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Simple Summary: Calcium regulation in body fluids is a fundamental process in vertebrates, which
is exerted by a plethora of hormones. Stanniocalcin (STC) is a hypocalcemic hormone ubiquitously
expressed in tetrapods; in bony fishes, it is produced mainly by specific glands called the corpuscles
of Stannius. The present study described an ELISA method for the analysis of fish STC. Moreover, it
also develops a methodology for ex vivo cultures of Stannius corpuscles of gilthead seabream (Sparus
aurata). The results show a direct control of the production of STC by one calcium and two PTHrP
(parathyroid-related protein, a hypercalcemic hormone) receptors. This study highlights the tight
control of circulating calcium in vertebrates and shows the complexity of the processes involved.

Abstract: Calcium balance is of paramount importance for vertebrates. In fish, the endocrine modula-
tors of calcium homeostasis include the stanniocalcin (STC), and some members of the parathyroid
hormone (PTH) family, such as the PTH-related protein (PTHrP), acting as antagonists. STC is
ubiquitously expressed in higher vertebrates. In turn, bony fish exhibit specific STC-producing
glands named the corpuscles of Stannius (CS). Previous studies pointed to a calcium-sensing receptor
(CaSR) involvement in the secretion of STC, but little is known of the involvement of other putative
regulators. The CS provides a unique model to deepen the study of STC secretion. We developed an
ex vivo assay to culture CS of fish and a competitive ELISA method to measure STC concentrations.
As expected, STC released from the CS responds to CaSR stimulation by calcium, calcimimetics, and
calcilytic drugs. Moreover, we uncover the presence (by PCR) of two PTHrP receptors in the CS, e.g.,
PTH1R and PTH3R. Thus, ex vivo incubations revealed a dose-response inhibition of STC secretion
in response to PTHrP at basal Ca2+ concentrations. This inhibition is achieved through specific and
reversible second messenger pathways (transmembrane adenylyl cyclases and phospholipase C),
as the use of specific inhibitors highlights. Together, these results provide evidence for endocrine
modulation between two antagonist hormones, STC and PTHrP.

Keywords: calcium-sensing receptor; corpuscles of Stannius; parathyroid hormone-related protein;
stanniocalcin; Sparus aurata

1. Introduction

Calcium is of paramount importance for many physiological processes in vertebrates,
such as bone and scale mineralization, enzyme control, and regulation of plasma membrane
permeability and excitability [1], among other functions. The delicate calcium balance is not
subject to purely diffusive processes but is under strict endocrine regulation. In this sense,
teleost fish primarily regulate calcium availability by the action of two antagonistic hor-
mones, the parathyroid hormone-related protein (PTHrP) and the stanniocalcin (STC) [2–4].
The first is a hypercalcemic hormone [5], while the second has anti-hypercalcemic functions
in fish [6].
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Specific glands named corpuscles of Stannius (CS) located on the ventro-caudal side
of the kidney secrete stanniocalcin in bony fish [7]. In mammals, stanniocalcin is expressed
ubiquitously [8,9]. Besides being a hypocalcemic hormone, it is related to intestinal [10] and
renal [11] phosphate reabsorption in fish and mammals, metastasis-related processes [12]
through autocrine/paracrine routes [13], and transport of other ions rather than Ca2+ in
zebrafish [14]. Increased calcium levels evoke the production and secretion of STC [15,16]
mediated by a calcium-sensing receptor or CaSR [17,18]. However, more recent studies
show that the CaSR modulates PTHrP, in addition to STC [19,20], as was described previ-
ously for the mammalian parathyroid hormone and calcitonin [21]. Moreover, STC and
PTHrP hormones revealed antagonistic functions in fish regarding intestinal bicarbonate
secretion [3] and carbonate precipitate formation in the fish intestine [22].

There are vital pieces of evidence concerning the regulation of both STC and PTHrP
through a CaSR, a unique novelty receptor firstly described in bovine parathyroid [23].
Over the last two decades, the CaSR has received particular attention, especially in marine
fish, due to its importance in maintaining the water and ionic balance [24]. As it belongs to
the G protein-coupled receptor (GPCR) superfamily, it induces the activation of different
types of G protein [25] when stimulated by calcium or other agonists, such as calcimimetics,
or inhibited by calcilytics [26]. However, the second messenger routes activated through
this membrane sensor are enormously variable, thus stimulating enzymes such as phos-
pholipases (either PLC, PLA2, or PLD) and MAPK signaling cascades and inhibiting cAMP
accumulation due to the inhibition of transmembrane adenylyl cyclases, tmAC [27].

Furthermore, membrane receptors coupled to G proteins mediate the actions of
PTHrP [2,28]. Teleost fish have three PTHrP characterized receptors [29–31], with only two
in our model species, the gilthead seabream (Sparus aurata) [32]. PTHrP receptor ligands
can stabilize different conformations of the same receptor, thus leading to a differential
activation pattern called “biased receptor signaling” [33], which means that one ligand
can act differentially on multiple signaling pathways. In this sense, studies in humans,
rats, and zebrafish single PTH/PTHrP receptors established that their coupling to the
adenylyl cyclase (AC)-protein kinase A (PKA) signaling pathway and to the phospholipase
C (PLC)-protein kinase C (PKC)-intracellular Ca2+ signaling pathway, may occur at the
same time [2,28,31]. However, previous evidence indicates that the receptor PTH3R in
gilthead seabream only activates the cAMP pathway [32] related to tmAC. This evidence
indicates that the affinities to those second messenger routes could rely on the specific
PTHrP receptor.

Provided that STC and PTHrP have antagonistic functions in most biological tests
performed thus far, we aimed to show a functional interrelationship between STC and
PTHrP. Further, we aimed to establish if PTHrP has a regulatory role on STC synthesis and
secretion at the level of the corpuscles of Stannius and whether there is an intermediary
role for the CaSR.

2. Materials and Methods
2.1. Animal Maintenance

Seabream (Sparus aurata) immature juveniles (84.2 ± 1.9 g body weight, mean ± SEM,
n = 134) were obtained from commercial sources in the Algarve (Portugal) and transported
to the Campus facility (CCMAR, Faro-Portugal). Before the experiments, fish were main-
tained for at least ten days in 500 L tanks in a recirculated seawater circuit (36–37‰) with
a biological filter. The water temperature was maintained at 23–25 ◦C. The fish were ex-
posed to a natural photoperiod (September-December), grouped in tanks at a density of
4.5 kg m−3, and fed twice daily 1% body weight (wet fish weight, Sorgal S.A., São João de
Ovar, Portugal; Balance 3). Animals fasted 24 h before the experiments, and there was no
mortality during these processes. The experiments conducted comply with the guidelines
of the European Union Council (86/609/EU). All animal protocols were performed under
a “Group-1′’ license from the Direcção-Geral de Veterinária, Ministério da Agricultura, do
Desenvolvimento Rural e das Pescas, Portugal.
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2.2. Sampling

Fish were captured and anesthetized in 2-phenoxyethanol (0.1% v/v; P-1126, Sigma-
Aldrich, St Louis, MO, USA). Blood samples were collected from the caudal peduncle
with heparinized syringes, and plasma was obtained by centrifugation (3500× g, 5 min,
4 ◦C) and stored at −20 ◦C until analysis. Fish were sacrificed by decapitation, and the CS
collected (their location in the caudal end of the kidney can be seen in Figure S1) for ex vivo
culture (see below).

2.3. Development of an ELISA Method

Stanniocalcin protein levels were quantified by an in-house developed indirect antigen
competitive ELISA method, similarly to what was previously described [34]. The assay is
based on competition between free STC in standards, or samples and STC immobilized
on microtiter plates for the STC-antibodies. Purified seabream STC [3] was employed
to generate a specific rabbit antiserum [22], hereafter named Anti-STC. A range of assay
optimization procedures was carried out, including assessment of assay buffers; the coating
concentration of STC (from CS-homogenates, 0.5–10.0 µg prot well−1); titration of primary
(1:1500–1:8000), and secondary antisera (1:2000–1:6000) to give a maximal optical density
(OD490 nm) equal or higher than one and background not higher than 0.1 (OD490 nm);
assay incubation times and washing conditions. ELISA validation included verification of
parallelism between samples and the standard curve, the recovery rate of standards added
to the assay, and the intra-assay and inter-assay variation coefficients.

Using the optimized procedure, ELISA was carried out in duplicate for standard
and samples in 96-well plates (Ref. 655061, Greiner bio-one, Kremsmünster, Austria). In
brief, wells were coated for 2 h at 37 ◦C with 2 µg prot 100 µL−1 well−1 of seabream CS-
homogenates (in 0.6% w/v NaCl) diluted in bicarbonate buffer (50 mM NaHCO3/ Na2CO3
and 150 mM NaCl to give a final pH of 9.6). All the wells, including blank wells (without
STC coating), were then blocked with 250 µL of 2% (w/v) bovine serum albumin (BSA) in
PBS. Anti-STC (1:8000 dilution) was added to the plate along with either standard protein
(range from 2000 to 52 ng mL−1) or samples (100 µL well−1) and incubated 10 min at room
temperature with constant stirring, followed by incubation for 30 min at 37 ◦C. Anti-rabbit
IgG peroxidase conjugate (100 µL well−1, 1:5000 dilution, A9169, Sigma-Aldrich) was
added and followed by an incubation similar to the primary antibody. Excess reagents were
removed between incubation steps by washing 4 × 5 min with PBS/Tween-20 (0.05% v/v).
The color was developed with 200 µL OPD (o-phenylenediamine dihydrochloride, P9187,
Sigma-Aldrich) for 13 min in the dark at room temperature. The reaction stopped by
adding 50 µL well−1 2 M H2SO4, and the absorbance was read at 490 nm in a microplate
reader (Benchmark, Bio-Rad, Hercules, CA, USA). All assays determined the standard
curve, non-specific binding, and maximal binding.

Stanniocalcin protein levels in plasma, CS-homogenates, and incubation medium were
quantified by the developed ELISA method for STC.

2.4. Ex Vivo Incubation of CS

The corpuscles of Stannius were removed from individual fish (the two CS from each
individual were collected) and maintained in 620 µL plasma-like incubation buffer (as
described below) gassed with 99.7% O2/0.3% CO2 for 45 min to allow the tissue to recover
after the feasible stress induced by dissection. After CS were transferred individually
into the wells of sterile 96-well culture plates (Ref. 83.1837.500, Sarstedt, Newton, NC,
USA) containing 75 µL of experimental incubation medium, they were maintained at 25 ◦C
with constant movement in an atmosphere of 99.7/0.3% O2/CO2. Common incubation
medium was described before for this species [35] and contains 173 mM Na+, 169 mM Cl−,
1 mM Mg2+, 3 mM K+, 1.5 mM PO4

−, 1 mM SO4
2−, 5 mM HCO3

−, 1.46 mM Ca2+, 5 mM
glucose and was supplemented with 10 µL mL−1 of vitamins (MEM 100× Vitamins, M-6895,
Sigma-Aldrich), 20 µL mL−1 essential amino acids (MEM 50×, M-5550, Sigma-Aldrich),
10 µL mL−1 non-essential amino acids (MEM 100×, M-7145, Sigma-Aldrich), 10 µL mL−1
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antibiotic (penicillin 10,000 IU mL−1; streptomycin 10 mg mL−1, P-0781, Sigma-Aldrich),
and 20 µL mL−1 L-glutamine (200 mM, G-7513, Sigma-Aldrich), at pH 7.80 and osmolality
of 360 mOsm kg−1.

A time-course survey was performed for the CS ex vivo incubations in the same
conditions described before to test the STC secretion rate for 3, 6, and 24 h. Incubations
with 0.05% DMSO (D-8779, Sigma-Aldrich) were also performed, as this is the maximum
percentage of DMSO employed to pre-dilute drugs in the experiments.

Experimental drug concentrations were obtained from the literature except those
specifically described here. The incubation tested calcium effects with 1.46 and 2.92 mM
Ca2+, corresponding to the free calcium concentrations of control seawater-adapted and hy-
percalcemic PTHrP-treated seabream [36], respectively. Calcimimetics were used as positive
modulators of the CaSR and potential STC production stimulators, like 500 µM Gadolin-
ium (Gd3+, G-7532, Sigma-Aldrich) [37], 200 µM Neomycin (N-1876, Sigma-Aldrich) [38],
500 µM Spermine (S-4264, Sigma-Aldrich) [26], and 1 µM R-568 ([(R)-N-(3-methoxy-(ÿ-
phenylethyl)-3-(2-chlorophenyl)-1-propylamine hydrochloride], 3815, Tocris Bioscience,
Abingdon, UK) [39]. A selective antagonist of the CaSR (a calcilytic drug), the NPS 2143 hy-
drochloride (2-chloro-6-[(2R)-3–1,1-dimethyl-2-(2-naphthyl)ethylamino-2-hydroxypropoxy]-
benzonitrile hydrochloride), was also used at a concentration of 0.1 µM NPS-2143 (3626,
Tocris Bioscience, UK) [39]. We tested the putative control of the STC production by second
messenger pathways using adenylyl cyclase (AC) inhibitor 100 µM SQ-22536 (S-153, Sigma-
Aldrich) and phospholipase C (PLC) inhibitor 10 µM U-73122 (U-6756, Sigma-Aldrich) [40].
The hypercalcemic parathyroid hormone-related protein (PTHrP) was tested at levels of 0
(control), 1, 10, and 100 ng mL−1 PTHrP (1–34) [41] covering the physiological range of this
hormone in plasma of seabream [36].

All the experimental assays were performed together with a control group, using both
CS from a single animal to test experimental vs. control condition ceteris paribus (whenever
possible). Repeated independent experiments, with at least 4 to 6 CS per treatment, were
also performed to ensure proper statistical robustness of the results.

At the end of the incubation period, CS were transferred to 120 µL 0.6% NaCl and
homogenized with a pestle (VWR Pellet Mixer, 431–0100, VWR International), followed
by a 10 min, 9000× g centrifugation at 4 ◦C. The supernatant of the CS-homogenates and
incubation medium, separately, were immediately frozen at −20 ◦C until STC analysis.

STC was analyzed in the incubation medium at the end of the ex vivo incubation
period to calculate STC secretion (normalized to incubation time and protein quantity in the
CS-homogenate). Moreover, total STC was evaluated as the sum of STC quantity in both
the incubation medium (and thus secreted from the CS) and that present in the CS at the
end of the ex vivo assay. Total STC was employed as a proxy to evaluate STC production in
the CS during the incubation time.

2.5. CaSR and PTHrP Receptors RT-PCR

Total RNA from the CS was extracted with E.Z.N.A. total RNA isolation kit I (Omega
Bio-Tek, Norcross, GA, USA) following the manufacturer’s instructions. The quantity and
quality were assessed (Nanodrop 1000 Thermo Scientific, Barrington, IL, USA). Prior to
cDNA synthesis, RNA was treated with DNase using a DNA-free kit (Ambion, Life Tech-
nologies, Paisley, UK), following the supplier’s instructions. Reverse transcription of RNA
into cDNA was carried out using Revert Aid first-strand cDNA synthesis kit (Fermentas,
Thermo Scientific, Waltham, MA, USA) following the manufacturer’s instructions, with
500 ng of total RNA in a final reaction volume of 20 µL.

Table 1 shows primer sequences, amplicon sizes, and NCBI accession numbers of the
products.

PCR amplifications were performed in a final volume of 15 µL with 7.5 µL SsoFast Eva-
Green Supermix (Bio-Rad, UK), ~15 ng cDNA based on RNA input to reverse transcription),
and 0.3 µM of each forward and reverse primers. Amplifications were performed in 96-well
plates in a T100 thermal cycle (Bio-Rad, UK) with the following protocol: denaturation
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and enzyme activation step at 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C for 5 s, and
primer-pair specific annealing temperature for 10 s (Table 1) at 60–55–53 ◦C for 10 s and
30 s at 72 ◦C. This protocol runs a product amplification of 131 bp for casr, 142 bp pth1r,
and 250 bp for pth3r. 18S ribosomal RNA (18s), as the reference gene, generated a 139 bp
product. Amplified products (15 µL) were analyzed on 1.5% agarose gel stained with
ethidium bromide. Gel images were captured using an AlphaImager Gel Imaging System
from Alpha Innotech (San Leandro, CA, USA).

Table 1. Details of primers used for RT-PCR.

Gene Sequence (5′–3′) Ta (◦C) Amplicon (bp) Accession nº

Casr a Fw AGAGTTCTTACAGCACGTCCAAC
60 131 AJ289717Rv CTAGTGCTGCCATCTCACTTTC

pth1r b Fw TCACCAACGTCACTGCCAGAGGA
55 142 AJ619024Rv GTCCCGACGAGGGTATCGAGTT

pth3r b Fw ACATCCACATTCACTTCTTCAC
53 250 AY547261Rv GATGAGGGCCACAGGTAGT-

18s
Fw AACCAGACAAATCGCTCCAC

60 139 AY993930Rv CCTGCGGCTTAATTTGACTC

Forward (Fw) and reverse (Rv) primers; annealing temperature (Ta); base pairs (bp). a [24]; b [42].

2.6. Statistics

Differences between groups were tested by a Student´s t-test. One-way ANOVA was
employed when different conditions related to the same experiment were tested at the
same time, considering those groups as factors of variance. Normality was analyzed using
the Kolmogorov–Smirnov´s test. The homogeneity of variances was analyzed by Levene´s
test. When ANOVA yielded significant differences, Tukey’s post-hoc test was used to
identify significantly different groups. If the results of the same treatment from different
independent experiments did not show statistical differences between them, they were
pooled and further analyzed as one single group. Statistical significance was accepted at
p < 0.05. All the results are given as mean ± SEM unless otherwise stated.

3. Results
3.1. ELISA

We developed an indirect competitive ELISA using purified seabream STC as the
standard and a primary rabbit polyclonal antisera raised against it. The coating concentra-
tion of CS-homogenates was 2 µg total protein, around 25 ng STC 100 µL−1 well−1. The
primary antiserum against STC was used at a dilution of 1:8000, which gave a maximal
OD490 nm of 1.3 and a non-specific background of 0.09–0.13 at OD490 nm well−1. The
method is reliable and reproducible as the intra- and inter-assay coefficients of variation
were 4%, each, calculated from the analysis of seven samples/two times/microplate for the
intra-assay coefficient and six samples/four microplates for the inter-assay coefficient. The
lower detection limit of the assay was 2.6 ng STC well−1 (52 ng mL−1). Dilution curves
constructed with plasma samples and CS-homogenates showed parallel displacements
compared to the standard dilution curve (Figure S2).

3.2. STC Secretion and CS Content

The STC secretion rate, when normalized to time and amount of protein, does not
present variations in ex vivo incubations of CS for 3, 6, or 24 h (Figure S3) (one-way
ANOVA followed by a Tukey´s test, p < 0.05). Since proper dilution of some of the
chemicals employed in this study required the addition of DMSO, we also performed
ex vivo incubations of CS with a final concentration of 0.05% DMSO (v/v) for 3, 6, and
24 h. The results show that the STC secretion rate decreased during incubation time
in vitro, with significant differences between the groups at 3 and 24 h (one-way ANOVA
followed by a Tukey´s test, p < 0.05). When comparing control versus DMSO treated
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groups (Student´s t-test, p < 0.05), no differences were observed in any of the groups tested.
In this line, the secreted quantity of STC after 3 h of incubation edges the detection limits
of the ELISA method in some samples. We, therefore, choose an incubation time of 6 h
for the experiments. Thus, the average STC secretion rate from the CS of control gilthead
seabream (84.2 ± 1.9 g weight individuals) is 0.18 ± 0.03 ng STC µg prot−1 h−1 (n = 52)
(mean ± SEM). The average content of STC in the CS at the moment of sampling was
11.17 ± 1.31 ng STC µg prot−1 (n = 4), which is in good agreement with the STC content of
the CS of the control groups after six hours of incubation (10.33 ± 0.85 ng STC µg prot−1,
n = 52) (Student´s t-test, p = 0.77). Plasma STC concentration in seabream was 1693 ± 81 ng
STC mL−1 (n = 42 fish). Assuming that the plasma of gilthead seabream is 2.00% of its
total body weight (blood occupies 2.9% of the total body weight [43], while the normal
hematocrit for seabream is 31% [44]), we have calculated the total amount of STC within
the CS (in both together, from a single fish) of each animal compared to the total circulating
STC in the plasma, which results in 9.8 ± 1.0% (n = 42).

3.3. CaSR and PTHrP Receptors

Figure 1 shows the amplification of specific RT-PCR and confirms the presence of the
casr and the PTHrP receptors pth1r and pth3r in the CS of the gilthead seabream.
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Figure 1. Specific RT-PCR was used to amplify seabream pth1r (2), pth3r (3), and casr (4) in mRNA 
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Figure 1. Specific RT-PCR was used to amplify seabream pth1r (2), pth3r (3), and casr (4) in mRNA
extracts from the corpuscles of Stannius (A). 18s (1) was used as a reference to control the quantity
and quality of cDNA included in PCR reactions. The size of the bands is 139 bp for 18s, 142 bp for
pth1r, 250 bp for pth3r, and 131 bp for casr. A negative control of every reaction is displayed in (B).

3.4. Effect of CaSR Agonist and Antagonist Molecules

Figure 2A shows the percentage (%) of STC secreted by seabream´s CS incubated for
six hours with normal (1.46 mM Ca2+) and high calcium (2.92 mM Ca2+) levels. A significant
increase in STC release (Student´s t-test, p < 0.05) was observed when incubating in the
presence of 2.92 mM Ca2+ (657 ± 83% compared to the control-normal calcium group).
Figure 2B shows the % of total STC quantity (ng STC µg prot−1) present in the CS and the
incubation medium, together, for the experimental group respecting the control group. No
differences were found between both groups (Student´s t-test, p < 0.05).
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of the gilthead seabream, Sparus aurata, after treatment with normal calcium concentration (1.46 mM
Ca2+) or high calcium (2.92 mM Ca2+). Basal STC secretion for the control group is 0.16 ± 0.04 ng
STC µg prot-1 h−1. Values are referred to as % from the control group (mean ± SEM) for single
independent experiments (n = 19 per group). Asterisks (*) indicate significant differences from the
control group (Student´s t-test, p < 0.05).

The effect of a CaSR antagonist is shown in Figure 3. Incubation with a high concentra-
tion of calcium (2.92 mM Ca2+) and the addition of 0.1 µM of the CaSR antagonist NPS-2143
(Figure 3A) decreased STC release from the CS to 50 ± 10% (mean ± SEM) of the control
group (with 2.92 mM Ca2+ alone), with significant differences (Student´s t-test, p < 0.05).
Moreover, the calcilytic NPS-2143 decreased significantly (Student´s t-test, p < 0.05) the
total amount of STC compared to the control-high [Ca2+] group (49 ± 4%) (Figure 3B).
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The effect of different CaSR agonists (R-568, neomycin, gadolinium, and spermine) was
also tested (Figure 4). Significant increases when compared to the control CS STC release
(Student´s t-test, p < 0.05) are shown in Figure 4A when incubated with calcimimetics
R-568 (260 ± 56%), neomycin (381 ± 104%) and gadolinium (166 ± 6%). Spermine, at a
concentration of 500 µM, did not affect the STC secretion rate (Student´s t-test, p > 0.05).
The calcimimetics, neomycin and gadolinium, also increased significantly the total amount
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of STC (125 ± 7% and 200 ± 37%, respectively) of the incubated CS when compared to the
control group (Figure 4B, Student´s t-test, p < 0.05).

Biology 2022, 11, 863 8 of 16 
 

 

Figure 3. Stanniocalcin (STC) ex vivo secretion (A) and production (B) from the corpuscles of Stan-
nius of the gilthead seabream, Sparus aurata, incubated with high calcium (2.92 mM Ca2+) in the 
absence or presence of the CaSR antagonist 0.1 μM NPS-2143. Values are presented as % of the 
control-high calcium group (1.12 ± 0.16 ng STC μg prot−1 h−1, mean ± SEM) for independent experi-
ments (n = 6 per group). Asterisks (*) indicate significant differences from the control group (Stu-
dent´s t-test, p < 0.05). 

The effect of different CaSR agonists (R-568, neomycin, gadolinium, and spermine) 
was also tested (Figure 4). Significant increases when compared to the control CS STC 
release (Student´s t-test, p < 0.05) are shown in Figure 4A when incubated with calcimi-
metics R-568 (260 ± 56%), neomycin (381 ± 104%) and gadolinium (166 ± 6%). Spermine, at 
a concentration of 500 μM, did not affect the STC secretion rate (Student´s t-test, p > 0.05). 
The calcimimetics, neomycin and gadolinium, also increased significantly the total 
amount of STC (125 ± 7% and 200 ± 37%, respectively) of the incubated CS when compared 
to the control group (Figure 4B, Student´s t-test, p < 0.05). 

 
Figure 4. Stanniocalcin (STC) ex vivo secretion (A) and production (B) from the corpuscles of Stan-
nius of the gilthead seabream, Sparus aurata, after treatment with different calcium-sensing receptor 
(CaSR) putative agonists: 1 μM R-568, 200 μM neomycin, 500 μM gadolinium (Gd3+) and 500 μM 
spermine. Basal STC secretion for the control group is 0.16 ± 0.03 ng STC μg prot−1 h−1 (n = 24). Values 

Figure 4. Stanniocalcin (STC) ex vivo secretion (A) and production (B) from the corpuscles of
Stannius of the gilthead seabream, Sparus aurata, after treatment with different calcium-sensing
receptor (CaSR) putative agonists: 1 µM R-568, 200 µM neomycin, 500 µM gadolinium (Gd3+) and
500 µM spermine. Basal STC secretion for the control group is 0.16 ± 0.03 ng STC µg prot−1 h−1

(n = 24). Values are presented as % of the control group (horizontal line) for single independent
experiments (mean ± SEM, n = 6 per group). Asterisks (*) indicate significant differences from the
control group (Student´s t-test, p < 0.05).

3.5. PTHrP Downregulates STC Secretion

Figure 5A shows the inhibitory effect of increasing PTHrP concentrations on the STC
secretion at normal (1.46 mM) calcium levels. PTHrP inhibits STC release from the CS in a
dose-dependent manner, with significant differences between those groups submitted to
0 ng PTHrP mL−1 and 100 ng PTHrP mL−1 (one-way ANOVA followed by a Tukey´s test,
p < 0.05). In this sense, the calculated effective dose 50 (ED50) was 17.51 ng PTHrP mL−1.
The % of total STC (Figure 5B) showed variations in any of the groups tested (one-way
ANOVA followed by a Tukey´s test, p > 0.05).
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Figure 5. Dose-response effects of PTHrP on STC ex vivo secretion (A) and production (B) from the
corpuscles of Stannius of the gilthead seabream at normal (1.46 mM Ca2+) calcium concentration.
Basal STC secretion for the 0 ng PTHrP mL−1 group is 0.37 ± 0.06 ng STC µg prot−1 h−1 (n = 6).
Values are presented as % of the control group for single independent experiments (mean ± SEM,
n = 6 per group). Different letters indicate significant differences between groups (one-way ANOVA
followed by a Tukey´s post-hoc test, p < 0.05).

Figure 6 reveals that the tmAC inhibitor SQ-22536 and the PLC inhibitor U-73122,
separately, slightly increased STC secretion (Figure 6A) when it is inhibited with 100 ng
PTHrP mL−1, without being statistically different from the untreated-control or the PTHrP-
treated groups (one-way ANOVA, followed by a Tukey´s test, p < 0.05). Moreover, using
both inhibitors together abolished the inhibitory effect of PTHrP (107 ± 28% respecting
the untreated-control group). No differences in STC production (Figure 6B) were observed
between treatments (one-way ANOVA, followed by a Tukey´s test, p > 0.05).
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Figure 6. STC ex vivo secretion (A) and production (B) from the corpuscles of Stannius of the
gilthead seabream treated with 100 ng mL−1 PTHrP alone or with combinations of the adenylyl
cyclase inhibitor SQ-22536 (100 µM, SQ) and the phospholipase C inhibitor U-73122 (10 µM, U).
Control group presents 1.46 mM Ca2+ and no PTHrP or specific inhibitors (basal STC secretion of
0.19 ± 0.03 ng STC µg prot−1 h−1, mean ± SEM). Different letters indicate significantly different
groups (n = 6 per group, one-way ANOVA followed by a Tukey´s post-hoc test, p < 0.05).

3.6. Combined Effects of High Calcium and PTHrP

Figure 7 shows the combined effects of high (2.92 mM) calcium levels and increasing
PTHrP concentrations. STC secretion (Figure 7A) or production (Figure 7B) are not signifi-
cantly affected by any of the PTHrP concentrations tested (one-way ANOVA followed by a
Tukey´s test, p > 0.05).
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Figure 7. Dose-response effects of PTHrP on STC ex vivo secretion (A) and production (B) from the
corpuscles of Stannius of the gilthead seabream at high (2.92 mM Ca2+) calcium concentration. Basal
STC secretion for the 0 ng PTHrP mL−1 group is 0.82± 0.17 ng STC µg prot−1 h−1 (mean ± SEM). No
significant differences between groups were observed (n = 9 per group, one-way ANOVA followed
by a Tukey´s post-hoc test, p > 0.05).

4. Discussion

In the present study, we demonstrate the regulatory action of calcium and PTHrP on
the release of stanniocalcin from the corpuscles of Stannius, a specific bony fish gland and
endocrine tissue. These effects involve the participation of a calcium-sensing receptor and
imply an unexpected role of the PTHrP receptors, which, based on transcriptomic evidence,
are supposedly absent from the CS of a teleost fish [45]. In this sense, the antagonistic
hormone of the STC, the PTHrP, exerts a direct down-regulation of the STC secretion
through the participation of at least two PTHrP receptors, likely receptor1 and receptor3.

A CaSR is present in the CS glands of the gilthead seabream, an observation that
reinforces previous studies in trout [18], flounder [17], and zebrafish [19]. The first two
studies described a fast 9-fold and 3-fold increase in the plasma STC levels in response to
intraperitoneal injections of the calcimimetics NPS-467 or R-568. The resemblance between
these in vivo and our ex vivo results is evident as we show a 6.5-fold increase in ex vivo STC
secretion in response to high calcium concentrations for six hours. This result is reinforced
by the stimulation ranges of STC secretion of a 1.6 to 3.8-fold increase in response to the
tested calcimimetics used in our study. Previous studies with rainbow trout and European
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eel also show increased STC release to the plasma in response to CaCl2 administration [46].
As those results came from in vivo experiments, side effects or interfering alternative routes
in the regulation of STC secretion need consideration. However, our ex vivo approach
negates those circumstances and facilitates a direct understanding of the effects at the level
of the gland. Thus, the stimulation of STC secretion not only by Ca2+ but also through the
calcimimetics R-568, neomycin, and gadolinium indicates the direct involvement of CaSR
in STC secretion regulation.

In addition, calcimimetics, neomycin and gadolinium, also increase the total percent-
age of available STC, pointing to a possible enhancement of both, increase in secretion
and stimulation of hormone synthesis. Furthermore, the allosteric antagonist of the CaSR
NPS-2143 down-regulates STC secretion and the STC synthesis in the CS gland. In this
sense, using a calcilytic compound in flounder also decreased plasma STC levels to half of
the control after treatment with EGTA [17], supporting our results. Thus, the involvement
of CaSR in the secretion and synthesis of STC is with this demonstrated in the seabream.

Previous studies show that STC and PTHrP exert functional antagonistic actions at
different levels [3,22], but to date, and as far as we are aware, there is no experimental
evidence for a putative reciprocal control of their production/secretion. The CS gland, in
this sense, offers a unique model to study interactions between both hormones through
the analysis of STC synthesis and release. Through next-generation sequencing techniques,
there is a reported lack of PTHrP receptor transcripts in the CS of the Japanese eel [45].
However, in the present study, we have demonstrated with a specific RT-PCR approach the
presence of two PTHrP receptors (pth1r and pth3r) in the CS of the seabream. Moreover,
ex vivo incubations of the CS with PTHrP revealed its inhibitory action on STC release
in a dose-dependent fashion. There are no previous reports of this interaction in fish or
mammals. This knowledge gap also extends to the mammalian counterparts of the PTHrP
and STC, the PTH, and the calcitonin hormone, respectively. Hence, these results highlight
the importance of calcium homeostasis regulation, as its intertwined pathways are mutually
regulated. Therefore, we calculated the PTHrP ED50 for STC secretion, 17.51 ng mL−1.
Normal levels of PTHrP in the plasma of seabream range from 2.50 ± 0.29 ng mL−1 [47] to
0.86 ± 0.25 ng mL−1 [48]; therefore, a slight but constant inhibition of STC release from the
corpuscles of Stannius in seabream takes place at circulating levels of PTHrP.

The PTHrP effects described in this study are likely achieved through specific receptors
and second messenger routes. The inhibitory effects of PTHrP in STC secretion are mediated
by the activation of a phospholipase C (PLC) and transmembrane adenylyl cyclase (tmAC),
as specific inhibitors of both enzymes rescue the inhibition caused by the PTHrP towards
the STC secretion at the same time (but not separately). In this sense, gilthead seabream
PTH3R (sbPTH3R) seems only to activate the cAMP pathway [32], thus suggesting that the
PTH1R in the CS primarily activates the PLC signaling cascade. Our results are in good
agreement with previous studies in other species ranging from mammals to fish, as the
PTH/PTHrP receptors are closely linked to PKA and PLC signaling pathways [2,28,31]
unless their affinities to one or other second messenger routes depend on the specific
type of PTHrP receptor. However, both routes are related to the inhibition of the STC
secretion in the CS of the gilthead seabream through the action of the PTHrP. Moreover, in
zebrafish, a gene duplication produced two distinct PTH molecules with different receptor
affinities [49]. If seabream also presents different effectors of the two PTHRs located in
the CS, the overall receptor selectivity may present different action patterns depending on
substrate binding.

Interestingly, the CS presents two types of granulated cells [50,51], which opens a
possibility for different regulatory mechanisms. To understand if both PTHrP receptors are
present in the same pool of STC secretory cells or if their inhibitory actions are related to
differentiated pools requires further investigation. However, if differentiated groups of STC
secretory cells exist, it may indicate that there are other regulatory agents in addition to
calcium. In this sense, earlier work on STC postulated that the nervous system might act as
a promotor of STC secretion [46]; however, we should not rule out other unknown external
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factors. The inhibitory action of the sbPTH3R through the production of cAMP matches
with the described inhibition of cAMP accumulation due to CaSR stimulation [25,27]. Thus,
the PTH3R effects in this species could be related to inhibiting the STC-secretion stimulated
by basal Ca2+ levels through a tmAC. Moreover, our results also show that at high plasma
Ca2+ concentrations, the PTHrP receptors do not inhibit the STC secretion. The reason
for that is still not understood, but it could imply the presence of another mechanism to
regulate secretion in the CS.

5. Conclusions

In conclusion, using ex vivo approaches and RT-PCR techniques, we have demon-
strated consistent STC release from the CS of gilthead seabream controlled by calcium
levels and its antagonist hormone, the PTHrP. Three types of membrane receptors are
thus mediating this action: CaSR, PTH1R, and PTH3R. The inhibition exerted by both
PTHrP receptors could imply alternative pathways, maybe due to differentiated pools of
STC secretory cells. Further studies to elucidate whether or not this hypothesis is true are
necessary. The present study demonstrates that the regulation of antagonist hormones such
as STC and PTHrP in teleost fish is more closely related than expected.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology11060863/s1, Figure S1: Corpuscles of Stannius in seabream; Figure S2: ELISA
displacement curves; Figure S3: CS incubation and STC secretion along time.
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