecules, but heterogeneous, anisotropic, viscoelastic/

plastic structures made of multiple proteins and lipids with an extracellular matrix[43] that 

can carry stress between the exterior and the interior of the cells. But let’s ignore these 

details for a moment and think of how we to experiment on cells.

Direct mechanical stimulation

The simplest stimulus is to poke a cell, usually with a fire polished pipette[93]. What does 

that do to MSCs? Imagine pressing a chopstick against a clump of Jello representing the cell 

interior. There is an indentation (more formally called a displacement) at the site of 

stimulation, but the amount of displacement decreases with distance from the site of 

stimulation. The stimulation is not uniform even at this macro level. This variation of stress/

strain with distance occurs whether one stresses the cell with a pipette, a magnetic bead[96], 

a bead in a laser trap, an atomic force cantilever[97,98] or local perfusion[99]. It’s just a 

property of a deformable material[100]. When you record mechanically-induced currents 
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from a cell, the response is represents a mean value from a distributed stress, and it 

decreases nonlinearly with distance but covers larger and larger areas[100]. The best you can 

hope for is that the response is proportional to the stimulus, and hopefully monotonic. 

Further complicating those assumptions is the fact that the cell is viscoelastic and plastic - 

local stresses change with time even with a constant stimulus. Modelling of channels in situ 
usually assume the channels are uniformly distributed, but this is a bad assumption since, in 

general, they aren’t (Figure 5). Remember to remain humble when interpreting your data 

since you really don’t know the details of the stimulus.

In case I haven’t yet scared you away from the field, let’s look more closely at real cells. We 

will stick with whole-cell recordings where the local effect of the pipette glass is not 

significant. The key problem is determining what the channel feels. The ability to 

reconstitute bacterial MSCs in lipids shows the channels respond to tension in the bilayer 

and don’t interact with a cytoskeleton, and that seems to apply to PIEZO MSCs as well[43]. 

What is the actual tension in the bilayer when MSCs are activated in cells? No one has 

measured it. The bilayer is supported by the cytoskeleton that shields the bilayer from excess 

stress (known as “mechanoprotection”[36,101–103]). One experiment dealt with the 

distribution of stresses between the cytoskeleton and the bilayer in patches of an human 

embryonic kidney (HEK) cell, it there it was about 50:50. The cytoskeleton can thus alter the 

stress in the bilayer. Defects in the cytoskeleton can lead to diseases like muscular 

dystrophy[104–112].

Laser trap measurements of bilayer tension in resting cells suggests that it is 

negligible[69,70,113–115]. That fits our common observation that MSCs are not active in 

resting cells (Figure 6)[53]. Why do cells make MSCs if they can’t be activated at normal 

stresses? Cortical stress is shared between the cytoskeleton and the bilayer, so bilayer stress 

reacts to cytoskeletal stress and vice versa, and these stresses are time dependent. The 

effective viscosity that makes responses time dependent arises from viscosity of the lipids 

and the dynamics of bonds in the cytoplasm[76,94,111,114,116–119]. The existence of 

connections between the bilayer and the cytoskeleton mean that any drugs that affect the 

cytoskeleton are likely to affect MSC activity, although drugs rarely are tested for these 

effects.

Adding to the complexity of defining the stimulus, lipids will flow under stress, and 

membrane lipids are not even homogeneous[46,76,116,120]. Spatial domains do exist[120–122] 

and physics tells us that the stress outside a domain is different from the stress inside a 

domain[73–75,123]. The energy gradient of stress at the edge of a domain is known as line 

tension. That affects the force inside the domain relative to that outside[75]. While we don’t 

know in detail the stimulus at an MSC, we are safe in assuming the stress is greater than 

zero and less than the lytic limit of the bilayer.

If the transmembrane domains of a channel are thicker or thinner than the surrounding 

bilayer, the bilayer will bend at the boundary and those stresses are likely to modify MSC 

activity[124]. This is termed a hydrophobic mismatch, but the local curvature does not extend 

more than a few lipids from the channel[90,125–127]. However, amphipaths can dissolve in the 

membrane[128–131] and interact locally with the channel modifying the local stress and 
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affecting channel gating. For example, the general anesthetics at clinically relevant 

concentrations cause opening of two-pore domain K+ selective TREK-1 channels[132]. 

Opening these channels hyperpolarizes neurons possibly accounting for general anesthesia. 

The presence of these channels may explain why people can be knocked out by a blow to the 

head.

Osmotic stimulation

Suppose instead of these local mechanical stimuli we try for a more uniform stimulus like 

hypotonic stress? Cells swell with hypotonicity and we have been taught that swelling will 

stretch the membrane. If cells were spherical objects with a fluid cortex like red cells, that 

could work, but nucleated cells are filled with cross linked gels and the gels are what store 

most of the osmotic stress[133]. Consider the basic mechanics. Cells are not spherical so 

there are forces normal to the membrane. Secondly, with a given pressure across the 

membrane, the tension will depend upon the local radius of curvature (according to 

Laplace’s law), and cells do not have uniform curvature. But a more serious problem is that 

nucleated cells have a cytoskeleton that acts like a sponge, a three dimensional object that 

fills the cell volume. The mechanics of three dimensional objects are different[134] from 

those of two dimensional objects like membranes[98].

We found that osmotic swelling doesn’t make the membrane tense unless the cytoskeleton is 

disrupted[98], contrary to my intuition and years of textbook dogma. In fact, swelling tends 

to make cells softer[98]! How can that be? It turns out that everyone has done the experiment. 

When we pick up a dry kitchen sponge it is stiff. If we put it in the sink, it swells and soaks 

up water and it becomes softer. What is magic about a sponge? Nothing. It is just a set of 

cross-linked wettable polymers just like the cytoskeleton[26,135,136], and cells presumably 

can move water the same way without the need to move solutes. The cell membrane still 

remains the rate limiting step for water movement, but most of the energy from an osmotic 

gradient is in the cytoplasm and not in the membrane[133].

We visualized the distribution of osmotic stress in the cytoplasm using genetically coded 

optical stress sensors placed in structural proteins[26,27,29,30,119,137–139]. This three 

dimensional cross linked structure allows cells to withstand huge osmotic pressures[69]. (Ask 

yourself why sponges don’t lyse.) Many cells, like bovine endothelial cells (BAECs), can 

withstand distilled water for hours and remain viable. The predicted osmotic (hydrostatic) 

pressure due to exposure of cells to distilled water is about 7 Atm, twice the pressure in a car 

tire. The cell’s stability under this huge gradient arises because the cell interior is glued 

together like a sponge. In the case of BAECs, this bonding allows the cells to face severe 

viscous drag in arteries where blood flow tries to rip apical cortex from the basal 

cortex[27,140,141]. Osmotic stress does not stress the cell membrane very much, and despite 

many citations in the literature, osmotic stress should not be considered a “mechanical 

stimulus” of the cell membrane. Do not accept the results of papers that claim it is. Instead, 

treat those papers literally as dealing with the effects of osmotic stress.

There are a vast number of papers on cell volume regulation[55,98,142–147] invoking various 

ion channels such as the BK channels[148] and other K+ channels[149], chloride 

channels[147,150–152] as well as neutral transporters[143,153,154] and water 
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transporters[155–157] as well as the cytoskeleton[26–29,98,139,158] and host of calcium and 

other intracellular messengers[15,159–161]. Given the vast scale of modulators and potential 

effectors, it is unwise to think of cell volume as a specific stimulus.

Patch clamp stimulation

We all know about patch clamp recording and the revolution it created in our understanding 

of ion channels[162,163]. But what is a patch? The dogma says it is a bilayer containing 

channels[163] that spans the pipette. However, unless you are working with lipid vesicles, 

that is incorrect; patches are pieces of the cell cortex. Microscopy of patches (light 

microscopy[44,164] and electron microscopy[1,165–168]) show that patches are samples of the 

cell cortex, including the cytoskeleton (Figure 7) [1,165].

Whenever you make a patch, cell-attached or excised, the bilayer that contains your channels 

shares its stress with the cytoskeleton. How much does the bilayer feel in this composite 

structure? In the only published paper on the matter[169], we compared the amount of 

mechanical stress required to break a patch (pipette suction) with the voltage required to 

break the patch (typical of patch clamp “zap” voltages). The mechanical stress measured the 

lytic stress of the entire cortex. Voltage measured only the stress of the bilayer since that is 

where the voltage drop occurs. We measured the voltage required to lyse a patch as a 

function of the mechanical stress; the more mechanical stress, the less voltage. Since voltage 

only exerts force on the bilayer, we could separate the bilayer stress from the mean stress. It 

turns out that the bilayer lyses with a constant energy density, whether it comes from 

mechanics or voltage. For our particular cells, HEK-293, about half of the applied stress was 

in the bilayer and the rest in the cytoskeleton, but that result is from patches and we do not 

know how that applies to resting cells.

Regardless of the degree of stress sharing, no one has ever measured channel currents in a 

patch that emulates the tension characteristic of a resting cell[50,76]. The magnitude of the 

resting stress in a patch was emphasized to us when we tried to use used Triton-X100 to lyse 

patches. It doesn’t work. The patches are stable. The reason is that detergents work by 

forming micelles. If you want to form a micelle in a patch under tension, you need to 

increase the membrane area since a plane plus a sphere has more area than the plane. The 

energy required to change the area of a membrane under tension T is ΔG = TΔA where ΔA 
is the change in area (Hooke’s law in two dimensions). The energy available to the detergent 

is insufficient to form a micelle, but the same detergent works well in the resting cell the 

patch because its membrane is not under tension.

Is the cytoskeleton of a patch the same as that in a cell? We don’t know, but we do know that 

the chemical composition of a patch is different from that of the cell it was taken from[44]. 

We labelled different components of cell membranes and then patched them. We found that 

some elements made it to the pipette-spanning dome, and some didn’t, notoriously the 

extracellular matrix[44]. That never even made it into the seal region. Some ion channels 

made it, and some didn’t. You need to think of the pipette as a silica column. Biochemists 

know proteins stick to silica, so after dragging a membrane up a pipette, some things will 

stick to the glass and get filtered out, and some will make it to the dome.
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The heterogeneity of the patch emulates the heterogeneity of the cell membrane and we 

know that the cell membrane is not homogenous (Figure 8). Even pure bilayers may not be 

homogeneous. Like ice and water, there are phase separations[170]. The amount of each 

phase (the fraction of total membrane area) is modulated by internal and external conditions. 

Cell membranes are much more complicated. If you look at a time lapse movie of cells, you 

will be impressed by the motion of the cell surface. Imagine your patch pipette coming down 

on one of these cells and then try to figure out which piece of membrane you patched. The 

answer, of course, is that you have no idea. Furthermore, given the data showing changes in 

patch composition with patch formation[44], and visible domains in a patch, you are in fact 

recording from a new mixture of cellular components. We suspect that patches might contain 

membrane from the endoplasmic reticulum and other organelles as well as the 

plasmalemma. Someone needs to check on that. We think that patch clamp recordings are as 

reproducible as they are because the formation of the patch helps to homogenize the 

components. In any case, be cautious about assuming that the properties of currents you get 

from a patch are the same as you would observe in situ.

WHAT CHANNEL ARE YOU RECORDING FROM?

We know that most if not all types of cells have endogenous cationic 

MSCs[15,17,51,55,128,171–174]. You may not see them frequently as they are normally closed 

because bilayer stress is shielded by the cytoskeleton (“mechanoprotection”)[71,93]. You 

must know your background channel activity if you want to examine cells containing 

transfected channels. Treating the cells with cytochalasin or latrunculin to break up the 

cytoskeleton will reduce mechanoprotection and make background channels more 

visible[171]. Cell lines vary from lab to lab. According to the literature Coste et al[93] used 

N2A cells to clone PIEZO1, but Lee et al[71] used the same cell line and found no 

background PIEZO1 and 2 activity. Why? I expect that the cytoskeleton changes with 

passage number and with different batches of serum.

Because of the nearly universal presence of background channels, seeing a cationic MSC 

current after transfection does not mean you are seeing the channel coded by the DNA you 

used to transfect the cells. Furthermore, the expression of an MSC (or probably many other 

proteins) can cause massive structural changes in the cytoskeleton, even if the channel is 

non-conducting[175]. Thus, the process of transfection alone (not the effect of the 

transfection reagents, per se) can modify the forces that reach the channels.

We can now study cytoskeletal protein stress using genetically coded stress 

sensors[3,25,26,28–30,119,137–139,176]. The same issues apply to siRNA since suppression of 

one protein can affect others. For example, we showed that cytochalasin or colchicine affects 

the stress in actinin, spectrin and filamin and likely other structural proteins that are not 

judged to be the drug targets. When we modify any protein in a cell, we modify the stresses 

in the elements that are coupled to that protein.

Transfection can be a dangerous game. You can easily show modified RNA expression, we 

know that RNA expression is not cleanly related to the presence of functional channels. We 

cloned the human form of PIEZO1 and 2 from HEK cells[53], a human cell line of neural 
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origin that usually exhibits little background MSC activity (Figure 6). The N2A cells that 

Coste et al[66] initially used to isolate PIEZO1, had no background MSC activity in other 

samples of the same cell line[71]. So how do we know what channels produced the currents 

we are looking at?

The best test would be to create a mutant channel with similar gating functions but with 

visibly different ionic selectivity than the endogenous channels. You cannot depend upon 

channel conductance alone[57] as a sound marker of expressed channels since it is easy to 

find situations in which the environment: cell-attached patch, inside-out or outside-out patch, 

or whole-cell, or planar bilayer have different conductances[66,177]. You would want a 

channel with big differences in selectivity, ideally a change from cation to anion selectivity!

You also cannot trust the channel kinetics as a marker since the kinetics of the channels 

depend upon their environment[177,178] and you have little control of that. Furthermore, you 

do not know if the channel you are trying to express might have a subunit that associates 

with an endogenous channel subunit or accessory protein, or induces the expression of 

previously unexpressed endogenous protein. It is well known that mechanical stress alters 

gene expression[179–182]. We know that expression of two different MSCs can create 

currents that do not belong to expression of either one alone[71]. There are no clean solutions 

in cells. We arbitrarily tend to look more closely at transfections that produce currents much 

larger than the background channels. We also don’t know that we are looking at homomers 

of the transfected proteins, but we often make the simplifying assumption they are (this also 

aids in grant funding). Expression of green fluorescent protein labelled channels on the cell 

surface[43,48] or in patch membranes[44] does not mean that the fluorescent object is a 

functional channel, simply that the protein is present. We have tested the mechanical 

sensitivity of labelled transient receptor potential-canonical channels in patches and found 

they are present but are not mechanically sensitive[183].

WHY BOTHER WITH MSCS?

Cationic MSCs are normally protected from cell stress, so what do they do for a living? 

They do not seem to participate in behavior of normal hearts[184], but they do in stretched 

hearts where they seem to play a role in generating arrhythmias like atrial fibrillation[184]. 

They also play a role in muscular dystrophy where the channels produce a Ca2+ leak when 

the muscle is stretched[110,185]. We have come to believe that the typical cationic MSCs, like 

PIEZO1, serve primarily as sensors for potential bilayer failure. They would inform the 

cytoskeleton that the local bilayer is under excessive stress and likely to break, and the ion 

fluxes through the channel are signaling for mechanical reinforcement. The channels are 

functioning a bit like fire alarms whose function you unaware of until disaster looms. If the 

channels are closed in the resting cell you will not see the effect of inhibitory drugs like 

GsMtx4 on the currents (Figure 9). But if the same drug is active on open MSCs, you will 

see an effect, but to open the channels may require pathologic stress. Since channels like 

PIEZO inactivate, the information about the excess stress is transitory.

PIEZO1 mutations can cause anemias[43], and we have wondered why are these channels 

that inactivate quickly (< 30 ms) are present in red cells[186]. When does a red cell need such 
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a short lived channel? We guess that the only time red cell stress becomes “pathological” is 

upon entry and exit from a capillary or perhaps a bifurcation. It might modify ion and water 

concentrations to reduce stress on the membrane as it is highly deformed upon entering the 

capillary. The same channels may be involved in sickle cell anemia where hemoglobin 

crystals push out on the membrane activating PIEZO1[15].

The universal presence of MSCs fits the common demand of all cells to avoid lysis and that 

occurs in disease. GsMtx4[187] and other agents that might act specifically on MSCs promise 

to be a new class of therapeutic agent with ideal selectivity they would only affect sick cells. 

We have found that GsMtx4 can be administered to mice daily for a month with no effect on 

behavior, and it can be injected into the CNS with no effect on behavior, but it does work to 

inhibit volume stimulated arrhythmias[188] and the phenotype of muscular dystrophy[109].

There is evidence that PIEZO2 channels may serve a sensory role in nociception[4]. Since 

PIEZO was only cloned a few years ago, we have a lot more work to do. A nagging problem 

is why is PIEZO so big[189] - it is the largest transmembrane protein (approximately 2500 

amino acids) and even tends to form tetramers with a MW of about 106 with the N and C 

termini about 20–30 nm apart[190] making us suspicious that PIEZOs have other functions; a 

large size is not necessary for MSC function[43,67]. There are many kinds of MSCs[191–194], 

nearly a dozen in bacteria alone, so we have lots of interesting problems to keep us busy.

CONCLUSION

This review has two goals, nominally for investigators new to the field of 

mechanotransduction: (1) Be humble about your data because you generally don’t know 

your stimulus, and be explicit about your assumptions so people can read your paper 

properly. Quantitative models of the data have the intrinsic appeal of making the 

assumptions explicit; and (2) Create new preparations that can answer some of the pressing 

host of new questions.
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Core tip

Mechanosensitive ion channels are found in all cells and their physiological function in 

most cells has yet to be defined inviting new researchers to the field This review provides 

some guidelines to help newcomers understand key issues and potential artifacts.
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Figure 1. A mechanosensitive channel from a differentiated sensory organ where stress is passed 
through the channel from the extracellular matrix to the cytoskeleton
MSC: Mechanosensitive channel; ECM: Extracellular matrix.
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Figure 2. A mechanosensitive channel activated by tension (force) in the bilayer
MSC: Mechanosensitive channel.
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Figure 3. Cartoon of a patch pipette holding a lipid membrane at rest (pulled tight by adhesion 
to the glass) and under suction
Notice that suction peels the membrane off the glass a bit and functional channels.
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Figure 4. The planar bilayer is under tension, approximately 6 mN/m due to adhesion of the bulk 
lipid to the septum support
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Figure 5. Structured illumination image of an human embryonic kidney cell cotransfected with 
human PIEZO1 channels labelled green and TREK-1 channels labelled red using green 
fluorescent protein mutants
Notice that the channels are in different structural domains and thus feel different forces. 

Notice also that TREK-1 tends to follow underlying cytoskeletal fibers. (Courtesy Gottlieb 

P).
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Figure 6. A whole-cell current recording (lower trace) from an human embryonic kidney cell in 
response to indentation of a few μm with a fire-polished micropipette in a piezoelectric 
manipulator (upper trace shows the cell indentation)
There is no current associated with the indentation even though human PIEZO1 was cloned 

from the same cells! RNA expression does not mean the presence of functional channels, 

and even cells with no obvious endogenous currents may have channels, but they can’t be 

activated because of mechanoprotection. They may become visible with large and/or 

repeated stimuli or treatment with agents like cytochalasin. (The trace is 1 s long and the 

RMS current noise is about 1 pA). RMS: Root-mean-square.
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Figure 7. A frame from tomographic reconstruction of a patch of a Xenopus oocyte using high 
voltage electron microscope tomography[1]

The image shows cytoskeleton spanning the pipette and the bilayer is attached to the upper 

side but is not visible in this reconstruction due to its low density.
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Figure 8. Differential interference contrast images of three different cell types (mouse myotube, 
left; rat astrocyte, center, human embryonic kidney cell, right) showing the variability of 
membrane structure and how patch clamp recordings are expected to be variable
The structures above change rapidly over time (this is a frame from a movie, Courtesy 

Suchyna T).
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Figure 9. There are no PIEZO1 currents in this resting whole-cell recording unless the cell are 
indented (the red trace labelled indent shows the stimuli)
The inhibitor GsMtx4 is effective in suppressing the stimulus-induced current but causes no 

change in the holding current. The stimuli are activated by computer control 

(www.qub.buffalo.edu). The baseline current (green arrow at left) is not affected by adding 

the D or the L enantiomers of GsMtx4, but the currents that are evoked by indentation are 

inhibited. Thus, tension in the resting cell is insufficient to activate PIEZO1.
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