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Abstract

Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but
presently they are generally based on empirical clinical experience. Here we suggest a novel application of search
algorithms—originally developed for digital communication—modified to optimize combinations of therapeutic
interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise
capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four
drugs using only one-third of the tests performed in a fully factorial search. In experiments identifying combinations of three
doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant
enrichment of selective combinations compared with random searches. In simulations using a network model of cell death,
we found that the search algorithms identified the optimal combinations of 6–9 interventions in 80–90% of tests, compared
with 15–30% for an equivalent random search. These findings suggest that modified search algorithms from information
theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame
a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.
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Introduction

The problem of combination therapy has medical and

algorithmic aspects. Medically, we are still not able to provide

effective cures for most chronic, complex diseases that are the

main causes of death and disability, nor are we able to address the

progressive age-related decline in human functional capacity.

Algorithmically, when biological dysfunction involves complex

biological networks, therapeutic interventions on multiple targets

are likely to be required. Because the effect of drugs depends on

the dose, several doses need to be studied, and the number of

possible combinations rises quickly. For example, many cancer

chemotherapy regimens are composed of 6 or more drugs from a

pool of more than 100 clinically used anticancer drugs and

exploring even larger combinations might be justified [1]. If we

were to study all combinations of 6 out of 100 compounds

(including partial combinations containing only some of these

compounds) at 3 different doses we would have 8.961011

possibilities. This example shows that the problem requires a

qualitatively new approach rather than simply more efficient

screening technology.

Combined drug interventions are a common therapeutic

strategy for complex diseases such as hypertension and cancer.

As pointed out recently for cancer therapy [2], most therapies

were initially developed as effective single agents and only later

combined clinically. A possible approach to the exploration of new

therapeutic activities not present in individual drugs is based on

the exhaustive study of all possible combinations of pairs of

compounds [3]. This ‘‘brute force’’ approach has detected many

interesting novel pairs of compounds [3], but the resulting

exponential expansion in the number of possibilities precludes

the comprehensive exploration of larger combinations.

Several authors [4,5] have recently argued that the future of

combination therapy lies in the development of accurate

quantitative network models that capture the mechanistic

interactions of cellular and organism physiology. Fitzgerald et al.

[5] acknowledge that we do not yet know what these models will

look like, and that systems biology research is still data-limited for

this purpose. Indeed their recent review does not report any

successful application of this approach to combination therapies.

Here we suggest a novel solution to the problem of combination

drug therapy, making use of search algorithms originally

developed for digital communication. When modified in several

key aspects, these search strategies can be used to find more

effective combined therapeutic interventions without the need for

a fully factorial experimental design (testing all possible combina-

tions of drugs for all selected doses). These algorithms may also

provide a framework upon which information from system-wide

molecular data (e.g. transcriptomics and metabolomics) and from

mechanistic computational networks models can be superimposed.
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Rationale for the Suggested Algorithms
To understand the motivation for our work it is important to

consider that, even if simulations might play a role, the intended

use of the algorithms is not entirely in silico, but partially in vivo or in

vitro, using high-throughput biological measurements in organisms

or isolated cells, respectively. This approach becomes increasingly

relevant because high-throughput measurement technology,

initially developed by drug companies for the screening of large

libraries of compounds in multi-well plate formats, is now more

and more available to the scientific community.

It is useful to regard the information processing by our

experimental systems as parallel biological computations, since the

algorithms we are using are indeed derived from algorithms that were

implemented in silico in other scientific fields. Parallel measurements

are suitable for multi-well high-throughput technology.

There are requirements regarding the computational complex-

ity of the algorithms that limit the choice of suitable approaches.

These requirements are discussed in more detail in the Results.

Both the number of operations and computational costs unique to

in vivo/in vitro algorithms should be considered.

Algorithm design requires the application of an appropriate

structure to the data. Although there are many options to

represent the space of possible drug combinations, we used a tree

representation with drug combinations as nodes linking to all

possible additions of one drug in the next level. Individual drugs

form the base of the tree and combinations of maximum size are at

the top (see Algorithms section in the Results). When exploring the

drug combination tree going from smaller to larger combinations,

as in the algorithms we suggest, we are giving more weight to

lower-order drug interactions. This is consistent with data

available on adverse drug interactions, which are reported mostly

for two-drug combinations [6,7]. Estimating the optimal size of a

combination is a different problem, examined in detail in the

Discussion. The beneficial effect of a combination is also due to

additive components (not depending on interactions) and to

multiple higher-order effects.

The search algorithms we suggest are derived from sequential

decoding algorithms. These were chosen in part because of

similarities among the data trees to be searched in the biological

and decoding applications (see again the Algorithms section in the

Results). Sequential decoding algorithms are used for convolu-

tional codes, in which nearby nodes in the data tree are related,

similarly to different but partially overlapping combinations of

drugs.

Another feature of sequential algorithms that fit our purposes is

the use of a list-based memory of the path taken to reach each

node. We provide in the Discussion a detailed argument

suggesting that a suitable algorithm should be able to integrate

all available information on the state of the system with that

obtained by iterative measurements. The integration should take

place at every iteration within the algorithm, rather than being a

weighted average of different methods applied separately. The

presence of the updated list as a guide for each iteration provides

our algorithms with a natural mean of information integration.

Both the fully factorial dataset we show in Figure 1 and the

complex structure of the biological networks that are being

reconstructed in systems biology supports this expectation of

frequent non-linearities in phenotype measurements along the

data tree. Therefore we are interested in algorithms that can

search within a solution space presenting substantial non-

linearities. If the relation among drugs in a combination were

linear, the best algorithm would simply determine the best dose in

single drug measurements and use these to obtain the best

combination. If, on the contrary, non-linearities were extreme, the

use of stochastic algorithms might be preferable. Stochastic

algorithms (see also Discussion) can cope with multiple local

minima in the solution space, but they do so by incorporating a

random element. This requires a price in terms of computational

cost, and the performance of stochastic algorithms is therefore

often not as good as that of more tailored algorithms [8,9]. The

algorithms we suggest can cope with moderate and variable non-

linearities by going back to previous nodes in the tree.

Starting with the stack sequential algorithm, which was

developed to search for optimal decoding in the field of digital

communications [10], we describe and test algorithms that can be

used to search for an optimal combination of a sizeable number of

drugs, by testing only a small subset of all possible combinations.

The algorithms are useful for large combinations, where collecting

fully factorial datasets is not feasible. We present results obtained

from simulations in a computational model of cell death and from

experiments using two models with complementary biological

properties: (i) restoring the decline with age in heart function and

exercise capacity in Drosophila melanogaster;and (ii) selective killing of

human cancer cells.

The first in vivo experimental model has the advantage of

including the complexity of whole organism interventions, while

the second in vitro model has the potential for markedly higher

throughput testing. These models are also representative of two

different general types of multi-drug interventions: one type aims

at improving function, while the other is based on the induction of

cell death, a selective disruption of network function. Results

suggest that optimal or near-optimal combinations of compounds

can be found in these systems with only a small fraction of the

number of tests as a fully factorial design, and with significantly

higher efficacy than random searching. In summary the

contributions of this work are:

– Constructing a novel problem statement for the search of drug

combinations, using a novel approach to systems biology (see

also Text S1).

Author Summary

This work describes methods that identify drug combina-
tions that might alleviate the suffering caused by complex
diseases. Our biological model systems are: physiological
decline associated with aging, and selective killing of
cancer cells. The novelty of this approach is based on a
new application of methods from digital communications
theory, which becomes useful when the number of
possible combinations is large and a complete set of
measurements cannot be obtained. This limit is reached
easily, given the many drugs and doses available for
complex diseases. We are not simply using computer
models but are using search algorithms implemented with
biological measurements, built to integrate information
from different sources, including simulations. This might
be considered parallel biological computation and differs
from the classic systems biology approach by having
search algorithms rather than explicit quantitative models
as the central element. Because variation is an essential
component of biology, this approach might be more
appropriate for combined drug interventions, which can
be considered a form of biological control. Search
algorithms are used in many fields in physics and
engineering. We hope that this paper will generate interest
in a new application of importance to human health from
practitioners of diverse computational disciplines.

Search Algorithms for Drug Combinations
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Figure 1. The Drosophila fully factorial dataset. The number on the right of each combination is a summary score (z-score) obtained from the
three phenotypes measured in aged flies: maximal heart rate, exercise capacity and survival. Scores are ordered in descending order with the best on
top. The 4 columns show, from left to right, the effects of using 1, 2, 3 and 4 drugs in combination. The effects do not appear to be additive but
complex interactions are present. Larger combinations have significantly larger z-scores.
doi:10.1371/journal.pcbi.1000249.g001

Search Algorithms for Drug Combinations
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– Collecting exhaustive experimental measurements (the fully

factorial dataset) sufficient to solve the problem conclusively.

– Constructing a computational method to solve the problem

approximately with fewer experimental measurements (the

search algorithms). The suggested algorithms are modeled on

algorithms already used in other fields, while our main original

contribution is in their novel application.

– Providing additional experiments to support the generality of

the approach.

Results

A Fully Factorial Dataset Obtained in Drosophila
A fully factorial dataset is a dataset where all possible

combinations of drugs for the selected doses are tested. The

dataset was obtained from biological measurements in a living

organism, Drosophila melanogaster (the fruitfly).

A detailed account of the Drosophila cardiac aging model was

presented previously [11]. We performed an initial screen of

compounds for their effects on cardiac aging in Drosophila, selected

for their general effects on multiple biological functions, previously

demonstrated low toxicity and, for some compounds, known

effects on aging in other models.

After screening 44 compounds individually at multiple doses (a

total of 300 groups, each composed of 10–20 flies), we chose two

doses each of four compounds for more comprehensive measure-

ments of their combined effects on three age-related phenotypes:

the declines in maximal heart rate, exercise capacity and survival.

The selected compounds (see Methods for doses in the fly food)

were: doxycycline, a broad spectrum antibiotic and inhibitor of

mitochondrial protein synthesis [12]; sodium selenite, an essential

trace mineral and cofactor of many metabolic enzymes; zinc

sulfate, another trace mineral and cofactor of many metabolic

enzymes; and resveratrol, a phenolic antioxidant with an action on

proteins linked to aging [13].

The compounds were fed to flies from the age of 7 days to the

age of 30 days. We have previously shown cardiac physiological

changes with age in 30 day-old flies [11]. The maximal heart rate

was measured at the age of 30 days. Climbing velocity was

measured every 5 days between the ages of 15 to 30 days, using a

non-invasive procedure. We studied 10 male flies for climbing and

10 female flies for the cardiac measurements. Survival to 30 days

was also measured in these flies. Figure 1 illustrates the fully

factorial dataset consisting of 81 combinations of 4 drugs, using 2

doses for each drug (1 control, 8 individual tests, 24 groups of 2

combined drugs, 32 groups of 3 combined drugs and 16 groups of

4 combined drugs).

The number on the right of each combination in Figure 1 is a

summary score (z-score) obtained from the three phenotypes

mentioned: the declines with age in maximal heart rate, climbing

velocity and survival. Each value was normalized by dividing by a

weekly control, then for each group subtracting the population

mean and diving by the population standard deviation. The z-scores

from the three phenotypes were then averaged to yield a summary

z-score that equally weights each of the three measurements.

Analysis of Figure 1 shows that, with a larger number of drugs in the

combination, there is a statistically significant increase (p,0.05) in

the percentage of treatments that have an improved z-score

compared with untreated controls of the same age.

The landscape (see section in Discussion on control landscapes)

obtained from this dataset has 7 local maxima and 1 global

maximum in the phenotype z-score. The maxima correspond to

drug-doses configurations for which the z- score decreases by

changing any of the drugs by a single dose. We have also

calculated the basin of attraction, i.e. the number of drug-doses

configurations that will end up in a given maximum by following

the maximal increase in z-score, and found that the global

maximum corresponds to the largest basin. This is an example of

how landscape terminology can be used to define moderate non-

linearities suitable for the algorithmic approach we suggest.

The Algorithms
Sequential decoding algorithms and the stack sequential

algorithm. In this section we introduce the drug combination

optimization algorithms and show how they relate to the algorithms

used in sequential decoding. Fully factorial datasets, where every

possible drug combination is tested, grow exponentially with the

number of drugs (n). See Text S1 for the relevant equation and an

example dataset. In computational terms we say that the complexity

is O(an). The O-notation indicates the order of growth of an

algorithm basic operation count as a function of the input size. An

exponential growth is not practical for large n, therefore our aim is

to find algorithms with improved efficiency, for example with a

linear dependency on n, expressed as O(n).

The ‘‘stack sequential algorithm’’ was first proposed by

Zigangirov and Jelinek for the sequential decoding of noisy digital

signals [10,14]. As pointed out by Johannesson and Zigangirov

[15], the word ‘‘stack’’ is used instead of the proper word ‘‘list’’

only for historical reasons. It is the most basic and simplest to

describe of the sequential decoding algorithms.

The problem of finding the optimal estimate of the encoded

sequence is described as a walk through a tree. To appreciate the

analogy with the search for the optimal drug combination, the tree

shown in Figure 2 can be compared with the trees used in one of the

original descriptions of the stack sequential algorithm [14]. An

alternative version of the tree, the ‘‘trellis’’ depiction shown in

Figure 3, eliminates nodes representing redundant drug-dose

combinations.

The stack is a sorted list of all examined combinations (best on

top). The description of the stack sequential algorithm of the

Jelinek paper [14] corresponds to the following adaptation to our

problem:

S1 - At the beginning of the process the list contains only

the measurement in the absence of any drug (the root of

the tree of Figure 2).

S2 - The search is extended from the top of the sorted

list. An extension corresponds to moving up one level in

one of the branches of Figure 2. Combinations already

used are ignored for future extensions.

S3 - The search ends when a combination of maximum

size is reached. This is equivalent to reaching the top of

the tree of Figure 2.

Since we are looking for the best combination, and not for the

best path, in our case we do not delete any measured combination

from the list. Instead, when a combination has already been used

for extension in the tree, we move to the next combination in the

sorted list. As indicated in Figure 2, we do not combine different

doses of the same drug with each other, to limit the size of the

search, but this is not an essential feature.

This algorithm is effective in searching combinations where the

effect is not purely additive, because it can overcome non-

linearities by going back to previous nodes in the tree.

Three classes of algorithms for searching the data

tree. A family of related algorithms can be derived from the

basic structure of the stack sequential algorithm described in the

Search Algorithms for Drug Combinations
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previous section, adapted to different requirements, and with

different trade-offs between complexity and performance. This is

similar to the case of sequential decoding. Examples of other

algorithms that are part of the sequential decoding family, with

trade-offs partially analogous to those we have implemented, are

the Fano algorithm and the Creeper algorithm [15].

This family of algorithms can be divided into three basic classes

that differ in their approach to the data tree of Figure 2. Figure 4

shows the structure of these three classes. The class that follows the

same direction of search within the data tree as the stack sequential

we call SS; the class that searches the tree in the other direction,

from the top down, we call TD; and the class combining both

approaches (starting as SS and continuing as TD) we call SS-TD

(see Figure 4). Below we describe the implementation of each class

used in this paper, which we call SS9, TD9 and SS-TD9.

Notation. Let DRUGS represent the set of all drugs under

consideration, and let DOSES represent the set of all possible doses.

Additionally, let n be the number of drugs and m the number of

possible doses.

Let a drug be denoted by D while a dose is represented by d.

The ordered pair (D, d) represents the drug along with its dose. Let

C represent a collection of drug-dose pairs (a drug combination).

Let function Score(C) assign a score z to the drug combination C

and save (C,z). Let C_LIST = [(C1 z1), (C2 z2), …] represent a list

of drug combination-score pairs. For any collection Ci, we refer to

the cardinality of the collection |Ci| as size (size of the

combination).

The problem of selecting Copt, the optimal drug combination

that maximizes Score(C) is a combinatorial optimization problem

for which we propose a number of algorithms.

It is important to note that Score(C) is the only step that is not

executed in silico but is measured in vivo or in vitro (biologically). A

ranked summary list with all the measured combinations is

obtained at the end of the procedure.

SS9 algorithm. This algorithm starts by evaluating all

individual drug-dose pairs, and then incrementally adds (D, d)

pairs extending from the pair producing the maximal benefit. If at

the i-th step, the addition does not increase the benefit, the

algorithm backtracks to choose the next most beneficial

combination from the (i21)-th step. The informal steps (S) of

the algorithm, which are also presented in pseudocode in Figure 5,

are as follows:

S1 Evaluate all drugs individually at all doses and rank them

according to the biological score.

S2 Save only the best dose for each drug in the single drug list.

S3 Extract the best single drug and call it Cbest.

S4 Combine Cbest with all other drugs (for all doses), increasing

the size of the combination by 1 drug, measure the biological

scores, and save the list of combinations of this size. At this

Figure 2. Tree representation of the data. Letters indicate drugs and numbers indicate different doses of each drug. The root (level 0) is the
control (no drugs), level 1 is composed of individual drug measurements (singles), level 2 is composed of combinations of two drugs (couples) and so
on. The level corresponds to the size of the combination. Both this tree and the tree of Jelinek [14] contain repetitions.
doi:10.1371/journal.pcbi.1000249.g002

Figure 3. Trellis-like representation of the data. The data can also be represented as a trellis-like structure, without repetitions. The two data
representations shown in Figures 2 and 3 (tree and trellis-like, respectively) correspond to the alternative data representations used for coding
algorithms [15]. Figure 3 should also be compared to Figure 1, showing the Drosophila dataset. In the more complex Figure 1 the trellis is oriented
from left to right and the edges (lines) are not shown directly (for simplicity) but should be seen as connecting each combination with those on the
next level that contain the same set of colors. Each color indicates a different drug-dose pair. Additionally, Figure 1 shows ordering according to the
summary score (z-score).
doi:10.1371/journal.pcbi.1000249.g003

Search Algorithms for Drug Combinations
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step the algorithm moves one level upwards in the tree of

Figure 2.

S5 If the score of one of the new combinations is better than

Cbest use this combination as the new Cbest and return to S4.

If none of the new combinations is better than Cbest

backtrack to the next best combination in the list of the

previous size, call it Cbest and return to S4.

S6 Limit the number of backtracks to a specified value.

S7 Repeat S4 to S6 until the maximum size for the combinations

is reached.

In this implementation we introduced two features that make

the algorithm more appropriate for our application.

In S2 we choose only the best dose to extend from for the

individual drugs. This is because if we need to return to this level

after having combined the best single drug with all the others, it

means that all lower order interactions (that is couples) were not

beneficial, and therefore we prefer to change drug rather than

trying a different dose of the same drug.

In S6 we limit the number of backtracks to limit the cost of the

algorithm. We used a limit of 2 in all the experiments presented.

This limit can be increased if the throughput of the technology we

use for the biological measurements allows it. If we wish to

increase this limit, we can make a choice among possible

implementations that either backtrack only one level at a time

or jump to any level that ranks next in the summary list. These

implementations would have different complexity.

While SS9 moves up in the data tree the number of measured

combinations declines (see Text S1). This algorithm therefore gives

greater weight to lower order combinations in deciding which

branches of the data tree we should explore. This is consistent with

the expectation that lower order interactions among drugs are

likely to be stronger than higher order interactions, as mentioned

in the Introduction.

The experimental complexity of this implementation (both best

and worst case) grows as O(n2) for the number of drugs, and O(m)

for the number of doses (see Text S1). Increasing the backtracking

limit we might reach, in the worst case, the same complexity of the

fully factorial, that is O(an).

For algorithms including an in vivo or in vitro (biological) step we

also have to consider other types of computational complexity,

beside the number of operations. Biological measurements can

take a very long time compared to any in silico step (several weeks

are required for the Drosophila experiments) and may be limited

by sample availability. This type of cost needs to be calculated

separately for each application. In these algorithms there are also

iterated cycles composed of biological measurements that can be

done in parallel. All combinations formed in S4 above, extending

from the best scoring combination, can be measured in parallel.

Parallelization suits existing screening technology (e.g. multi-well

plate robotics) but the number of cycles can also be limiting, again

depending on the specific biological application.

TD9 algorithm. The rationale motivating the development of

top-down searches within the data tree is based on both the higher

scores for larger combinations shown by the Drosophila fully

factorial dataset of Figure 1 and the reduced number of

combinations of higher order in all fully factorial datasets of this

type, shown in Text S1. These two factors led us to expect a higher

probability of finding desired scores within combinations of larger

size, and supported the development of algorithms with a higher

proportion of measurements in this region of the data tree. We can

also easily modify the algorithms to stop once a combination with

the desired score is found, and therefore we wish to increase the

probability of finding these combinations early in the search.

The first steps are the same as those of the SS9 algorithm (see

Figure 6 for pseudocode):

S1 Evaluate all drugs individually at all doses and rank them

according to the biological score.

S2 Extract the best single drug and call it Cbest.

After the individual measurements the TD9 jumps to search

within combinations with the largest size and moves progressively

down the data tree from there:

S3 Combine Cbest with all other drugs (for all doses) for

combinations of maximum size, measure the biological scores,

and save the ranked list of combinations. At this step the

algorithm moves to the highest level in the tree of Figure 2.

Figure 4. The three classes of algorithms. Three types of strategies for searching the data tree. In our case the starting point was an exhaustive
set of measurements of all the single drugs and doses we selected. It is also possible to start the tree search at a higher level, for example after having
tested all the couples.
doi:10.1371/journal.pcbi.1000249.g004

Search Algorithms for Drug Combinations
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S4 Save the list of combinations that score above the median.

S5 Count the occurrences of all drug-dose pairs and save them

in a new list.

S6 Save only the most frequent dose for each drug in the new list.

S7 Create all possible combinations of the next smaller size,

using the drugs in the list of most frequently occurring drug-

dose pairs, and measure the biological scores. At this step the

algorithm moves down one level in the tree of Figure 2.

S8 Return to S4 until reaching size 2.

The complexity of this algorithm is O(an), and is therefore

suitable only for searches within a small number of drugs. It is

described only to make the construction of the next algorithm clear.

SS-TD9 algorithm. This algorithm aims to combine the

desirable features of the two preceding algorithms. It starts as a SS9

up to combinations of J drugs and then jumps to the largest size

combinations like the TD9. See Figure 7 for pseudocode.

The computational cost is limited by design, because we choose

J so that the cost is always within 10% of the corresponding SS9;

therefore the SS-TD9 has the same complexity as SS9, O(n2).

Testing the Algorithms in the Drosophila Dataset (In Vivo)
The fully factorial dataset of Figure 1 was used to test the SS9

and SS-TD9 algorithms. Both algorithms were successful in finding

the best combination (and 3 of the 5 best combinations) with a

lower cost compared to an exhaustive search (24 and 27 tests out

of 81 for the SS9 and SS-TD9 respectively).

Testing the Algorithms with Computational Simulations
on the Apoptosis Network (In Silico)

We performed computational simulations of multiple interven-

tions on the apoptosis network using the two algorithms described

above. The computational model is based on the apoptosis

network, hsa04210, of the KEGG database (http://www.genome.

jp/kegg/). We used the discrete apoptosis model described in our

previous publication [1], where the discrete state of proteins at

each node is determined by the strength of a signal from the

neighboring nodes according to a logarithmic rule. In this model,

the final life/death signal is calculated following the signaling in

the directed network up to a final output node. The effect of a drug

on a given node is modeled by changing the activity on that node

Figure 5. SS9 pseudocode.
doi:10.1371/journal.pcbi.1000249.g005

Search Algorithms for Drug Combinations
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and calculating the corresponding change in the output life/death

node.

We simulated selective killing of cells caused by drugs acting on

the apoptosis network. All possible interventions on 6, 7, 8, and 9

proteins, using 3 doses, were simulated. We used the dataset

containing all possible interventions to study the efficacy for selective

killing of the two algorithms (SS9 and SS-TD9), compared with

randomly selected combinations of the same size (see Figure 8).

Both algorithms were significantly more efficient than random

tests (p,0.0001). The SS-TD9 was clearly superior in the

frequency of identification of the very best combination, but the

SS9 also performed well (Figure 8). If a purely additive strategy

were the optimal one, the SS9 would find it, with no backtracks.

However, this does not seem to be the case. In the fully factorial

tests, larger combinations of up to 9 interventions were more

effective than single or two-drug interventions in finding the most

selective solution (p,0.0001).

We also performed an alternative simulation changing a large

number of parameters (see Methods section), to test the robustness

of these findings, and were able to confirm the behavior shown in

Figure 8.

As suggested by the number of top combinations found by

random sampling in Figure 8, these fully factorial datasets

contained multiple maxima. We investigated a different group of

30 fully factorial datasets (using 8-drug combinations) where

maxima were very few (less than 0.05% of the total). Not

surprisingly, in these simulations, random tests never found the top

combinations. However, top combinations were found in 30% of

the tests by the SS9 algorithm and in 80% of tests by the SS-TD9

algorithm. Furthermore, the distances of the best solutions found

Figure 6. TD9 pseudocode.
doi:10.1371/journal.pcbi.1000249.g006

Figure 7. SS-TD9 pseudocode.
doi:10.1371/journal.pcbi.1000249.g007
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from the real maxima (expressed in % of the optimal value) were:

9.261.4 (mean6SEM) for random tests, 4.761.2 for SS9 and

0.360.1 for SS-TD9. All differences between groups were

statistically significant (p,0.01).

Testing the Algorithms in Cancer Cell Lines (In Vitro)
Two lymphoma cell lines, RS 11846 and DoHH2, were used.

These cell lines were chosen for the simplicity of the culture

conditions, aiming to validate the method. Future tests will explore

selectivity including also normal cells and cells with different

tumorigenic potential. The number of viable cells was measured

using a luminescence test for ATP (ATPlite, PerkinElmer). We used

three different doses (for 60 hours) of six drugs affecting cell viability:

Vincristine, Etoposide, Rituximab, Apogossypol, Dexamethasone

and qVD-OPH. The first five drugs can induce cell death as

individual interventions while the last is an inhibitor of cell death.

We compared the SS-TD9 algorithm with random combinations.

After 36 tests for each cell line using individual doses we measured

91 combinations using the SS-TD9 algorithm and 107 randomly

chosen ones (107 was the maximum theoretical number of tests

required by the algorithm). The steps followed the order: couples,

triplets, sextuplets, quintets, quartets. The SS-TD9 selectivity (mean

21.362.4%) was markedly better than that in the random approach

(mean 1.962.5%, p,0.0001). Furthermore, none of the five most

selective combinations could have been found with the traditional

approach of combining only drugs that are cytotoxic individually,

since these five combinations all contained qVD-OPH. The cancer

cell results are shown in Figure 9.

Discussion

It might be argued that each drug combination and biological

system will require a different search algorithm and that there is no

reason to expect universality. The results reported here, obtained

with very diverse systems and compounds, suggest otherwise.

Additional rationale supporting the existence of optimization

algorithms with general applicability to biological networks is

provided by the shared properties of these networks (such as a

scale free distribution [16], robustness and evolvability [17]).

In future studies it will be desirable to develop formal methods

to assist in the choice of the individual drugs to be considered by

the algorithms, and to determine which doses to study. It is

reasonable to consider several doses spanning the IC50 or EC50,

but in large combinations we should expect to use lower doses than

those common for the same drugs as single agents. At least initially

the compounds more appropriate for use in the algorithms are

FDA approved drugs and well-known supplements, for which the

preferred dosage as single agents is already known.

Alternative Approaches
Several concepts (e.g. synergy) have been developed in the past for

the study of combinations of mainly two drugs [3,18,19]. Synergy is

useful but it is not a necessary property for the optimal combination

Figure 8. Simulations using 6 to 9 drugs. The 3 approaches described (randomly chosen group of combinations, SS9 algorithm and the SS-TD9
algorithm) are compared. We report the % of tests (average6SEM from 75 simulations) that can find the best combination, for interventions using 6
to 9 drugs. The cost is expressed as the number of tests. The decline in success rate with an increasing number of drugs for the random and SS9
groups is probably explained by the decreasing proportion of the total possible combinations tested (shown as decreasing ratio). This is not the case
for SS-TD9, but we do not yet know if this is a general property of the algorithm. The total number of possible combinations increases exponentially
with the number of drugs and becomes quickly too large for our biological measurements (for example with 9 drugs the total is 262144, see
rightmost column) and therefore justifies the necessity of an algorithm to limit the experimental space. The maximal cost for the two algorithms
(bottom line) is still within the reach of many experiments. This simulation was done using 3 doses per drug.
doi:10.1371/journal.pcbi.1000249.g008
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In any case, our algorithm objective (finding the best combination)

includes the case where this optimal result is due to synergy.

A PubMed search for algorithm and ‘‘combination therapy’’

identified 101 papers. All of the abstract and the papers that

appeared relevant were reviewed. Most papers describe sets of

clinical rules derived from clinical experience or from randomized

clinical trials, relevant to combinations of 2–3 drugs, to be

implemented by physicians. These approaches were called

therapeutic, diagnostic, treatment, management or decision

algorithms. A few papers [20–22] describe algorithms to be

implemented in silico and providing guidance for some drug

combinations of small size, using disease specific information.

None of these papers described search algorithms suitable for

partially in vivo or in vitro searches as those we describe.

A recent interesting paper [23] describes the use of stochastic

algorithms for the search for optimal drug combinations. The

methods described are not directly suitable for parallel biological

measurement but stochastic methods, for example genetic

algorithms, can certainly be adapted for this purpose.

Size of Drug Combinations
Several current cancer chemotherapy regimens are composed of

combinations of 6 or more drugs. Examples, indicated by their

acronyms and followed by the respective number of drugs, are:

BEACOPP 7, ChlVPP/EVA 7, MACOP-B 6, ProMACE-

CytaBOM 9, MOPPEBVCAD 10, m-BACOD 6 [24–27].

When the algorithms suggested here search within a pool of

drugs the best combination found can be of any size. In other

words when searching within all possible combinations of different

doses of 10 drugs, it is possible that the best combination emerging

might be composed of only 3 drugs, as for example in the

Drosophila dataset of Figure 1.

An important question whether we can determine the

maximum number of compounds that a combination should

have. Our opinion is that such a maximum limit cannot be set as a

general rule, based on the following considerations:

– Our algorithms can be used for combinations of any

compound with biological activity, including not only drugs

but also natural products. There are several dietary compo-

nents, for example wine, that have been suggested to have, at

certain doses, beneficial effect on human health [28,29]. These

dietary components contain a large number of partially

unknown different chemical compounds.

– Toxicity does not necessarily limit the size of a combination, as

discussed in the safety section that follows.

– The complexity of many biological networks leads us to expect

that only an intervention on a large number of nodes might allow

us to optimize their function. Our knowledge of these networks is

however still incomplete and no precise calculations are possible.

Information Theory and Search Algorithms for Optimal
Drug Combinations

We can think of drug interventions as transmitting information

to biological networks. When we search for optimal drug

Figure 9. Cancer cell experiments and the SS-TD9 algorithm. The colors indicate the selectivity of the drug interventions and the aim is to find
treatments with high selectivity for one of the cell lines, shown as dark blue. The red shades are partially selective for the other cell line. After
measuring the effects of individual drugs, shown as equally distributed in their effects on the two cell lines (Single column), we follow the steps of the
SS-TD9 algorithm on top and compare it with random testing of combinations of the same size in the lower part of the figure. A statistically significant
enrichment of the desired selective combinations is shown.
doi:10.1371/journal.pcbi.1000249.g009
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combination the efficiency of transmission of information (the

domain of information theory) is important, and it is therefore not

surprising that some modified algorithms from digital communi-

cations, which are used to efficiently decode signals in the presence

of noise, might be applicable. There are, however, also several

differences that require modifications to these algorithms.

Among the similarities with the digital communication applica-

tions of sequential decoding algorithms are the following: the

partial exploration of a tree of possible solutions, the dependence

of the score on the previous steps of the algorithm, the objective of

maximizing the score and minimizing the cost, and the use of an

ordered list to store the solutions.

Among the differences are the following: the partially different

data structure to be explored and the related possibility of jumping

to different parts of the tree and even ignoring some steps (for

example, SS-TD class algorithms are not used for decoding and

are unlikely to be useful), and the tendency of the largest

combinations to have higher scores. The computational cost is also

partially different. For example memory is not a limiting factor but

the number of tests and the time required by each step are.

Safety
We would also like to discuss the drug safety implications of the

use of drug combinations in general and of our approach more

specifically. Of the two main types of adverse drug events, type A

adverse events represent the majority [30]. These are dose-related

and arise from the pharmacological action of the drug [30]. Type A

adverse events are not necessarily increased in combinations if we

use reduced doses of each drug. Furthermore, the objective metric

of the algorithm can incorporate the reduction of adverse effects. An

example is the choice of selective cell death for the cancer cell

measurements we report, rather than just the killing of cancer cells.

If we were to find a large therapeutic combination that had an

extremely selective action only on cancer cells (or on a particular

cancer), this would have a greatly improved safety profile compared

to any of the existing chemotherapeutic regimens.

The second major type of adverse drug events, type B, is much

more rare and not dose-related. These adverse events are at least

in part genetic [30] and should be ameliorated by including

genomic data as one of the components of our algorithms in future

implementations. As for single drugs, medication safety is always a

balance of risks and benefits. Some types of cancer have a

prognosis of only a few months. Hence the risk-benefit analysis

cannot be discussed for drug combinations in general, but depends

on the type of disease, the type of drugs involved and the condition

and informed choice of each patient.

Drug interactions are a known cause of adverse events, but,

given that multi-therapy is common and essential for many

patients (most hospitalized patients receive at least six drugs [31]),

it is preferable to develop formal methods of assessment, as we

suggest, rather than leaving the development of multi-therapies to

the empirical decision of individual physicians.

Nonlinearities and Control Landscapes
We have mentioned in the Introduction that one of the

desirable features of these algorithms is the capacity of dealing

with non-linearities in drug combinations. The most suitable

measures of non-linearity can be obtained by building an n-

dimensional ‘‘control landscape’’, where the dimensions are the

drugs, at different doses. The notion of landscape represents a

commonly used concept in the analysis of many complex systems

encountered in physics, biology, computer science and engineering

[8]. Several features can provide a quantitative characterization of

these landscapes, such as the density of optima [32] or the

ruggedness [8]. The ruggedness measures the correlation of the

biological score to be optimized in ‘‘neighboring’’ positions and

can be obtained by defining random walk processes in the drug

configuration space, and by calculating the correlation length of

the score in such processes [32]. The landscape could also be

modified using system-wide biological data (omic data) to reduce

non-linearities. This omic warping is analogous to approaches

commonly used in physics.

While the tests in cancer cell lines reported here do add evidence

supporting the efficacy of the suggested algorithms, it would be

desirable in future experiments to give priority to the collection of

fully factorial datasets. Comparisons with random samples have

several limitations, including the fact that the true optimum is

unknown. Fully factorial datasets are, when experimentally feasible,

more informative, allowing the characterization of the landscapes

and the evaluation of alternative search algorithms.

Integrating Other Information in the Algorithms
There is a more general rationale supporting the use of

algorithms integrating information on the state of the system with

iterative measurements. The Artificial Intelligence community

realized at the beginning of the 90s that robots could not manage a

complex environment utilizing only explicit models of reality [33].

An alternative approach that started from simpler stimulus-

response algorithms was more successful and was later integrated

with the older models in hybrid architectures [33]. The

proponents of this approach (among them Rodney Brooks) argued

that this process was similar to the evolution of the nervous system,

which is based on stimulus-response mechanisms of increasing

complexity in lower invertebrates, integrated (but not replaced) by

representations of reality within the brain of higher organisms. See

also Figure 1 of Pfeifer et al [34]. Similarly we can start from

‘‘stimulus-response’’ algorithms and then improve them using

progressively more detailed and mechanistic models of biological

networks. The algorithms we have described are composed of

several iterations, each depending on the previous response of the

system. As pointed out [35], control and optimization algorithms

do contain information about the system, when effective, but only

in an implicit form. This approach, used to control very complex

and partially unknown systems by natural evolution and by

possibly the most ambitious attempt to emulate evolution, building

intelligent machines, is a general strategy that motivated the

development of our algorithms.

It is useful to consider how system-wide molecular data (such as

genomic, proteomic, metabolomic and transcriptomic data) could

be used in the context of our searches. These omic datasets could

affect the ranking in two ways: as objects of multivariate analysis

and as parameters of mechanistic network models, as in Figure 10.

Pattern recognition methods and multivariate statistics can be

used to analyze system-wide molecular data [36]. With these

models, it could be possible to distinguish the groups studied in a

multi-dimensional representation. For example, it might be

possible to test whether a combination brings the metabolic and

transcriptional profiles of treated cells or organisms closer to that

of the target state and by how much. A similar approach was used

in a recent publication by Lamb et al [37], where a single score

was obtained to represent the response of a breast cancer cell line

to drugs. The score was a summary of multivariate biological data

(microarrays). This statistical approach is justified by the fact that

not all molecular information is included in the network models,

but is expected to play a lesser role as the comprehensiveness of the

models improves.

Metabolic models similar to that described in our recent paper on

Drosophila hypoxia may also play a role [38]. Gene expression data of
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metabolic enzymes and NMR measurements of metabolites for

individual treatments could be added to the model and the effect of

combining the interventions can be simulated. The model can

provide summary measures that have an important effect on

function, such as ATP production, and are ideally suited as

weighted modifiers of the algorithm rankings. For the cancer

experiments we could iteratively modify the apoptosis computa-

tional networks described in our recent paper [1]. To reflect the

results of intervention experiments, one could add to the model the

targets of all the drugs used, and use microarray data specific for the

cell types to modify the simulations. As our biological knowledge

improves, mechanistic models should play an increasing role.

The algorithms described here are suitable as frameworks to

integrate imperfect information from different sources. The

information can be used to modify the rankings and fully factorial

datasets can be used to assign weights to different types of

information. For example, if the cytoprotective protein Bcl-2 is

overexpressed in a target cell type or if network simulations

indicate that it is an important control node, one could modify the

ranking metric of combinations including drugs acting on it and

test whether this improves the efficiency of the algorithms within

our fully factorial datasets.

Potential Applications to Personalized Medicine
There is great interest in personalized medicine and it is clear

that personalized therapy requires combinations, since we cannot

develop a different drug for each patient. The information on the

state of the system that we suggest should be incorporated in the

algorithms can at the same time provide a molecular profile

corresponding to each effective combination. In other words an

omic-combination dictionary could be built listing the untreated

genomic, transcriptomic, proteomic and metabolomic profile

optimally responding to a drug combination, and this information

could guide therapy in individual patients.

The algorithms could be used not only to find optimal

combinations for specific diseases but also for individual patients

when repeated sampling is feasible, for example in studies of

chemosensitivity of cells from the blood of leukemia patients [39].

Conclusion
Novel technology for high-throughput screening and for omic

data measurements might allow us to develop new combined

pharmacological interventions adapting algorithmic and theoret-

ical approaches from more quantitative sciences

We report data from computational simulations and from

biological experiments in vivo and in cell culture, suggesting that

modified search algorithms from information theory have the

potential to enhance the discovery of novel optimal or near-

optimal therapeutic combinations.

It would be desirable to obtain a larger number of fully factorial

datasets, for different biological systems. This would allow a direct

comparison of the algorithms reported here with other reasonable

alternatives, such as stochastic algorithms. Fully factorial datasets

would be even more useful if they were to include system-wide

molecular (omic) data, at least for the single drug and for untreated

cases. While this might require a considerable experimental effort,

it would allow this area of research to be firmly established and

provide a resource for scientists with different algorithmic

backgrounds to test their ideas.

Several colleagues have already pointed out analogies with

other computational problems within their fields of expertise that

might lead to useful alternative approaches. For example a

colleague has suggested that exploring alternatives within the class

of ‘‘online algorithms’’ is a promising area of future work. Other

colleagues have proposed that modern biologically-inspired

heuristic methods, such as ‘‘particle swarm optimization’’, might

also be used to search for optimized drug combinations. In the

next few years we plan to obtain and make fully available on the

web additional fully factorial datasets for drug-induced selective

cell death, and we hope that this will stimulate interdisciplinary

interest in this approach to the problem of multi-drug therapy.

Methods

Drosophila Physiology
A detailed account of the Drosophila cardiac aging model was

presented previously, in which an age-dependent decline in

Drosophila cardiac rate under stress was reported [11]. We

developed new methods for imaging rapidly and non-invasively

the adult Drosophila heart and for automated measurement of heart

rate and its variability.

To assess exercise capacity in Drosophila and changes with age,

climbing velocity was measured using a method described by

Gargano et al. [40], modified to include image processing that

allowed individual flies to be studied.

The flies were transferred into 15-ml tubes and the operator

tapped the top of the tube. Owing to their capacity for geotaxis

orientation, flies tend to climb upwards. A digital imaging system/

camera (Motionscope PCI, Redlake Imaging MASD, Inc.) with an

attached Vivitar wide-angle lens, was used to capture video sequences

at 60 frames per second of the flies as they climbed the tube. Images

were analyzed with software (MotionScope 2.21.1) and for each fly

within the tube an individual velocity was obtained.

The selected compounds and doses (in the fly food) were:

doxycycline, with concentrations at 0.5 mg/mL and 1 mg/mL;

sodium selenite, at 0.005 mg/mL and 0.0125 mg/mL; zinc

sulfate, at 0.5 mg/mL and 1 mg/mL; and resveratrol, at

0.25 mM and 0.5 mM.

Figure 10. The most general algorithmic approach. The loop of
biological testing and ranking indicates the algorithms described in
detail in the Results. The mechanistic models are examples from our
recent publications [1,38] and the system-wide molecular data (omic
data), to be collected for individual interventions, represent microarrays
and NMR metabolomics. The arrows indicate a flux of information from
the system wide molecular data. The network or pathway models and
the rankings are incorporating this information but they are not
uniquely determined by it. The models are also built using legacy data
from the literature and the rankings are produced by the algorithms
described in the Results.
doi:10.1371/journal.pcbi.1000249.g010

Search Algorithms for Drug Combinations

PLoS Computational Biology | www.ploscompbiol.org 12 December 2008 | Volume 4 | Issue 12 | e1000249



Computational Simulations
The data sets, used to test the SS9 and SS-TD9 algorithms, were

created using the apoptosis model [1], with some changes concerning

the search procedure and the output value. Instead of performing an

exhaustive search on all the nodes of the network, we limited the

search to a randomly chosen subgroup of nodes. We also used as

output value the difference of the cubic value of one individual

compared to the average of the cubic sum of the remaining

population, to reward the individuals with the highest values.

Confirmatory simulations were also performed, to test the

robustness of our findings by changing several parameters. The

parameters were the number of states for nodes and links, the

starting values for the states, the ranges of the output of the

simulation, and the nodes selected for the interventions.

The software was written in C++ and implemented on 32-nodes

of a 64-bit Linux cluster with 2GB of memory per node. The

longest searches required about 30 minutes of computation.

The analysis of the collected data consisted of three separated

steps: sort, search algorithm and statistical analysis. For the first

step, a quick sort implementation was used creating different ranks

for each individual. In the second step, all the algorithms and

random execution returned information for each rank. These were

used in the last step, where we collected the statistical analysis data,

dividing the resulting population into different samples, to

compare each algorithm with the others.

Owing to the dimension of the data, it was necessary to limit the

number of analyzed nodes to a maximum of 9. Computational

time was significant only for the sorter, requiring several hours for

the largest files on an entry-level Linux workstation.

Cancer Cells
ATP is a marker for cell viability because it is present in all

metabolically active cells and the concentration declines very

rapidly when the cells undergo necrosis or apoptosis. Human

tumor cells DOHH2 and RS11846 were maintained as suspension

cultures at standard conditions: humidified atmosphere with 5%

carbon dioxide, at 37uC in an incubator, using RPMI-1640

medium, supplemented with 10% heat-inactivated fetal calf serum

and 2 mM L-glutamine. Cells were kept in log phase via

replacement of cellular suspension aliquots by fresh medium two

or three times weekly. Stock solutions of the 6 chosen drugs were

freshly prepared in water (Vincristine), physiological saline solution

(Rituximab) or DMSO (Etoposide, Q-VD-Oph, Apogossypol and

Dexamethasone). The stock solutions were diluted with RPMI-

1640 in order to obtain the desired final concentrations. Less than

0.5% of the solvent was present at the final dilutions. All the

procedures related to cell culture, drug preparation, and treatment

were carried out in a laminar flow cabinet.

Briefly, exponentially growing cells were seeded in 96-well plates

(90 mL aliquots/well) at a density of 5.55 104 cells/mL and 10 mL

of drug solution were added. Final concentrations of the drug were

the following: Vincristine (0.01, 0.1, or 0.5 nM), Etoposide (0.01,

0.1, or 1 mM), Apogossypol (1, 2.5, or 4 mM), Q-VD-OPh (5, 10,

or 25 mM), Rituximab (5,15, or 20 mg/mL), Dexamethasone

(0.1,1, or 25 mM). Plates were incubated for 60 hours. After the

incubation, 30 mL aliquots of ATPlite reconstituted reagent

(Perkin-Elmer) were added to every well. The plates were shaken

for 3 minutes at 750 rpm (Eppendorf MixMate). The absorption

of the samples was measured using a monolight 3096 microplate

luminometer (BD). Ten mL of a 10 mM ATP solution was added

to every well as internal standard. The plates were shaken for

2 minutes at 750 rpm and read.

Selectivity was defined as the difference in % survival between

the two cell types.

Statistical Analysis
All results are expressed as mean6standard error of the mean.

For comparisons of 2 groups unpaired t tests were used (non-

parametric tests were also significant) and for comparison of more

than 2 groups we used one-way analysis of variance with

Bonferroni correction for post-test comparisons. The Drosophila

data presented in Figure 1 were analyzed using the chi square test

for trends and results were confirmed using one-way analysis of

variance with linear test for trend. The number of combinations in

the introduction was obtained using Newton’s Binomial series up

to the 6th order. The statistical software used was Prism

(GraphPad).

Supporting Information
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